Skip to main content
Log in

Effect of the Delignification Process on the Physicochemical Properties and Thermal Stability of Microcrystalline Cellulose Extracted from Date Palm Fronds

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, pure cellulose was isolated from Algerian date palm fronds (DPF) using three different delignification processes (acidified NaClO2, totally chlorine free (TCF) and their combination). Then, microcrystalline cellulose (MCCs) particles have been successfully produced via direct acid hydrolysis of the different celluloses. All samples were characterized using infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry (TGA) and differential scanning calorimeter (DSC). From the FTIR analysis, most of hemicellulose and lignin were effectively removed throughout the extraction processes. The XRD spectra revealed that all MCCs belong to cellulose I type, and showed a highly crystallinity index than that of pure celluloses. According to DSC and TGA/DTG analyses, the MCC samples presented a higher decomposition temperature. The obtained results showed that the extracted MCC samples exhibited similar properties than those of commercial MCC. Furthermore, the employment of a combined process allowed obtaining MCC with higher crystallinity and better thermal stability. Thus, according to these results, date palm fronds can be considered as a potential low-cost material for MCC production and the combined process is promising to isolate high purity MCC from cellulosic substrate.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. General Assembly.: UNTransforming our world: The 2030 agenda for sustainable development (2015). https://sustainabledevelopment.un.org/post2015/transformingourworld. Accessed 01 July 2020

  2. Liao, J.J., Abd Latif, N.H., Trache, D., Brosse, N., Hussin, M.H.: Current advancement on the isolation, characterization and application of lignin. Int. J. Biol. Macromol. 162, 985–1024 (2020)

    Google Scholar 

  3. Trache, D., Hussin, M.H., Chuin, C.T.H., Sabar, S., Fazita, M.N., Taiwo, O.F., Hassan, T., Haafiz, M.M.: Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int. J. Biol. Macromol. 93, 789–804 (2016)

    Google Scholar 

  4. Kassab, Z., Achaby, MEl., Tamraoui, Y., Sehaqui, H., Bouhfid, R., Qaiss, A.E.K.: Sunflower oil cake-derived cellulose nanocrystals: extraction, physico-chemical characteristics and potential application. Int. J. Biol. Macromol. 136, 241–252 (2019)

    Google Scholar 

  5. El Achaby, M., Miri, N.El, Hannache, H., Gmouh, S., Aboulkas, A.: Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials. Int. J. Biol. Macromol. 117, 592–600 (2018)

    Google Scholar 

  6. Trache, D.: Microcrystalline cellulose and related polymer composites: synthesis, characterization and properties. In: Thakur, V.K., Thakur, M.K., Kessle, M.R. (eds.) Handbook of composites from renewable materials, structure and chemistry, vol. 1, pp. 61–92, Wiley (2017)

  7. Trache, D.: Nanocellulose as a promising sustainable material for biomedical applications. AIMS Mater. Sci. 5, 201–205 (2018)

    Google Scholar 

  8. Hussin, M.H., Trache, D., Chuin, C.T.H., Fazita, M.N., Haafiz, M.M., Hossain, M.S.: Extraction of Cellulose Nanofibers and Their Eco-friendly Polymer Composites, pp. 653–691. Springer, Cham (2019)

    Google Scholar 

  9. Trache, D., Hussin, M.H., Haafiz, M.M., Thakur, V.K.: Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9, 1763–1786 (2017)

    Google Scholar 

  10. Trache, D., Khimeche, K., Mezroua, A., Benziane, M.: Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J. Therm. Anal. Calorim. 124, 1485–1496 (2016)

    Google Scholar 

  11. Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., Hussin, M.H.: Nanocellulose: from fundamentals to advanced applications. Front. Chem. 8, 392 (2020)

    Google Scholar 

  12. Tarchoun, A.F., Trache, D., Klapötke, T.M., Chelouche, S., Derradji, M., Bessa, W., Mezroua, A.: A Promising energetic polymer from Posidonia oceanica brown algae: synthesis, characterization, and kinetic modeling. Macromol. Chem. Phys. 220, 1900358 (2019)

    Google Scholar 

  13. Cherif, M.F., Trache, D., Brosse, N., Benaliouche, F., Tarchoun, A.F.: Comparison of the physicochemical properties and thermal stability of organosolv and kraft lignins from hardwood and softwood biomass for their potential valorization. Waste Biomass Valoriz. (2020). https://doi.org/10.1007/s12649-020-00955-0

    Article  Google Scholar 

  14. Ren, H., Shen, J., Pei, J., Wang, Z., Peng, Z., Fu, S., Zheng, Y.: Characteristic microcrystalline cellulose extracted by combined acid and enzyme hydrolysis of sweet sorghum. Cellulose 26, 8367–8381 (2019)

    Google Scholar 

  15. Tarchoun, A.F., Trache, D., Klapötke, T.M., Derradji, M., Bessa, W.: Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26, 7635–7651 (2019)

    Google Scholar 

  16. Chaluvadi, S.R., Young, P., Thompson, K., Bahri, B.A., Gajera, B., Narayanan, S., Krueger, R., Bennetzen, J.L.: Phoenix phylogeny, and analysis of genetic variation in a diverse collection of date palm (Phoenix dactylifera) and related species. Plant Divers (2018). https://doi.org/10.1016/j.pld.2018.11.005

    Article  Google Scholar 

  17. Purayil, F.T., Robert, G.A., Gothandam, K.M., Kurup, S.S., Subramaniam, S., Cheruth, A.J.: Genetic variability in selected date palm (Phoenix dactylifera L.) cultivars of United Arab Emirates using ISSR and DAMD markers. 3 Biotech 8, 109 (2018)

    Google Scholar 

  18. Chennouf, N., Agoudjil, B., Boudenne, A., Benzarti, K., Bouras, F.: Hygrothermal characterization of a new bio-based construction material: concrete reinforced with date palm fibers. Constr. Build. Mater. 192, 348–356 (2018)

    Google Scholar 

  19. Belakroum, R., Gherfi, A., Kadja, M., Maalouf, C., Lachi, M., El Wakil, N., Mai, T.: Design and properties of a new sustainable construction material based on date palm fibers and lime. Constr. Build. Mater. 184, 330–343 (2018)

    Google Scholar 

  20. Mesnoua, M., Roumani, M., Salem, A.: The effect of pollen storage temperatures on pollen viability, fruit set and fruit quality of six date palm cultivars. Sci. Hortic. 236, 279–283 (2018)

    Google Scholar 

  21. Sbiai, A., Kaddami, H., Sautereau, H., Maazouz, A., Fleury, E.: TEMPO-mediated oxidation of lignocellulosic fibers from date palm leaves. Carbohydr. Polym. 86, 1445–1450 (2011)

    Google Scholar 

  22. Shoaib, M., Al-Swaidan, H.M.: Optimization and characterization of sliced activated carbon prepared from date palm tree fronds by physical activation. Biomass Bioenergy 73, 124–134 (2015)

    Google Scholar 

  23. Nasser, R., Salem, M., Hiziroglu, S., Al-Mefarrej, H., Mohareb, A., Alam, M., Aref, I.: Chemical analysis of different parts of date palm (Phoenix dactylifera L.) using ultimate, proximate and thermo-gravimetric techniques for energy production. Energies 9, 374 (2016)

    Google Scholar 

  24. Jose, C., Sobolciak, P., Krupa, I., AlMaadeed, M.A.A.: Novel anticoagulant from date palm leaf/cellulose nano whisker. Int. Refereed J. Eng. Sci. 6(3), 1–9 (2017)

    Google Scholar 

  25. Haddadou, I., Aliouche, D., Brosse, N., Amirou, S.: Characterization of cellulose prepared from some Algerian lignocellulosic materials (zeen oak wood, Aleppo pine wood and date palm rachis). Eur. J. Wood Wood Prod. 73, 419–421 (2015)

    Google Scholar 

  26. Elseify, L.A., Midani, M., Shihata, L.A., El-Mously, H.: Review on cellulosic fibers extracted from date palms (Phoenix dactylifera L.) and their applications. Cellulose 26, 2209–2232 (2019)

    Google Scholar 

  27. Galiwango, E., Rahman, N.S.A., Al-Marzouqi, A.H., Abu-Omar, M.M., Khaleel, A.A.: Isolation and characterization of cellulose and α-cellulose from date palm biomass waste. Heliyon. 5, e02937 (2019)

    Google Scholar 

  28. Alotaibi, M.D., Alshammari, B.A., Saba, N., Alothman, O.Y., Sanjay, M., Almutairi, Z., Jawaid, M.: Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.). Int. J. Biol. Macromol. 135, 69–76 (2019)

    Google Scholar 

  29. Hindi, S.S.: Suitability of date palm leaflets for sulphated cellulose nanocrystals synthesis. Nanosci. Nanotechnol. Res. 4, 7–16 (2017)

    Google Scholar 

  30. Hassan, M.L., Bras, J., Hassan, E.A., Silard, C., Mauret, E.: Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Ind. Crops Prod. 55, 102–108 (2014)

    Google Scholar 

  31. Robles, E., Fernandez-Rodriguez, J., Barbosa, A.M., Gordobil, O., Carreno, N.L., Labidi, J.: Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydr. Polym. 183, 294–302 (2018)

    Google Scholar 

  32. Cheng, F., Zhao, X., Hu, Y.: Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: a comparison study of solvents. Bioresour. Technol. 249, 969–975 (2018)

    Google Scholar 

  33. Yiin, C.L., Ho, S., Yusup, S., Quitain, A.T., Chan, Y.H., Loy, A.C.M., Gwee, Y.L.: Recovery of cellulose fibers from oil palm empty fruit bunch for pulp and paper using green delignification approach. Bioresour. Technol. 290, 121797 (2019)

    Google Scholar 

  34. TAPPI Standard.: Solvent extractives of wood and pulp. In: TAPPI T 204 cm-97. TAPPI Press, Atlanta, GA, USA (1997)

  35. Kilic, A., Niemz, P.: Extractives in some tropical woods. Eur. J. Wood Wood Prod. 70, 79–83 (2012)

    Google Scholar 

  36. Ilyas, R., Sapuan, S., Ishak, M.: Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata). Carbohydr. Polym. 181, 1038–1051 (2018)

    Google Scholar 

  37. Kuznetsov, B., Sudakova, I., Garyntseva, N., Djakovitch, L., Pinel, C.: Kinetic studies and optimization of abies wood fractionation by hydrogen peroxide under mild conditions with TiO2 catalyst. React. Kinet. Mech. Catal. 120, 81–94 (2017)

    Google Scholar 

  38. Rosa, S.M., Rehman, N., de Miranda, M.I.G., Nachtigall, S.M., Bica, C.I.: Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 87, 1131–1138 (2012)

    Google Scholar 

  39. Sun, J., Sun, X., Zhao, H., Sun, R.: Isolation and characterization of cellulose from sugarcane bagasse. Polym. Degrad. Stab. 84, 331–339 (2004)

    Google Scholar 

  40. Khandanlou, R., Ngoh, G.C., Chong, W.T.: Feasibility study and structural analysis of cellulose isolated from rice husk: microwave irradiation, optimization, and treatment process scheme. BioResources 11, 5751–5766 (2016)

    Google Scholar 

  41. Jiang, F., Hsieh, Y.-L.: Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr. Polym. 122, 60–68 (2015)

    Google Scholar 

  42. Trache, D., Donnot, A., Khimeche, K., Benelmir, R., Brosse, N.: Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydr. Polym. 104, 223–230 (2014)

    Google Scholar 

  43. Reddy, K.O., Uma Maheswari, C., Muzenda, E., Shukla, M., Rajulu, A.V.: Extraction and characterization of cellulose from pretreated ficus (peepal tree) leaf fibers. J. Nat. Fibers 13, 54–64 (2016)

    Google Scholar 

  44. Hu, Y., Tang, L., Lu, Q., Wang, S., Chen, X., Huang, B.: Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21, 1611–1618 (2014)

    Google Scholar 

  45. Wise, L.E.: Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade 122, 35–43 (1946)

    Google Scholar 

  46. Segal, L., Creely, J., Martin Jr, A., Conrad, C.: An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959)

    Google Scholar 

  47. Abu-Thabit, N.Y., Judeh, A.A., Hakeem, A.S., Ul-Hamid, A., Umar, Y., Ahmad, A.: Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.255

    Article  Google Scholar 

  48. Mirmehdi, S.M., Zeinaly, F., Dabbagh, F.: Date palm wood flour as filler of linear low-density polyethylene. Compos. B 56, 137–141 (2014)

    Google Scholar 

  49. Bendahou, A., Dufresne, A., Kaddami, H., Habibi, Y.: Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L. Carbohydr. Polym. 68, 601–608 (2007)

    Google Scholar 

  50. Johar, N., Ahmad, I., Dufresne, A.: Products: extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 37, 93–99 (2012)

    Google Scholar 

  51. Al-Khanbashi, A., Al-Kaabi, K., Hammami, A.: Date palm fibers as polymeric matrix reinforcement: fiber characterization. Polym. Compos. 26, 486–497 (2005)

    Google Scholar 

  52. Khiari, R., Mhenni, M., Belgacem, M., Mauret, E.: Chemical composition and pulping of date palm rachis and Posidonia oceanica—a comparison with other wood and non-wood fibre sources. Bioresour. Technol. 101, 775–780 (2010)

    Google Scholar 

  53. Hussin, M.H., Husin, N.A., Bello, I., Othman, N., Bakar, M.A., Haafiz, M.M.: Isolation of microcrystalline cellulose (MCC) from oil palm frond as potential natural filler for PVA-LiClO4 polymer electrolyte. Int. J. Electrochem. Sci. 13, 3356–3371 (2018)

    Google Scholar 

  54. Kalita, R.D., Nath, Y., Ochubiojo, M.E., Buragohain, A.K.: Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids Surf. B 108, 85–89 (2013)

    Google Scholar 

  55. Zhao, T., Chen, Z., Lin, X., Ren, Z., Li, B., Zhang, Y.: Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr. Polym. 184, 164–170 (2018)

    Google Scholar 

  56. Reddy, K.O., Maheswari, C.U., Dhlamini, M., Mothudi, B., Kommula, V., Zhang, J., Zhang, J., Rajulu, A.V.: Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydr. Polym. 188, 85–91 (2018)

    Google Scholar 

  57. Liu, Y., Nie, Y., Lu, X., Zhang, X., He, H., Pan, F., Zhou, L., Liu, X., Ji, X., Zhang, S.: Cascade utilization of lignocellulosic biomass to high-value products. Green Chem. 21, 3499–3535 (2019)

    Google Scholar 

  58. Ditzel, F.I., Prestes, E., Carvalho, B.M., Demiate, I.M., Pinheiro, L.A.: Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydr. Polym. 157, 1577–1585 (2017)

    Google Scholar 

  59. Bian, J., Peng, F., Peng, X.-P., Peng, P., Xu, F., Sun, R.-C.: Acetic acid enhanced purification of crude cellulose from sugarcane bagasse: structural and morphological characterization. BioResources 7, 4626–4639 (2012)

    Google Scholar 

  60. Adel, A.M., El-Shinnawy, N.A.: Hypolipidemic applications of microcrystalline cellulose composite synthesized from different agricultural residues. Int. J. Biol. Macromol. 51, 1091–1102 (2012)

    Google Scholar 

  61. Trache, D., Khimeche, K., Donnot, A., Benelmir, R.: FTIR spectroscopy and X-ray powder diffraction characterization of microcrystalline cellulose obtained from alfa fibers. MATEC Web Conf 3, 01023 (2013). https://doi.org/10.1051/matecconf/20130301023

    Article  Google Scholar 

  62. -Das, K., Ray, D., Bandyopadhyay, N., Sengupta, S.: Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J. Polym. Environ. 18, 355–363 (2010)

    Google Scholar 

  63. Khalil, H.A., Lai, T.K., Tye, Y.Y., Paridah, M., Fazita, M.N., Azniwati, A., Dungani, R., Rizal, S.: Preparation and characterization of microcrystalline cellulose from sacred bali bamboo as reinforcing filler in seaweed-based composite film. Fibers Polym. 19, 423–434 (2018)

    Google Scholar 

  64. Oushabi, A., Sair, S., Hassani, F.O., Abboud, Y., Tanane, O., Bouari, AEl.: The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): study of the interface of DPF–polyurethane composite. J. S. Afr. J. Chem. Eng. 23, 116–123 (2017)

    Google Scholar 

  65. Alawar, A., Hamed, A.M., Al-Kaabi, K.: Characterization of treated date palm tree fiber as composite reinforcement. J Compos. B 40, 601–606 (2009)

    Google Scholar 

  66. Kumar, R., Hu, F., Hubbell, C.A., Ragauskas, A.J., Wyman, C.E.: Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresour. Technol. 130, 372–381 (2013)

    Google Scholar 

  67. Agarwal, U.P., Ralph, S.A., Baez, C., Reiner, R.S., Verrill, S.P.: Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24, 1971–1984 (2017)

    Google Scholar 

  68. Haafiz, M.M., Eichhorn, S., Hassan, A., Jawaid, M.: Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr. Polym. 93, 628–634 (2013)

    Google Scholar 

  69. Ramli, R., Junadi, N., Beg, M.D., Yunus, R.M.: Microcrystalline cellulose (MCC) from oil palm empty fruit bunch (EFB) fiber via simultaneous ultrasonic and alkali treatment. Chem. Mol. Nucl. Mater. Metall. Eng. 9, 8–11 (2015)

    Google Scholar 

  70. Wyman, C.E., Decker, S.R., Himmel, M.E., Brady, J.W., Skopec, C.E., Viikari, L.: Hydrolysis of cellulose and hemicellulose. In: Dumitriu, S. (ed.) Polysaccharides: Structural Diversity and Functional Versatility, pp. 1023–1062. CRC Press, Boca Raton (2004)

  71. Kishani, S., Vilaplana, F., Xu, W., Xu, C., Wågberg, L.: Solubility of softwood hemicelluloses. Biomacromolecules 19, 1245–1255 (2018)

    Google Scholar 

  72. Alotabi, M.D., Alshammari, B.A., Saba, N., Alothman, O.Y., Kian, L.K., Khan, A., Jawaid, M.: Microcrystalline cellulose from fruit bunch stalk of date palm: isolation and characterization. J. Polym. Environ. 28, 1766–1775 (2020)

    Google Scholar 

  73. Xiang, L.Y., Mohammed, M.A.P., Baharuddin, A.S.: Characterisation of microcrystalline cellulose from oil palm fibres for food applications. Carbohydr. Polym. 148, 11–20 (2016)

    Google Scholar 

  74. Francis, R., Rodriguez, S., Bose, S., Granzow, S., Evans, T.: The critical role of transition metals in high-temperature peroxide (PO) bleaching, Canadian Pulp & Paper ASSN-Technical Section, City, vol. 84, pp. A49–A56 (1998)

  75. García Hortal, J.A., Vidal Lluciá, T.: Blanqueo de pastas en la industria papelera. UPC ETSII de Terrassa, Barcelona (1984)

    Google Scholar 

  76. Ramos, E., Calatrava, S., Jiménez, L.J.A.: Bleaching with hydrogen peroxide. A review. Afinidad 65, 14–21 (2008)

    Google Scholar 

  77. Tarchoun, A.F., Trache, D., Klapötke, T.M.: Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization. Int. J. Biol. Macromol. 138, 837–845 (2019)

    Google Scholar 

  78. Azubuike, C.P., Okhamafe, A.O.: Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int. J. Recycl. Org. Waste Agric. 1, 9 (2012)

    Google Scholar 

  79. Owolabi, A.F., Haafiz, M.M., Hossain, M.S., Hussin, M.H., Fazita, M.N.: Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. Int. J. Biol. Macromol. 95, 1228–1234 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ecole Militaire polytechnique for the financial support and the necessary facilities for the accomplishment of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djalal Trache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beroual, M., Trache, D., Mehelli, O. et al. Effect of the Delignification Process on the Physicochemical Properties and Thermal Stability of Microcrystalline Cellulose Extracted from Date Palm Fronds. Waste Biomass Valor 12, 2779–2793 (2021). https://doi.org/10.1007/s12649-020-01198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01198-9

Keywords

Navigation