Skip to main content
Log in

Detoxification of GaAs Bearing Waste LED and Recovery of Metal Values Through Understanding the Thermodynamics and Chemistry: A Perspective

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Light-emitting diodes (LEDs) are energy-efficient and mercury-free, conventionally it is considered environment-friendly, which is not true depending upon kind of LED material constituents. Those LEDs provides yellow, red light and used for infrared light resources are mainly made from Ga, As and P. End of life LED bearing waste is an environmental challenge considering hazardous As content. Also, Ga is a vital metal for the electronics industry, is classified as significant from the industrial application and critical from a supply chain scarcity perspective. The Republic of Korea depends upon import of Ga, under the national policy of securing a stable supply, much attention has been paid to the notion of “urban mining”. Hence, Ga values recovery and detoxification of As from EOL LED can address two different issues. Through high-temperature sublimation followed As recovery by condensation for safe disposal or reuse purpose could be a potential technique. For the purpose, reactor design and thermal parameters are two important aspects needed to be addressed. Hence, in our current study focusses on understanding of thermochemistry and thermodynamics of GaAs bearing LED. It can provide potential information for the recovery of metal values and detoxification of hazardous substances from the LED.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Perkins, D.N., Drisse, B., Nxele, M.N., Sly, T.: E-waste: a global hazard. Ann. Glob. Health 80(4), 286–295 (2014). https://doi.org/10.1016/j.aogh.2014.10.001

    Article  Google Scholar 

  2. Tsydenova, O., Bengtsson, M.: Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag. 31(1), 45–58 (2011). https://doi.org/10.1016/j.wasman.2010.08.014

    Article  Google Scholar 

  3. UNEP: UN report: Time to seize opportunity, tackle challenge of e-waste. https://www.unenvironment.org/news-and-stories/press-release/un-report-time-seize-opportunity-tackle-challenge-e-waste (2019). Accessed 18 Feb 2020

  4. Tsao, J.Y., Chowdhury, S., Hollis, M.A., Jena, D., Johnson, N.M., Jones, K.A., Kaplar, R.J., Rajan, S., Van de Walle, C.G., Bellotti, E., Chua, C.L., Collazo, R., Coltrin, M.E., Cooper, J.A., Evans, K.R., Graham, S., Grotjohn, T.A., Heller, E.R., Higashiwaki, M., Islam, M.S., Juodawlkis, P.W., Khan, M.A., Koehler, A.D., Leach, J.H., Mishra, U.K., Nemanich, R.J., Pilawa-Podgurski, R.C.N., Shealy, J.B., Sitar, Z., Tadjer, M.J., Witulski, A.F., Wraback, M., Simmons, J.A.: Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. (2018). https://doi.org/10.1002/aelm.201600501

    Article  Google Scholar 

  5. https://www.azom.com/: Gallium Arsenide (GaAs) Semiconductors. https://www.azom.com/article.aspx?ArticleID=8349 (2013). Accessed 19 Feb 2020

  6. Grand View Research, I.: LED Lighting market size worth $127.84 billion By 2027 https://www.grandviewresearch.com/press-release/global-led-lighting-market (2020). Accessed 19 Feb 2020

  7. MarketWatch, I.: Gallium arsenide (Gaas) wafers market 2019 |global industry analysis by trends, size, share, company overview, growth and forecast by: 2021. https://www.marketwatch.com/press-release/gallium-arsenide-gaas-wafers-market-2019-global-industry-analysis-by-trends-size-share-company-overview-growth-and-forecast-by-2021-latest-research-report-by-360researchreportscom-2019-11-07 (2019). Accessed 19 Feb 2020

  8. Zhu, D., Humphreys, C.J.: Solid-state lighting based on light emitting diode technology. In: Al-Amri, M.D., El-Gomati, M., Zubairy, M.S. (eds.) Optics in Our Time, pp. 87–118. Springer, Cham (2016)

    Chapter  Google Scholar 

  9. Lim, S.R., Kang, D., Ogunseitan, O.A., Schoenung, J.M.: Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification. Environ. Sci. Technol. 45(1), 320–327 (2011). https://doi.org/10.1021/es101052q

    Article  Google Scholar 

  10. Steranka, F.M.: Chap. 3 AlGaAs red light-emitting diodes. In: Stringfellow, G.B., George, C.M. (eds.) Semiconductors and Semimetals, pp. 65–96. Elsevier, Amsterdam (1997)

    Google Scholar 

  11. Wang, G., Yi, X., Zhan, T., Huang, Y.: The AlGaInP/AlGaAs material system and red/yellow LED. In: Li, J., Zhang, G.Q. (eds.) Light-Emitting Diodes: Materials, Processes, Devices and Applications, pp. 171–202. Springer, Cham (2019)

    Chapter  Google Scholar 

  12. Needhidasan, S., Samuel, M., Chidambaram, R.: Electronic waste - an emerging threat to the environment of urban India. J. Environ. Health Sci. Eng. 12(1), 36 (2014). https://doi.org/10.1186/2052-336X-12-36

    Article  Google Scholar 

  13. Swain, B., Lee, C.G.: Commercial indium recovery processes development from various e-(industry) waste through the insightful integration of valorization processes: a perspective. Waste Manag. 87, 597–611 (2019). https://doi.org/10.1016/j.wasman.2019.02.042

    Article  Google Scholar 

  14. Lide, D.R.: CRC Handbook of Chemistry and Physics, 85th edn. Taylor & Francis, Park Drive (2004)

    Google Scholar 

  15. Zhan, L., Xia, F., Xia, Y., Xie, B.: Recycle gallium and arsenic from gaas-based E-wastes via pyrolysis–vacuum metallurgy separation: theory and feasibility. ACS Sustain. Chem. Eng. 6(1), 1336–1342 (2017). https://doi.org/10.1021/acssuschemeng.7b03689

    Article  Google Scholar 

  16. Zhan, L., Li, J., Xie, B., Xu, Z.: Recycling arsenic from gallium arsenide scraps through sulfurizing thermal treatment. ACS Sustain. Chem. Eng. 5(4), 3179–3185 (2017). https://doi.org/10.1021/acssuschemeng.6b02962

    Article  Google Scholar 

  17. Zhang, Y., Zhan, L., Xie, B., Xu, Z., Chen, C.: Decomposition of packaging materials and recycling GaAs from waste ICs by hydrothermal treatment. ACS Sustain. Chem. Eng. 7(16), 14111–14118 (2019). https://doi.org/10.1021/acssuschemeng.9b02724

    Article  Google Scholar 

  18. Zhan, L., Zhang, Y., Ahmad, Z., Xu, Z.: Novel recycle technology for recovering gallium arsenide from scraped integrated circuits. ACS Sustain. Chem. Eng. (2020). https://doi.org/10.1021/acssuschemeng.9b07006

    Article  Google Scholar 

  19. Hu, S.-H., Xie, M.-Y., Hsieh, Y.-M., Liou, Y.-S., Chen, W.-S.: Resource recycling of gallium arsenide scrap using leaching-selective precipitation. Environ. Progress Sustain. Energy 34(2), 471–475 (2015). https://doi.org/10.1002/ep.12019

    Article  Google Scholar 

  20. Bauters, J.F., Fenlon, R.E., Seibert, C.S., Yuan, W., Plunkett, J.S.B., Li, J., Hall, D.C.: Oxygen-enhanced wet thermal oxidation of GaAs. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3647579

    Article  Google Scholar 

  21. Lou, C.Y.-C.: Vaporization Mechanism of Gallium Arsenide Single Crystals. University of California Berkeley, Berkeley (1970)

    Book  Google Scholar 

  22. Monteiro, O.R., Evans, J.W.: Thermal oxidation of gallium arsenide. J. Vac. Sci. Technol. A Vac. Surf. Films 7(1), 49–54 (1989). https://doi.org/10.1116/1.575730

    Article  Google Scholar 

  23. Navrátil, K.: Thermal oxidation of gallium arsenide. Czechosl. J. Phys. B 18(2), 266–274 (1968). https://doi.org/10.1007/bf02101452

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment (Project No.: R2-24_RE201902102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudev Swain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, B., Lee, DH., Lee, C.G. et al. Detoxification of GaAs Bearing Waste LED and Recovery of Metal Values Through Understanding the Thermodynamics and Chemistry: A Perspective. Waste Biomass Valor 12, 2769–2778 (2021). https://doi.org/10.1007/s12649-020-01196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01196-x

Keywords

Navigation