Skip to main content

Advertisement

Log in

Production of Chitosanase by Lentzea sp. OUR-I1 Using Acid-Pretreated Shrimp Shell in an Air-Lift Bioreactor and the Feasibility of Utilizing the Residual Biomass

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Chitosanase is an attractive enzymatic tool for the production of bioactive chitooligosaccharides. Nevertheless, its industrial use is restricted by its high cost and insufficient availability because chitosanase production needs an expensive inducer, chitosan. Therefore, this study developed a process to produce chitosanase from abundant and inexpensive shrimp shell waste entailing the pretreatment of shrimp shell powder (SSP) with 0.4 M acetic acid (AcSSP), which increased the substrate bioavailability and enhanced the chitosanase production by Lentzea sp. OUR-I1 four-fold. The initial flask-based process was scaled up into an air-lift bioreactor (ALB) and the maximum chitosanase activity (0.974 U/mL) was observed at an aeration rate of 2.0 vvm. This is the first report indicating the suitability of ALB for chitosanase production by Lentzea sp. OUR-I1. Interestingly, Lentzea sp. OUR-I1 also produces a yellow pigment with prospective structure as carotenoids, indicating that the mycelium could be reused in the production of pigments. In addition, the fermented AcSPP displayed the FTIR spectrum of chitin and has high potential as an absorbent for methyl orange, methylene blue and coomassie brilliant blue, with a maximum decolorization efficiency of 73.21, 64.59 and 87.93%, respectively. The process developed represents a cost effective and environmentally friendly method of valorizing a waste product from the food industry into valuable bioproducts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tokoro, A., Kobayashi, M., Tatewaki, N., Suzuki, K., Okawa, Y., Mikami, T., Suzuki, S., Suzuki, M.: Protective effect of N-acetyl chitohexaose on Listeria monocytogenes infection in mice. Microbiol. Immunol. 33(4), 357–367 (1989)

    Google Scholar 

  2. No, H.K., Park, N.Y., Lee, S.H., Meyers, S.P.: Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74, 65–72 (2002)

    Google Scholar 

  3. Sinha, S., Tripathi, P., Chand, S.: A new bifunctional chitosanase enzyme from Streptomyces sp. and its application in production of antioxidant chitooligosaccharides. Appl. Biochem. Biotechnol. 167(5), 1029–1039 (2012)

    Google Scholar 

  4. Xia, W., Liu, P., Zhang, J., Chen, J.: Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 25(2), 170–179 (2011)

    Google Scholar 

  5. Lee, Y.S., Yoo, J.S., Chung, S.Y., Lee, Y.C., Cho, Y.S., Choi, Y.L.: Cloning, purification, and characterization of chitosanase from Bacillus sp. DAU101. Appl. Microbiol. Biotechnol. 73, 113–121 (2006)

    Google Scholar 

  6. Su, C., Wang, D., Yao, L., Yu, Z.: Purification, characterization, and gene cloning of a chitosanase from Bacillus species strain S65. J. Argic. Food Chem. 54, 4208–4214 (2006)

    Google Scholar 

  7. Wee, Y.J., Reddy, L.V.A., Chung, K.C., Ryu, H.W.: Optimization of chitosanase production from Bacillus sp. RKY3 using statistical experimental designs. J. Chem. Technol. Biotechnol. 84, 1356–1363 (2009)

    Google Scholar 

  8. Jiang, X., Chen, D., Chen, L., Yang, G., Zou, S.: Purification, characterization, and action mode of a chitosanase from Streptomyces roseolus induced by chitin. Carbohydr. Res. 355, 40–44 (2012)

    Google Scholar 

  9. Zitouni, M., Fortin, M., Scheerle, R.K., Letzel, T., Matteau, D., Rodrigue, S., Brzezinski, R.: Biochemical and molecular characterization of a thermostable chitosanase produced by the strain Paenibacillus sp. 1794 newly isolated from compost. Appl. Microbiol. Biotechnol. 97, 5801–5813 (2013)

    Google Scholar 

  10. Sinha, S., Chand, S., Tripathi, P.: Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds. Appl. Biochem. Microbiol. 50, 125–133 (2014)

    Google Scholar 

  11. Liang, T.W., Kuo, Y.H., Wu, P.C., Wang, C.L., Dzung, N.A., Wang, S.L.: Purification and characterization of a chitosanase and a protease by conversion of shrimp shell wastes fermented by Serratia marcescens subsp. sakuensis TKU019. J. Chin. Chem. Soc. 57, 857–863 (2010)

    Google Scholar 

  12. Zhang, J., Cao, H., Li, S., Zhao, Y., Wang, W., Xu, Q., Du, Y., Yin, H.: Characterization of a new family 75 chitosanase from Aspergillus sp. W-2. Int. J. Biol. Macromol. 81, 362–369 (2015)

    Google Scholar 

  13. Zhang, H., Zhang, W.: Induction and optimization of chitosanase production by Aspergillus fumigatus YT-1 using response surface methodology. Chem. Biochem. Eng. Q. 27(3), 335–345 (2013)

    Google Scholar 

  14. Nidheesh, T., Kumar, P.G., Suresh, P.V.: Enzymatic degradation of chitosan and production of D-glucosamine by solid substrate fermentation of exo-β-d-glucosaminidase (exochitosanase) by Penicillium decumbens CFRNT15. Int. Biodeterior. Biodegrad. 97, 97–106 (2015)

    Google Scholar 

  15. Shimosaka, M., Nogawa, M., Wang, X.Y., Kumehara, M., Okazaki, M.: Production of two chitosanases from a chitosan assimilating bacterium, Acinetobacter sp. strain CHB101. Appl. Environ. Microbiol. 61, 438–442 (1995)

    Google Scholar 

  16. Chen, X.E., Fang, X.B., Xia, W.S.: Strain improvement and optimization of the media composition of chitosanase-producing fungus Aspergillus sp. CJ 22-326. Afr. J. Biotechnol. 7(14), 2501–2508 (2008)

    Google Scholar 

  17. Zhou, W., Yuan, H., Wang, J., Yao, J.: Production, purification and characterization of chitosanase produced by Gongronella sp. JG. Lett. Appl. Microbiol. 46(1), 49–54 (2008)

    Google Scholar 

  18. Pagnoncelli, M.G.B., de Araujo, N.K., da Silva, N.M.P., de Assis, C.F., Rodrigues, S., de Macedo, G.R.: Production of chitosanase from Penibacillus ehimensis and its application for chitosan hydrolysis. Braz. Arch. Biol. Technol. 53, 1461–1468 (2010)

    Google Scholar 

  19. Du, Y., Zhao, Y., Dai, S., Yang, B.: Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innov. Food Sci. Emerg. 10, 103–107 (2009)

    Google Scholar 

  20. Benhabile, M.S., Salah, R., Lounici, H., Drouiche, N., Goosen, M.F.A., Mameri, N.: Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 29(1), 48–56 (2012)

    Google Scholar 

  21. Thadathil, N., Velappan, S.P.: Recent developments in chitosanase research and its biotechnological applications: a review. Food Chem. 150, 392–399 (2014)

    Google Scholar 

  22. Wang, S.L., Chen, H.J., Liang, T.W., Lin, Y.D.: A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochem. 44, 70–76 (2009)

    Google Scholar 

  23. Wang, S.L., Chen, T.R., Liang, T.W., Wu, P.C.: Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials. Biochem. Eng. J. 48(1), 111–117 (2009)

    Google Scholar 

  24. Wang, S.L., Yang, C.W., Liang, T.W., Peng, J.H., Wag, C.L.: Degradation of chitin and production of bioactive materials by bioconversion of squid pens. Carbohydr. Polym. 78, 205–212 (2009)

    Google Scholar 

  25. Wang, S.L., Pen, J.H., Liang, T.W., Liu, K.C.: Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr. Res. 343, 316–1323 (2008)

    Google Scholar 

  26. Nidheesh, T., Pal, G.K., Suresh, P.V.: Chitooligomers preparation by chitosanase produced under solid state fermentation using shrimp by-products as substrate. Carbohydr. Polym. 121, 1–9 (2015)

    Google Scholar 

  27. Wang, S.L., Yeh, P.Y.: Purification and characterization of a chitosanase from a nattokinase producing strain Bacillus subtilis TKU007. Process Biochem. 43, 132–138 (2008)

    Google Scholar 

  28. Wang, S.L., Chang, T.J., Liang, T.W.: Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials. Biodegradation 21, 321–333 (2010)

    Google Scholar 

  29. Wang, S.L., Wu, P.C., Liang, T.W.: Utilization of squid pen for the efficient production of chitosanase and antioxidant through prolonged autoclave treatment. Carbohydr. Res. 344, 979–984 (2009)

    Google Scholar 

  30. Cho, R.Y.I., No, H.K., Meyers, S.P.: Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. J. Agric. Food. Chem. 46, 3839–3843 (1998)

    Google Scholar 

  31. Wang, S.L., Lin, T.Y., Yen, Y.H., Liao, H.F., Chen, Y.J.: Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydr. Res. 341, 2507–2515 (2006)

    Google Scholar 

  32. Suresh, P.V., Kumar, P.A., Sachindra, N.M.: Thermoactive β-Nacetylhexosaminidase production by a soil isolate of Penicillium monoverticillium CFR 2 under solid state fermentation: parameter optimization and application for N-acetyl chitooligosaccharides preparation from chitin. World J. Microbiol. Biotechnol. 27(6), 1435–1447 (2011)

    Google Scholar 

  33. Ploydee, E., Chaiyanan, S.: Production of high viscosity chitosan biologically purified chitin isolated by microbial fermentation and deproteinization. Int. J. Polym. Sci. 2014(5), 1–8 (2014)

    Google Scholar 

  34. Cheba, B.A., Zaghloul, T.I., EL-Mahdy, A.R.: Demineralized crab and shrimp shell powder: cost effective medium for Bacillus sp. R2 growth and chitinase production. Procedia Manuf. 22, 413–419 (2018)

    Google Scholar 

  35. Wang, S.L., Kao, T.Y., Wang, C.L., Yen, Y.H., Chern, M.K., Chen, Y.H.: A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme Microb. Technol. 39, 724–731 (2006)

    Google Scholar 

  36. Doan, C.T., Tran, T.N., Nguyen, V.B., Nguyen, A.D., Wang, S.L.: Production of a thermostable chitosanase from shrimp heads via Paenibacillus mucilaginosus TKU032 conversion and its application in the preparation of bioactive chitosan oligosaccharides. Mar. Drugs 17(4), 217 (2019)

    Google Scholar 

  37. Doan, C.T., Tran, T.N., Nguyen, V.B., Nguyen, A.D., Wang, S.L.: Reclamation of marine chitinous materials for chitosanase production via microbial conversion by Paenibacillus macerans. Mar. Drugs 16(11), 429 (2018)

    Google Scholar 

  38. Jung, W.J., Jo, G.H., Kuk, J.H., Kim, Y.J., Oh, K.T., Park, R.D.: Production of chitin from red crab shell waste by successive fermentation with Lactobacillus paracasei KCTC-3074 and Serratia marcescens FS-3. Carbohydr. Polym. 68, 746–750 (2007)

    Google Scholar 

  39. Castro, R., Guerrero-Legarreta, I., Bórquez, R.: Chitin extraction from Allopetrolisthes punctatus crab using lactic fermentation. Biotechnol. Rep. 20, e00287 (2018)

    Google Scholar 

  40. Jo, G.H., Jung, W.J., Kuk, J.H., Oh, K.T., Kim, Y.J., Park, R.D.: Screening of protease-producing Serratia marcescens FS-3 and its application to deproteinization of crab shell waste for chitin extraction. Carbohydr. Polym. 74, 504–508 (2008)

    Google Scholar 

  41. Doan, C.T., Tran, T.N., Nguyen, V.B., Vo, T.P.K., Nguyen, A.D., Wang, S.L.: Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. Int. J. Biol. Macromol. 131, 706–715 (2019)

    Google Scholar 

  42. Huynh, N.T., Suyotha, W., Yano, S., Konno, K., Cheirsilp, B., Wakayama, W.: Low-cost production of chitosanolytic enzymes from Lentzea sp. strain OUR-I1 for the production of antimicrobial substances against food-borne pathogens. Int. Food Res. J. 26(4), 1293–1304 (2019)

    Google Scholar 

  43. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Google Scholar 

  44. Cupp-Enyard, C.: Sigma’s non-specific protease activity assay—casein as a substrate. J. Vis. Exp. 19, 899 (2008)

    Google Scholar 

  45. Domszy, J.G., Roberts, G.A.F.: Evaluation of infrared spectroscopic techniques for analysing chitosan. Makromol. Chem. 186(8), 1671–1677 (1985)

    Google Scholar 

  46. A.O.A.C.: Official Methods of Analysis of the AOAC, 15th edn. Association of Official Analytical Chemists, Arlington, Virginia (1990)

    Google Scholar 

  47. Aye, K.N., Stevens, W.F.: Technical note improved chitin production by pretreatment of shrimp shells. J. Chem. Technol. Biotechnol. 79, 421–425 (2004)

    Google Scholar 

  48. Synowiecki, J., Al-Khateeb, N.A.: Production, properties and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr. 43, 145–171 (2003)

    Google Scholar 

  49. Mahmoud, N.S., Ghaly, A.E., Arab, F.: Unconventional approach for demineralization of deproteinized crustacean shells for chitin production. Am. J. Biochem. Biotechnol. 3(1), 1–9 (2007)

    Google Scholar 

  50. Lin, Y., Li, Y., Huang, M., Tsai, Y.: Intracellular expression of Vitreoscilla hemoglobin in Aspergillus terreus to alleviate the effect of a short break in aeration during culture. Biotechnol. Lett. 26, 1067–1072 (2004)

    Google Scholar 

  51. Okabe, M., Lies, D., Kanamasa, S., Park, E.Y.: Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 84, 597–606 (2009)

    Google Scholar 

  52. Burkert, J.F.M., Maldonado, R.R., Filho, F.M., Rodrigues, M.I.: Comparison of lipase production by Geotrichum candidum in stirring and airlift fermenters. J. Chem. Technol. Biotechnol. 80, 61–67 (2005)

    Google Scholar 

  53. Cabiscol, E., Tamarit, J., Ros, J.: Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3, 3–8 (2000)

    Google Scholar 

  54. Sarkar, S., Pramanik, A., Mitra, A., Mukherjee, J.: Bioprocessing data for the production of marine enzymes. Mar. Drugs 8, 1323–1372 (2010)

    Google Scholar 

  55. Wangtueai, S., Worawattanammateekul, W., Sangjindavong, M., Naranong, N., Sirisansaneeyakul, S.: Production and partial characterization of chitosanases from a newly isolated Bacillus cereus. Kasetsart J. (Nat. Sci.) 41, 346–355 (2007)

    Google Scholar 

  56. Sanjay, K.R., Kumaresan, N., Manohar, B., Kumar, S.U., Vijayalakshmi, G.: Optimization of carotenoid production by Aspergillus carbonarius in submerged fermentation using a response surface methodology. Int. J. Food Eng. 3(5) (2007)

    Google Scholar 

  57. Gupta, S.S., Ghosh, M.: In vitro antioxidative evaluation of α- and β-carotene, isolated from crude palm oil. J. Anal. Methods Chem. 2013, 351671 (2013)

    Google Scholar 

  58. Wang, S.L., Chen, S.Y., Yen, Y.H., Liang, T.W.: Utilization of chitinous materials in pigment adsorption. Food Chem. 135, 1134–1140 (2012)

    Google Scholar 

  59. Dhananasekaran, S., Palanivel, R., Pappu, S.: Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by a-chitin nanoparticles. J. Adv. Res. 7, 113–124 (2016)

    Google Scholar 

  60. Labidi, A., Salaberria, A.M., Fernandes, S.C.M., Labidi, J., Abderrabba, M.: Functional chitosan derivative and chitin as decolorization materials for methylene blue and methyl orange from aqueous solution. Material 12, 361 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Coordinating Center for Thai Government Science and Technology Scholarship Students (CSTS) National Science and Technology Development Agency (NSTDA) for financial support under Grant No. FDA-CO-2561-5753-TH. The work was supported by the Thailand Research Fund under Grant No. RTA6280014. The authors thank the Yamagata University YU-COE(C) program. Thanks also to the PSU Research and Development Office (RDO) and Michael Currie for assistance with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasana Suyotha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suyotha, W., Cheirsilp, B., Yano, S. et al. Production of Chitosanase by Lentzea sp. OUR-I1 Using Acid-Pretreated Shrimp Shell in an Air-Lift Bioreactor and the Feasibility of Utilizing the Residual Biomass. Waste Biomass Valor 12, 2445–2458 (2021). https://doi.org/10.1007/s12649-020-01191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01191-2

Keywords

Navigation