Skip to main content

Advertisement

Log in

Valorization of Common Starfish (Asterias rubens) by Air Impingement Drying and Mesophilic Anaerobic Digestion: A Preliminary Study

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The outbreak of common starfish A. rubens caused a 60% production loss of mussels in France. Three hundred tonnes of starfish were collected requiring further treatment in 2017. With composting and molecule extraction ending up in failure, an innovative solution coupling air impingement drying (AID) and anaerobic digestion (AD) was proposed to deal with this biomass.

Methods

The AID kinetics of the starfish were studied at 40 °C and 70 °C. The dried starfish fragments were anaerobically digested at three Feed/Inoculum (F/I) ratios. The energy and economic balances were analyzed by varying system efficiencies.

Results

The equation of modified page could safely simulate the drying kinetics. The F/I ratio influenced the biogas production kinetics of starfish. In the most favorable case, the heat generated by the biogas from starfish could cover the heat demand for drying. The economic analysis proves that the valorization of bio-methane via cogeneration or injection into natural gas network could minimize treatment costs or even make profit from it.

Conclusion

The AID-AD treatment of starfish was proved to be technically and economically feasible. The study offers basic protocols as a guidance for the mussel farmers to deal with the starfish outbreaks in the future.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

AID:

Air impingement drying

AID-AD:

Combined valorization of starfish coupling air impingement drying and anaerobic digestion

CHP plant:

Combined heat and power plant

DW:

Dry weight

FW:

Fresh weight before drying

BMP0 :

Biochemical methane potential modelled (NmL CH4 g VS1)

BMPexp :

Experimental max methane yield based on COD (Nm3 CH4 kg COD1)

BMP(t):

Bio-methane production at Day t (NmL CH4 g VS1)

COD:

Chemical oxygen demand (g O2 kg FW1)

Dapp :

Apparent diffusivity (m2 s1)

Deff :

Effective diffusivity (m2 s1)

Eev :

Energy needed for the moisture evaporation (kWh t FW1)

Etot :

Total energy required for the drying of starfish (kWh t FW1)

F/I:

Feed/inoculum ratio based on VS (−)

i:

Number of the exponential terms considered by the model Crank (−)

k:

Model parameter of modified page (s1)

L:

Thickness of the starfish (m)

LHVCH4 :

Lower heating value of bio-methane (kWh Nm3)

Lv,H2O :

Latent heat of water at standard pressure (kWh t H2O1)

M(t):

Moisture content in dry basis at instant t (kg kg DW1)

M0 :

Initial moisture content in dry basis (kg kg DW1)

Me :

Equilibrium moisture content in dry basis (kg kg DW1)

Mf :

Target final moisture content in dry basis (kg kg DW1)

mH2O :

Mass of moisture evaporated (t H2O t FW1)

N:

number of experimental data (−)

n:

Model parameter of modified page (−)

p:

Number of parameters appeared in the equations (−)

Qbiogas :

Heat recovered from biogas combustion (kWh or kWh t FW1)

R2 adj :

Adjusted coefficient of determination (−)

Rm :

Maximum bio-methane production rate (NmL CH4 g VS1 day1)

RMSE:

Root mean square errors (−)

SSE:

Sum of squared errors (−)

t:

Drying or digestion time (s, min or day)

TS:

Total solids (%)

VS:

Volatile solids (g)

VS/TS:

Volatile solids to total solids ratio (%)

Y:

Gross methane yield (NmL CH4)

ε:

Energy efficiency of gas boiler (−)

η:

Energy efficiency of AID prototype (−)

λ:

Lag time (day)

χ2 :

Chi-square (−)

ω(t):

Moisture ratio at instant t (−)

ωf :

Target final moisture ratio after drying (−)

ωexp,j :

Experimental obtained moisture ratio (−)

ωmod,j :

Estimated moisture ratio by the model (−)

\(\bar{\omega}\) exp,j :

Average of the experimental moisture ratios (–)

References

  1. Budd, G.: Common starfish (Asterias rubens). https://www.marlin.ac.uk/species/detail/1194

  2. Wikipedia: Common starfish. https://en.wikipedia.org/w/index.php?title=Common_starfish&oldid=906259495. (2019)

  3. Picton, B.E., Morrow, C.C.: Asterias rubens Linnaeus, 1758. https://www.habitas.org.uk/marinelife/species.asp?item=ZB1900

  4. Orton, J.H., Fraser, J.H.: Rate of growth of the common starfish Asterias rubens. Nature 126, 567–567 (1930). https://doi.org/10.1038/126567a0

    Article  Google Scholar 

  5. Sloan, N.A., Aldridge, T.H.: Observations on an aggregation of the starfish Asterias rubens L. in Morecambe Bay, Lancashire, England. J. Nat. Hist. 15, 407–418 (1981). https://doi.org/10.1080/00222938100770311

  6. Guillou, M.: Biotic and abiotic interactions controlling starfish outbreaks in the Bay of Douarnenez, Brittany. France Oceanol. Acta. 19, 415–420 (1996)

    Google Scholar 

  7. Gallagher, T., Richardson, C.A., Seed, R., Jones, T.: The seasonal movement and abundance of the starfish, asterias rubens in relation to mussel farming practice: a case study from the Menai Strait, UK. J. Shellfish Res. 27, 1209–1215 (2008). https://doi.org/10.2983/0730-8000-27.5.1209

    Article  Google Scholar 

  8. Kamermans, P., Blankendaal, M., Perdon, J.: Predation of shore crabs (Carcinus maenas (L.)) and starfish (Asterias rubens L.) on blue mussel (Mytilus edulis L.) seed from wild sources and spat collectors. Aquaculture. 290, 256–262 (2009). https://doi.org/10.1016/j.aquaculture.2009.02.031

  9. Le Telegramme: Étoiles de mer. Draguées pour protéger les moules. https://www.letelegramme.fr/morbihan/etoiles-de-mer-draguees-pour-proteger-les-moules-06-04-2017-11464109.php

  10. Mujumdar, A.S.: Impingement drying. In: Handbook of Industrial Drying, 3rd edn. CRC Press, Boca Rotan (2006)

  11. Anderson, B.A., Singh, R.P.: Modeling the thawing of frozen foods using air impingement technology. Int. J. Refrig. 29, 294–304 (2006). https://doi.org/10.1016/j.ijrefrig.2005.05.003

    Article  Google Scholar 

  12. Seyedein, S.H., Hasan, M., Mujumdar, A.S.: Turbulent flow and heat transfer from confined multiple impinging slot jets. Numer. Heat Transf. Part Appl. 27, 35–51 (1995). https://doi.org/10.1080/10407789508913687

    Article  Google Scholar 

  13. Bennamoun, L., Arlabosse, P., Léonard, A.: Review on fundamental aspect of application of drying process to wastewater sludge. Renew. Sustain. Energy Rev. 28, 29–43 (2013). https://doi.org/10.1016/j.rser.2013.07.043

    Article  Google Scholar 

  14. Tonon, G., Magnus, B.S., Mohedano, R.A., Leite, W.R.M., da Costa, R.H.R., Filho, P.B.: Pre treatment of Duckweed biomass, obtained from wastewater treatment ponds, for biogas production. Waste Biomass Valoriz. 8, 2363–2369 (2017). https://doi.org/10.1007/s12649-016-9800-1

    Article  Google Scholar 

  15. Liu, X., Lendormi, T., Lanoisellé, J.-L.: Overview of hygienization pretreatment for pasteurization and methane potential enhancement of biowaste: challenges, state of the art and alternative technologies. J. Clean. Prod. 236, 117525 (2019). https://doi.org/10.1016/j.jclepro.2019.06.356

    Article  Google Scholar 

  16. Kasmi, M.: Biological processes as promoting way for both treatment and valorization of dairy industry effluents. Waste Biomass Valoriz. 9, 195–209 (2018). https://doi.org/10.1007/s12649-016-9795-7

    Article  Google Scholar 

  17. Xu, F., Li, Y., Ge, X., Yang, L., Li, Y.: Anaerobic digestion of food waste: challenges and opportunities. Bioresour. Technol. 247, 1047–1058 (2018). https://doi.org/10.1016/j.biortech.2017.09.020

    Article  Google Scholar 

  18. Miltner, M., Makaruk, A., Harasek, M.: Review on available biogas upgrading technologies and innovations towards advanced solutions. J. Clean. Prod. 161, 1329–1337 (2017). https://doi.org/10.1016/j.jclepro.2017.06.045

    Article  Google Scholar 

  19. Peng, W., Pivato, A.: Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste Biomass Valoriz. (2017). https://doi.org/10.1007/s12649-017-0071-2

    Article  Google Scholar 

  20. Boy, V., Liu, X., Chamaa, M.-A., Lemée, Y., Sabourin, C., Lendormi, T., Lanoisellé, J.-L.: Air impingement drying of digestate: experimental and modelling study. Chem. Eng. Res. Des. 146, 436–448 (2019). https://doi.org/10.1016/j.cherd.2019.03.033

    Article  Google Scholar 

  21. Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1979)

    MATH  Google Scholar 

  22. Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., de Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J.-C., de Laclos, H.F., Ghasimi, D.S.M., Hack, G., Hartel, M., Heerenklage, J., Horvath, I.S., Jenicek, P., Koch, K., Krautwald, J., Lizasoain, J., Liu, J., Mosberger, L., Nistor, M., Oechsner, H., Oliveira, J.V., Paterson, M., Pauss, A., Pommier, S., Porqueddu, I., Raposo, F., Ribeiro, T., Rüsch Pfund, F., Strömberg, S., Torrijos, M., van Eekert, M., van Lier, J., Wedwitschka, H., Wierinck, I.: Towards a standardization of biomethane potential tests. Water Sci. Technol. 74, 2515–2522 (2016). https://doi.org/10.2166/wst.2016.336

  23. Mu, Y., Yu, H.-Q., Wang, G.: Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme Microb. Technol. 40, 947–953 (2007). https://doi.org/10.1016/j.enzmictec.2006.07.033

    Article  Google Scholar 

  24. Liu, X., Souli, I., Chamaa, M.-A., Lendormi, T., Sabourin, C., Lemée, Y., Boy, V., Chaira, N., Ferchichi, A., Morançais, P., Lanoisellé, J.-L.: Effect of thermal pretreatment at 70 °C for one hour (EU hygienization conditions) of various organic wastes on methane production under mesophilic anaerobic digestion. AIMS Environ. Sci. 5, 117–129 (2018). https://doi.org/10.3934/environsci.2018.2.117

    Article  Google Scholar 

  25. Parkin, G.F., Owen, W.F.: Fundamentals of anaerobic digestion of wastewater sludges. J. Environ. Eng. 112, 867–920 (1986)

    Article  Google Scholar 

  26. Strumitto, C., Jones, P.L., Zylla, R.: Energy aspect of drying. In: Handbook of Industrial Drying, 3rd edn. CRC Press, Boca Rotan (2006)

  27. Kudra, T.: Energy aspects in drying. Dry. Technol. 22, 917–932 (2004). https://doi.org/10.1081/DRT-120038572

    Article  Google Scholar 

  28. Che, D., Liu, Y., Gao, C.: Evaluation of retrofitting a conventional natural gas fired boiler into a condensing boiler. Energy Convers. Manag. 45, 3251–3266 (2004). https://doi.org/10.1016/j.enconman.2004.01.004

    Article  Google Scholar 

  29. Kemp, I.C., Fyhr, B.C., Laurent, S., Roques, M.A., Groenewold, C.E., Tsotsas, E., Sereno, A.A., Bonazzi, C.B., Bimbenet, J.-J., Kind, M.: Methods for processing experimental drying kinetics data. Dry. Technol. 19, 15–34 (2001). https://doi.org/10.1081/DRT-100001350

    Article  Google Scholar 

  30. Marinos-Kouris, D., Maroulis, Z.B.: Transport properties in the drying of solids. In: Handbook of Industrial Drying. pp. 107–108. CRC Press, Boca Rotan (2014)

  31. Nath, K., Das, D.: Modeling and optimization of fermentative hydrogen production. Bioresour. Technol. 102, 8569–8581 (2011). https://doi.org/10.1016/j.biortech.2011.03.108

    Article  Google Scholar 

  32. Fisgativa, H., Debled, M., Tremier, A.: Performance of coupling an aerobic pre-treatment prior to a solid-state anaerobic digestion of food waste. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-019-00630-z

    Article  Google Scholar 

  33. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008). https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  34. Sørensen, P., Nørgaard, J.V.: Starfish (Asterias rubens) as feed ingredient for piglets. Anim. Feed Sci. Technol. 211, 181–188 (2016). https://doi.org/10.1016/j.anifeedsci.2015.11.012

    Article  Google Scholar 

  35. Binyon, J.: Some observations upon the chemical composition of the starfish Asterias Rubens L., with particular reference to strontium uptake. J. Mar. Biol. Assoc.UK 58, 441–449 (1978). https://doi.org/10.1017/S0025315400028101

  36. van Langerak, E.P.A., Gonzalez-Gil, G., van Aelst, A., van Lier, J.B., Hamelers, H.V.M., Lettinga, G.: Effects of high calcium concentrations on the development of methanogenic sludge in upflow anaerobic sludge bed (UASB) reactors. Water Res. 32, 1255–1263 (1998). https://doi.org/10.1016/S0043-1354(97)00335-7

    Article  Google Scholar 

  37. Andersson, L., Bohlin, L., Iorizzi, M., Riccio, R., Minale, L., Moreno-López, W.: Biological activity of saponins and saponin-like compounds from starfish and brittle-stars. Toxicon 27, 179–188 (1989). https://doi.org/10.1016/0041-0101(89)90131-1

    Article  Google Scholar 

  38. Hogg, D.: Costs for Municipal Waste Management in the EU. Final Report to Directorate General Environment. European Commission, Brucelle (2001)

  39. Liu, X., Lendormi, T., Le Fellic, M., Lemée, Y., Lanoisellé, J.-L.: Hygienization of mixed animal by-product using Pulsed Electric Field: Inactivation kinetics modeling and recovery of indicator bacteria. Chem. Eng. J. 368, 1–9 (2019). https://doi.org/10.1016/j.cej.2019.02.158

    Article  Google Scholar 

Download references

Acknowledgements

The present study was realized during a PhD thesis jointly financed by the Regional Council of Brittany (Rennes, France) and the Departmental Council of Morbihan (Vannes, France) [grant reference: ARED-HYDATE]. Thanks are extended to the SEM LIGER (Locminé, France) for their financial and technical support to the thesis [grant number: 2017_0021]. The authors would also like to thank Mr Bruno CALLE (GAEC Moulins de Kerollet, Arzal, France) and the “Syndicat Conchylicole de Pénestin” for their valuable contribution to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lendormi.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Boy, V., Lendormi, T. et al. Valorization of Common Starfish (Asterias rubens) by Air Impingement Drying and Mesophilic Anaerobic Digestion: A Preliminary Study. Waste Biomass Valor 12, 2969–2981 (2021). https://doi.org/10.1007/s12649-020-01189-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01189-w

Keywords

Navigation