Chemical Characterization, Antioxidant Activity and Cytotoxicity of the Unconventional Food Plants: Sweet Potato (Ipomoea batatas (L.) Lam.) Leaf, Major Gomes (Talinum paniculatum (Jacq.) Gaertn.) and Caruru (Amaranthus deflexus L.)


Unconventional food plants (UFPs), many of them popularly known as "weeds", are edible species with nutritional and socioeconomic potential that need to be rescued from intensive farming. The aims of this study were: to accomplish an ethnobotanical survey of UFPs consumed on Mem de Sá Island, Sergipe, Brazil and then to characterize the three most commonly used UFPs. The physicochemical parameters and bioactive compounds were assessed, and the in vitro antioxidant activity of the aqueous extracts of the plants was evaluated using DPPH radical assay, ABTS radical cation, and the β-carotene/linoleic acid cooxidation method. The cytotoxicity of the compounds was also analyzed using MTT assay in L929 fibroblasts. The survey identified 31 species of UFPs distributed in 22 families, and revealed that knowledge about the plants was concentrated in older individuals. The three most commonly used were Talinum paniculatum (Jacq.) Gaertn. (29.03%), Ipomoea batatas (L.) Lam. (purple and white) leaf (25.81%) and Amaranthus deflexus L. (16.13%). Ipomoea batatas (L.) Lam. had the highest total carbohydrate content, the purple variety the highest protein and total carotenoids content, and the white variety the highest copper (Cu), while its aqueous extract had the highest phenolic compounds and total flavonoids; Talinum paniculatum (Jacq.) Gaertn. had the highest iron (Fe) content, and, with Amaranthus deflexus L., the highest calcium (Ca); and Amaranthus deflexus L. had the highest vitamin C. The extracts of the analyzed plants showed antioxidant potential. Therefore, these UFPs are alternative nutritional sources for food diversification in modern society.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Unconventional food plants


Purple potato


White potato


Major gomes




Aqueous extract of purple potato


Aqueous extract of white potato


Aqueous extract of major gomes


Aqueous extract of caruru


Water activity


Total soluble solids


Total titratable acidity




Dulbecco modification of minimum essential media


Gallic acid equivalent


Catechin equivalen




2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt


Analysis of variance


Association of Official Analytical Chemists


Inductively coupled plasma optical emission spectrometry


Universidade Estadual de Campinas


  1. 1.

    FAO. Food and Agriculture Organization of United Nations: Products forestales no madereros; possibilidades futuras. Estudio FAO Montes, Rome (1992)

  2. 2.

    Kinupp, V.F., Barros, I.B.I.: Data collection and dissemination of the potential of alternative food plants in Brazil. Horticultura Brasileira 22(2), 17–25 (2004)

    Google Scholar 

  3. 3.

    Brazil. Ministry of Agriculture, Livestock and Supply: Manual of Non-Conventional Vegetables. (2010). Accessed 17 Nov 2018

  4. 4.

    Limeira, C.M.C.R.: Perception of the quality of life of residents of Mem de Sá Island, Itaporanga D'Ajuda/SE. (Master’s thesis, Federal University of Paraiba, João Pessoa, Brazil). Retrieved from (2017)

  5. 5.

    Curado, F.F.: Participatory management for the sustainable development of the Mem de Sá Island community, Itaporanga D'Ajuda Sergipe. Rev. Brasil. Agroecol. 4(2), 2015–2017 (2009)

    Google Scholar 

  6. 6.

    Patton, M.Q.: Qualitative Research and Evaluation Methods. Sage Publications Inc., London (2002)

    Google Scholar 

  7. 7.

    Cotton, C.M.: Ethnobotany: Principles and Applications. Wiley, Chichester (1996)

    Google Scholar 

  8. 8.

    Pinheiro, C.U.: Anthropological Techniques and Methods Applied in Ethnobotany. MPEG, Belém (2003)

    Google Scholar 

  9. 9.

    Ming, L.C.: Medicinal plants in the “Chico Mendes” extractive reserve (Acre) - an ethnobotanical view. UNESP, São Paulo (2006)

    Google Scholar 

  10. 10.

    Barreira, T.F., Paula Filho, G.X., Rodrigues, V.C.C., Andrade, F.M.C., Santos, R.H.S., Priore, S.E., Pinheiro Sant’ana, H.M.: Diversity and equitability of non-conventional food plants in the rural area of Viçosa, Minas Gerais, Brazil. Revista Brasileira de Plantas Medicinais 17(4), 964–974 (2015)

    Google Scholar 

  11. 11.

    Kinupp, V. F. (2007): Non-Conventional Food Plants in the Metropolitan Region of Porto Alegre (Doctoral dissertation, Federal University of Rio Grande do Sul, Porto Alegre, Brazil). Retrieved from

  12. 12.

    Albuquerque, U.P., Lucena, R.F.P.: Methods and techniques in ethnobotanical research. Livro Rápido, Recife (2004)

    Google Scholar 

  13. 13.

    Reflora. Plants of Brazil: Historical Rescue and Virtual Herbarium for the Knowledge and Conservation of Brazilian Flora. (2018). Accessed 09 Aug 2018

  14. 14.

    Brazil. Ministry of Health. National Health Council. Resolution No. 466, of December 12, 2012. (2012). Accessed 09 Aug 2018

  15. 15.

    White, P.A.S., Cercato, L.M., Batista, V.S., Camargo, E.A., De Lucca Jr, W., Oliveira, A.S., Silva, F.T., Goes, T.C., Oliveira, E.R.A., Moraes, V.R.S., Nogueira, P.C.L., De Oliveira e Silva, A.M., Quitans-Junior, L.J., Lima, B.S., Araújo, A.A.S., Santos, M.R.V.: Aqueous extract of Chrysobalanus icaco leaves, in lower doses, prevent fat gain in obese high-fat fed mice. J. Ethnopharmacol. 179, 92–100 (2016)

    Google Scholar 

  16. 16.

    AOAC: Official Methods of analysis of the Association of Official Analytical Chemistry. A.O.A.C., Washington (2002)

  17. 17.

    IAL: Analytical Standards of the Adolfo Lutz Institute - Chemical and physical methods for food analysis. IMESP, São Paulo (2005)

  18. 18.

    Da Costa, S.S.L.: Determination and evaluation of the mineral composition of dog and cat diets in the state of Sergipe (Master’s thesis, Federal University of Sergipe, São Cristóvão, Brazil). Retrieved from (2013)

  19. 19.

    Morais, P.L.D., Dias, N.S., Almeida, M.L.B., Sarmento, J.D.A., Sousa Neto, O.N.: Post-harvest quality of hydroponic lettuce in a protected environment under black and heat-reflective meshes. Revista Ceres 58(5), 638–644 (2011)

    Google Scholar 

  20. 20.

    Kimura, M., Rodriguez-amaya, D.B.: A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids. Food Chem. 78(3), 389–398 (2002)

    Google Scholar 

  21. 21.

    Pereira, A.S.: Carotenoid content in carrot (Daucus carota L.) and its relation with roots’ color (Doctoral dissertation, Federal University of Viçosa, Viçosa, Brazil). Retrieved from (2002)

  22. 22.

    Nachtigall, A.M., Stringheta, P.C., Fidelis, P.C., Nachtigall, F.M.: Determination of lutein content in vegetables. Boletim CEPPA 25(2), 181–192 (2007)

    Google Scholar 

  23. 23.

    Lichtenthaler, H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987)

    Google Scholar 

  24. 24.

    Swain, T., Hills, W.E.: The phenolic constituents of Punnus domestica. Iquantitative analysis of phenolic constituents. J. Sci. Food Agric. 19, 63–68 (1959)

    Google Scholar 

  25. 25.

    Jia, Z., Tang, M., Wu, J.: The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559 (1999)

    Google Scholar 

  26. 26.

    Brand-williams, W., Cuvelier, M.E., Berset, C.: Use of free radical method evaluate antioxidant activity. Food Sci. Technol. 28(1), 25–30 (1995)

    Google Scholar 

  27. 27.

    Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26(9), 1231–1237 (1999)

    Google Scholar 

  28. 28.

    Miller, H.E.: Simplified method for evaluation of antioxidants. J. Am. Oil Chem. Soc. 48(2), 91 (1971)

    Google Scholar 

  29. 29.

    ISO 10993-5. International Standard.: MTT Cytotoxicity Test. In Biological Evaluation of Medical Devices-Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization Press, Geneva (2009)

  30. 30.

    Magurran, A.E.: Ecological Diversity and Its Measurement. Croom Helm, London (1988)

    Google Scholar 

  31. 31.

    Begossi, A.: Use of ecological methods in ethnobotany: diversity indices. Econ. Bot. 50(3), 280–289 (1996)

    Google Scholar 

  32. 32.

    Nascimento, V.T., Pereira, H.C., Silva, A.S., Nunes, A.T., Medeiros, P.M.: Spontaneous food plants known by residents of Vau da Boa Esperança, Municipality of Barreiras, West of Bahia Northeast of Brazil. Revista Ouricuri. 5(1), 86–109 (2015)

    Google Scholar 

  33. 33.

    Chaves, M.S.: Unconventional Food Plants in Riverside Communities in the Amazon (Master’s thesis, Federal University of Viçosa, Viçosa, Brazil). Retrieved from (2016)

  34. 34.

    Pilla, M.A.C., Amorozo, M.C.M.: Knowledge about food vegetable resources in rural neighborhoods in Vale do Paraíba, SP Brazil. Acta Bot. Brasil. 23(4), 1190–1201 (2009)

    Google Scholar 

  35. 35.

    Pesce, L.C.: Ethnobotanical survey of native and spontaneous plants in RS: Knowledge of farmers at Ecological Fairs in Porto Alegre (Completion of Course Work, Federal University of Rio Grande do Sul, Porto Alegre, Brazil). Retrieved from (2011)

  36. 36.

    Rauber, A.C.: Ethnobotanical Knowledge about Medicinal Plants and Unconventional Food Plants of Farming Families belonging to the Regional Center Luta Camponesa of the Ecovida Network of Agroecology(Master’s thesis, Federal University of Fronteira Sul, Laranjeiras do Sul, Brazil). Retrieved from (2016)

  37. 37.

    Borges, C.K.G.D.: Unconventional Food Plants (UFP): The scientific dissemination of species in the city of Manaus. (Master’s thesis, State University of Amazonas, Manaus, Brazil). Retrieved from (2017)

  38. 38.

    Kujawska, M., Luczaj, L.: Wild edible plants used by the polish community in Misiones Argentina. Hum. Ecol. 43, 855–869 (2015)

    Google Scholar 

  39. 39.

    Polat, R., Babacan, E.Y., Guner, B., Çakilcioglu, U.: Survey of wild food plants for human consumption in Elazig (Turkey). Indian J. Tradit. Knowl. 1(1), 69–75 (2015)

    Google Scholar 

  40. 40.

    Ali-Shtayeh, M.S., Jamous, R.M., Al-Shafie', J.H., Elgharabah, W.A., Kherfan, F.A., Qarariah, K.H., Khdair, I.S., Soos, I.M., Musleh, A.A., Isa, B.A., Herzallah, H.M., Khlaif, R.B., Aiash, S.M., Swaiti, G.M., Abuzahra, M.A., Haj-Ali, M.M., Saifi, N.A., Azem, H.K., Nasrallah, H.A.: Traditional knowledge of wild edible plants used in Palestine (Northern West Bank): a comparative study. J. Ethnobiol. Ethnomed. 4, 13 (2008)

    Google Scholar 

  41. 41.

    Sansanelli, S., Tassoni, A.: Wild food plants traditionally consumed in the area of Bologna (Emilia Romagna region, Italy). J. Ethnobiol. Ethnomed. 10, 69 (2014)

    Google Scholar 

  42. 42.

    Leal, M.L., Alves, R.P., Hanazaki, N.: Knowledge, use and disuse of unconventional food plants. J. Ethnobiol. Ethnomed. 14, 6 (2018)

    Google Scholar 

  43. 43.

    Viana, M.M.S., Carlos, L.A., Silva, E.C., Pereira, S.M.F., Oliveira, D.B., Assis, M.L.V.: Phytochemical composition and antioxidant potential of unconventional vegetables. Hortic. Brasil. 33(4), 504–509 (2015)

    Google Scholar 

  44. 44.

    Ojelel, S., Mucunguzi, P., Katuura, E., Kakudidi, E.K., Namaganda, M., Kalema, J.: Wild edible plants used by communities in and around selected forest reserves of Teso-Karamoja region Uganda. J. Ethnobiol. Ethnomed. 15, 3 (2019)

    Google Scholar 

  45. 45.

    Sanquetta, C.R.: Monitoring experiences in the Mata Atlântica biome using permanent portions. Funpar, Curitiba (2008)

    Google Scholar 

  46. 46.

    Paula Filho, G.X.: Unconventional Food Fruits from the Rural Zone of Viçosa, Minas Gerais: Ethnobotanical survey and nutritional value (Master’s thesis, Federal University of Viçosa, Viçosa, Brazil). Retrieved from (2013)

  47. 47.

    Karel, M., Lund, D.B.: Physical Principles of Food Preservation. Marcel Dekker Inc., New York (2003)

    Google Scholar 

  48. 48.

    Sandulachi, E.: Water activity concept and its role in food preservation. Meridian Eng. 4, 40–48 (2012)

    Google Scholar 

  49. 49.

    Chitarra, M.I.F., Chitarra, A.B.: Post-harvest of fruits and vegetables. Higher School of Agriculture of Lavras - FAEPE, Lavras, MG (1990)

  50. 50.

    Silva, E.C., Carlos, L.A., Araújo, A.P., Ferraz, L.C.L., Pedrosa, M.W., Silva, L.S.: Characterization of two types of azedinha in the region of Sete Lagoas Brazil. Hortic. Brasil. 31(2), 328–331 (2013)

    Google Scholar 

  51. 51.

    Faraoni, A.S.: Effect of heat treatment, freezing and packaging on the storage of pulp of organic mango (Mangifera indica L.) CV. “UBÁ” (Master’s Thesis, Federal University of Viçosa, Viçosa, Brazil). Retrieved from (2006)

  52. 52.

    Nascimento, W.M.O., Tomé, A.T., Oliveira, M.S.P., Müller, C.H., Carvalho, J.E.U.: Selection of yellow passion fruit progenies (Passiflora edulis f Flavicarpa) regarding fruit quality. Revista Brasileira de Fruticultura 25(1), 186–188 (2003)

    Google Scholar 

  53. 53.

    Unicamp: Brazilian table of food composition. Unicamp/NEPA, Campinas (2011)

  54. 54.

    Pinto, N.A.V.D., Fernandes, S., Thé, P., Carvalho, V.: Variability of the centesimal composition, vitamin C, iron and calcium of parts of the leaf of taioba (Xanthosoma sagittifolium Schott). Revista Brasileira de Agrociência 7(3), 205–208 (2001)

    Google Scholar 

  55. 55.

    Melo, C.M.T., Faria, J.V.: Composition, phenolic compounds ans antioxidant activity in conventional not edible part of six vegetables. Biosci. J. 30, 93–100 (2014)

    Google Scholar 

  56. 56.

    Mahan, L.K., Stump, S.E., Raymond, J.L.:Krause: Food, Nutrition and Diet Therapy. Elsevier, Rio de Janeiro (2012)

    Google Scholar 

  57. 57.

    Coultate, T.P.: Food: The Chemistry of Its Components. Artmed, Porto Alegre (2004)

    Google Scholar 

  58. 58.

    Dos Santos, A.M.P., Lima, J.S., Santos, I.F., Silva, E.F.R., Santana, F.A., Araujo, D.G.G.R., Santos, L.O.: Mineral and centesimal composition evaluation of conventional and organic cultivars sweet potato (Ipomoea batatas (L.) Lam) using chemometric tools. Food Chem. 273(1), 166–171 (2019)

    Google Scholar 

  59. 59.

    Camilo, Y.M.V., Souza, E.R.B., Vera, R., Naves, R.V.: Characterization of fruits and selection of progenies of cagaiteiras (Eugenia dysenterica DC.). Científica 42(1), 1–10 (2014)

    Google Scholar 

  60. 60.

    Emaga, T.H., Andrianaivo, R.H., Wathelet, B., Tchango, J.T., Paquot, M.: Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem. 103(2), 590–600 (2007)

    Google Scholar 

  61. 61.

    Cohen, K.O.: Jatobá-do-cerrado: nutritional composition and fruit processing. In: 280 Documents. Embrapa Cerrados, Planaltina (2010)

  62. 62.

    Brazil. National Agency of Health Surveillance. Resolution No. 269, of September 22, 2005. The “Technical regulation about the recommended daily intake of protein, vitamins and minerals.” (2005). Accessed 02 Dec 2018

  63. 63.

    Jimenez-Aguilar, D.M., Grusak, M.A.: Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J. Food Compos. Anal. 58, 33–39 (2017)

    Google Scholar 

  64. 64.

    Mangoba, P.M.A.: Prospecting of phytochemical, antibacterial and physicochemical characteristics of Portulaca oleracea L. (Beldroega) (Master’s thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil). Retrieved from (2015)

  65. 65.

    Silva, S.M.C.S., Mura, J.D.P.: Treaty of Feeding. Nutrition and Diet Therapy. Roca, São Paulo (2013)

    Google Scholar 

  66. 66.

    Pilon, L.: Establishing of the shelf life of minimally processed vegetables under modified atmosphere and refrigeration (Master’s thesis, University of São Paulo, Piracicaba, Brazil). Retrieved from (2003)

  67. 67.

    Vieira, A.C.: Antibacterial Activity and Chemical and Phytochemical Characteristics of Talinum paniculatum (Jacq.) Gaertn. (major-gomes) (Master’s thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil). Retrieved from (2014)

  68. 68.

    Rodriguez-Amaya, D.B., Kimura, M., Amaya-Farfan, J.: Brazilian Sources of Carotenoids: Brazilian Table of Composition of Carotenoids in Food. MMA/SBF, Brasília (2008)

    Google Scholar 

  69. 69.

    Vizzotto, M., Pereira, E.S., Vinholes, J.R., Munhoz, P.C., Ferri, N.M.L., Castro, L.A.S., Krolow, A.C.R.: Physicochemical and antioxidant capacity analysis of colored sweet potato genotypes: in natura and thermally processed. Ciência Rural 47, 4 (2017)

    Google Scholar 

  70. 70.

    Rahman, I.: Dietary polyphenols mediated regulation of oxidative stress and chromatin remodeling in inflammation. Nutr. Rev. 66(1), 42–45 (2008)

    Google Scholar 

  71. 71.

    Arbos, K.A., Freitas, R.J.S., Stertz, S.C., Dornas, M.F.: Antioxidant activity and total phenolic content in organic and conventional vegetables. Food Sci. Technol. 30(2), 501–506 (2010)

    Google Scholar 

  72. 72.

    Kim, D.-O., Jeong, S.W., Lee, C.Y.: Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81, 321–326 (2003)

    Google Scholar 

  73. 73.

    Ghasemzadeh, A., Jaafar, H.Z.E., Rahmat, A., Wahab, P.E.M., Halim, M.R.A.: Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). Int. J. Mol. Sci. 11, 3885–3897 (2010)

    Google Scholar 

  74. 74.

    Costa, L.C., Ribeiro, W.S., Barbosa, J.A.: Bioactive compounds and claims of antioxidant potential of yellow passion fruit, Cravo amarelo, Rose and Capuchinha. Revista Brasileira de Produtos Agroindustriais 16(3), 279–289 (2014)

    Google Scholar 

  75. 75.

    Zhang, L., Tu, Z.C., Yuan, T., Wang, H., Xie, X., Fu, Z.F.: Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships. Food Chem. 208, 61–67 (2016)

    Google Scholar 

  76. 76.

    Fidrianny, I., Suhendy, H., Insanu, M.: Correlation of phytochemical content with antioxidant potential of various sweet potato (Ipomoea batatas) in West Java, Indonesia. Asian Pacific J. Trop. Biomed. 8(1), 25–30 (2018)

    Google Scholar 

  77. 77.

    Eugenio, M.H.A., Pereira, R.G.F.A., Abreu, W.C., Pereira, M.C.A.: Phenolic compounds and antioxidant activity of tuberous root leaves. Int. J. Food Prop. 20(12), 2966–2973 (2017)

    Google Scholar 

  78. 78.

    Dos Reis, L.F.C., Cerqueira, C.D., De Paula, B.F., Silva, J.J., Coelho, L.F.I., Silva, M.A., Marques, V.B.B., Chavasco, J.K., Alves-da-Siva, G.: Chemical characterization and evaluation of antibacterial, antifungal, antimycobacterial and cytotoxic activities of Talinum Paniculatum. J. Inst. Trop. Med. São Paulo 57(5), 397–405 (2015)

    Google Scholar 

Download references


We are grateful to the Mem de Sá Island community for welcoming us and being willing to share their popular knowledge that greatly contributed to the development of this research project, especially Evandro Almeida Tupinambá and Salvador Narciso dos Santos. We would also like to thank the staff of the herbarium of the Federal University of Sergipe (ASE/UFS), Marta Cristina Vieira Farias and Eládio dos Santos, who spent a huge amount of time identifying and registering the species collected. This research was supported financially by the Coordination for the Improvement of Higher Education Personnel and the Foundation for Research and Technological Innovation Support of the State of Sergipe—CAPES/FAPITEC, n° 108/2016 (Grant Numbers 88887.159263/2017-00).

Author information



Corresponding author

Correspondence to Iraê Oliveira Moura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moura, I.O., Santana, C.C., Lourenço, Y.R.F. et al. Chemical Characterization, Antioxidant Activity and Cytotoxicity of the Unconventional Food Plants: Sweet Potato (Ipomoea batatas (L.) Lam.) Leaf, Major Gomes (Talinum paniculatum (Jacq.) Gaertn.) and Caruru (Amaranthus deflexus L.). Waste Biomass Valor (2020).

Download citation


  • Valorization of wild food plants
  • Ethnobotany
  • Centesimal composition
  • Lingua-de-vaca
  • Bredo