Skip to main content
Log in

Sugarcane Bagasse Hydrolysate as Organic Carbon Substrate for Mixotrophic Cultivation of Nannochloropsis sp. BR2

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In the present study, the mixotrophic growth of the microalga Nannochloropsis sp. BR2 in sugarcane bagasse was analyzed and compared with its photoautotrophic cultivation. Nannochloropsis cultures cultivated mixotrophically in sugarcane bagasse showed significantly higher biomass productivity, fatty acid methyl ester (FAME) and protein contents of 63.28 mg L−1 d−1, 170.51 mg g−1 and 35.2% of dry weight, respectively, compared to the photoautotrophic cultivations with biomass productivity, FAME and protein contents of 51 mg L−1 d−1, 139.21 mg g−1 and 31.6% of dry weight. Whereas, total carotenoid during photoautotrophic cultivation was 5.833 mg g−1 and decreased to 4.542 mg g−1 in mixotrophic cultures. This can be explained by the additional carbon source in the form of sugars that are metabolized to the fatty acid building block acetyl-CoA, while photosynthetic pigments were less needed. Findings of this study demonstrate that acid-pretreated hydrolysate of lignocellulosic waste from sugarcane bagasse can be developed into a potential feedstock for efficient microalgal cultivation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amaro, H.M., Guedes, A.C., Malcata, F.X.: Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy. 88, 3402–3410 (2011)

    Google Scholar 

  2. Manzoor, M., Tabssum, F., Javaid, H., Qazi, J.I., 2015. Lucrative future of microalgal biofuels in Pakistan: a review. Int. J. of Energy and Environ. Eng. 6, 393–403.

    Google Scholar 

  3. Moore, A.: Biofuels are dead: long live biofuels(?)-Part one. New Biotechnol. 25, 6–12 (2008)

    Google Scholar 

  4. Sukarmi, S., Hanidi, N., Yanuhar, U., Wardana, I.N.G.: Potemtial and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. Int. J. Energy Environ. Eng. 5(4), 279–290 (2014)

    Google Scholar 

  5. Lordan, S., Ross, R.P., Stanton, C.: Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar. Drugs 9, 1056–1100 (2011)

    Google Scholar 

  6. Chojnacka, K., Marquez-Rocha, F.J.: Kinetic and stoichiometric relationship of the energy and carbon metabolism in the culture of microalgae. Biotechnol. 3, 21–34 (2004)

    Google Scholar 

  7. Liang, Y., Sarkany, N., Cui, Y.: Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31, 1043–1049 (2009)

    Google Scholar 

  8. Feng, F.Y., Yang, W., Jiang, G.Z., Xu, Y.N., Kuang, T.Y.: Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium. Process Biochem. 40, 1315–2131 (2005)

    Google Scholar 

  9. Oh, S.H., Kwon, M.C., Choi, W.Y., Seo, Y.C., Kim, G.B., Kang, D.H., Lee, S.Y., Lee, H.Y.: Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima. J. Biosci. Bioeng. 110, 194–200 (2010)

    Google Scholar 

  10. Doan, Y.T.T., Obbard, J.P.: Two-stage cultivation of a Nannochloropsis mutant for biodiesel feedstock. J. Appl. Phycol. 27, 2203–2208 (2015)

    Google Scholar 

  11. Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al.: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102, 100–112 (2009)

    Google Scholar 

  12. Tang, G., Suter, P.M.: Vitamin A, nutrition, and health values of algae: spirulina, chlorella, and dunaliella. J. Pharm. Nutr. Sci. 1, 111–118 (2011)

    Google Scholar 

  13. Kim, M.K., Jeune, K.-H.: Use of FT-IR to identify enhanced biomass production and biochemical pool shifts in the marine microalgae, Chlorella ovalis, cultured in media composed of different ratios of deep seawater and fermented animal wastewater. J. Microbiol. Biotechnol. 19, 1206–1212 (2009)

    Google Scholar 

  14. Craggs, R.J., McAuley, P.J., Smith, V.J.: Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res. 31, 1701–1707 (1997)

    Google Scholar 

  15. Ma, X.N., Chen, T.P., Yang, B., Liu, J., Chen, F.: Lipid production from Nannochloropsis. Mar. Drugs 14, 61 (2016)

    Google Scholar 

  16. Chua, E.T., Schenk, P.M.: A biorefinery for Nannochloropsis: induction, harvesting and extraction of EPA-rich oil and high-value protein. Biores. Technol. 244, 1416–1424 (2017)

    Google Scholar 

  17. deVrije, T., Claassen, P.A.M.: Dark hydrogen fermentations. In: Reith, J.H., Wijffels, R.H., Barten, H. (eds.) Bio-methane & Bio-hydrogen, pp. 103–123. Smiet Offset, The Hague (2003)

    Google Scholar 

  18. Villareal, M.L.M., Prata, A.M.R., Felipe, M.G.A., Almeida, E., Silva, E.: Detoxification procedure of eucalyptus hemicelluloses hydrolysate for xylitol production of Candida gulliermondii. Enzyme Microb. Technol. 40, 17–24 (2006)

    Google Scholar 

  19. Klement, T., Milker, S., Jäger, G., Grande, P.M., de-Maria, D., Büchs, J.: Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb. Cell Factories. 11, 43 (2012)

    Google Scholar 

  20. Rattanapoltee, P., Kaewkannetra, P.: Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production. Appl. Biochem. Biotechnol. 173, 1495–1510 (2014)

    Google Scholar 

  21. Huang, C., Chen, X.F., Xiong, L., Chen, X.D., Ma, L.L., Chen, Y.: Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol. Adv. 31, 129–139 (2013)

    Google Scholar 

  22. Taherzadeh, M.J., Karimi, K.: Pretreatment of lognocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)

    Google Scholar 

  23. Sun, J.X., Sun, X.F., Zhao, H., Sun, R.C.: Isolation and characterization of cellulose from sugarcane bagasse. Polym. Degrad. Stab. 84, 331–339 (2004)

    Google Scholar 

  24. Manzoor, M., Jabeen, F., Skye, R.T.-H., Altaf, J., Younis, T., Schenk, P.M., Qazi, J.I.: Sugarcane bagasse as a novel low/no cost organic carbon source for growth of Chlorella sp. BR2. Biofuels. 10, 1–7 (2019)

    Google Scholar 

  25. Manzoor, M., Ahmad, Q.-A., Aslam, A., Jabeen, F., Rasul, A., Schenk, P.M., Qazi, J.I.: Mixotrophic cultivation of Scenedesmus dimorphus in sugarcane bagasse hydrolysate. Environ. Prog. Sustain. Energy. 39, e13334 (2020)

    Google Scholar 

  26. Lim, D.K.Y., Garg, S., Timmins, M., Zhang, E.S.B., Thomas-Hall, S.R., Schuhmann, H., et al.: Isolation and evaluation of oil producing microalgae from subtropical coastal and brackish waters. PLoS ONE 7, e40751 (2012)

    Google Scholar 

  27. Guilard, R.R.L., Ryther, J.H.: Studies of marine planktonic diatoms. I. cyclotella nana hustedt and Detonula confervacea. Cleve. Can. J. Microbiol. 8, 229–239 (1962)

    Google Scholar 

  28. Ho, S., Chen, H.C.Y., Chang, J.S.: Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113, 224–252 (2012)

    Google Scholar 

  29. Segal, L., Creely, J., Martin, A., Conard, C.: An empirical method for estimating the degree of crystallinity of native cellulose using the X- ray diffractometer. Text Res. J. 29, 786–794 (1959)

    Google Scholar 

  30. Rodrigues, F.G., Assuncăõ, R.M.N., Vieira, J.G., Meireles, C.S., Cerqueira, D.A., Barud, H.S., Ribeiro, S.J.L., Messaddeq, Y.: Characterization of methylcellulose produced from sugarcane bagasse cellulose: Crystallinity and thermal properties. Polym. Degrad. Stab. 92, 205–210 (2007)

    Google Scholar 

  31. Ahmed, F., Fanning, K., Netzel, M., Turner, W., Li, Y., Schenk, P.M.: Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem. 165, 300–306 (2014)

    Google Scholar 

  32. Jeffery, S., Humphrey, G.: New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural populations. Biochem. Physiol. Pflanz. 167, 191–194 (1975)

    Google Scholar 

  33. Lopez, C.V.G., Garcia, C.C., Fernandes, F.G.A., Bustos, C.S., Chisti, Y., Sevila, J.M.F.: Protein measurements of microalgal and cyanobacterial biomass. Bioresour. Technol. 101, 7587–7591 (2010)

    Google Scholar 

  34. Fogg, G.E.: Some comments on picoplankton and its importance in the pelagic ecosystem. Aquat. Microb. Ecol. 9, 33–39 (1995)

    Google Scholar 

  35. Volkman, J.K., Brown, M.R., Dunstan, G.A., Jeffrey, S.: The biochemical composition of marine microalgae from the class eustigmatophyceae. J. Phycol. 29, 69–78 (1993)

    Google Scholar 

  36. Lubián, L.M., Montero, O., Moreno-Garrido, I., Huertas, I.E., Sobrino, C., González-del Valle, M., et al.: Nannochloropsis (eustigmatophyceae) as source of commercially valuable pigments. J. Appl. Phycol. 12, 249–255 (2000)

    Google Scholar 

  37. Lee, M.-Y., Min, B.-S., Chang, C.-S., Jin, E.: Isolation and characterization of a xanthophyll aberrant mutant of the green alga Nannochloropsis oculata. Mar. Biotechnol. 8, 238–245 (2006)

    Google Scholar 

  38. Osinga, R., Kleijn, R., Groenendijk, E., Niesink, P., Tramper, J., Wijffels, R.H.: Development of in vivo sponge cultures: particle feeding by the tropical sponge Pseudosuberites aff. andrewsi. Mar. Biotechnol. 3, 544–554 (2001)

    Google Scholar 

  39. Ferreira, M., Coutinho, P., Seixas, P., Fábregas, J., Otero, A.: Enriching rotifers with ‘‘premium’’ microalgae Nannochloropsis gaditana. Mar. Biotechnol. 11, 585–595 (2009)

    Google Scholar 

  40. Griffiths, M.J., Harrison, S.T.L.: Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21, 493–507 (2009)

    Google Scholar 

  41. Heredia-Arroyo, T., Wei, W., Hu, B.: Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl. Biochem. Biotechnol. 162, 1978–1995 (2010)

    Google Scholar 

  42. Hu, H., Gao, K.: Optimization of growth and fatty acid composition of unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol. Lett. 25(5), 421–425 (2003)

    Google Scholar 

  43. Xu, N., Zhang, W., Ren, S., Liu, F., Zhao, C., Liao, H., Xu, Z., et al.: Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechol. Biofuels 5, 58 (2012)

    Google Scholar 

  44. Pardo, M.F., Mwndoza, J.G.S., Galán, J.E.L.: Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugarcane residues. Braz. J. Chem. Eng. 36(1), 131–141 (2019)

    Google Scholar 

  45. Rezendze, C.A., Delima, M.A., Maziero, P., Deazevedo, E.R., Garcia, W., Polikarpov, I.: Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol. Biofuels. 11, 4–54 (2011)

    Google Scholar 

  46. Chandel, A.K., Antunes, F.A.F., Anjos, V., Bell, M.J.V., Rodrigues, L.N., Polikarpov, I., Azevedo, E.R., Bernardinelli, O.D., Rosa, C.A., Pagnocca, F.C., Silva, S.S.: Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnol. Biofuels 7, 63 (2014)

    Google Scholar 

  47. Sindhu, R., Binod, P., Satyanagalakshmi, K., Janu, K.U., Sajna, K.V., Kurien, N., Sukumaran, R.K., Pandey, A.: Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. Appl. Biochem. Biotechnol. 162, 2313–2323 (2010)

    Google Scholar 

  48. Xu, F., Cong, W., Cai, Z.-L., Ouyang, F.: Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J. Appl. Phycol. 16, 499–503 (2004)

    Google Scholar 

  49. Gao, C.F., Zhai, Y., Ding, Y., Wu, Q.Y.: Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl. Energy 87, 756–761 (2010)

    Google Scholar 

  50. Cerón-García, M.C., Macías-Sánchez, M.D., Sánchez-Mirón, A., García-Camacho, F., Molina-Grima, E.: A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Appl. Energy. 103, 341–349 (2013)

    Google Scholar 

  51. Wang, W.R., Zhou, W.W., Liu, J., Li, Y.H., Zhang, Y.K.: Biodiesel production from hydrolysate of Cyperus esculentus waste by Ch1orella vulgaris. Bioresour. Technol. 136, 24–29 (2013)

    Google Scholar 

  52. Silva, H.R., Prete, C.E.C., Zambrano, F., de-Mello, V.H., Tischer, C.A., Andrade, A.S.: Combining glucose and sodium acetate improves the growth of Neochloris oleabundans under mixotrophic conditions. AMB Express 6, 10 (2016)

    Google Scholar 

  53. Cheirisilp, B., Torpee, S.: Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110, 510–516 (2012)

    Google Scholar 

  54. Kong, W., Song, H., Cao, Y., Yang, H., Hua, S., Xia, C.: The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. Afr. J. Biotech. 10, 11620–11630 (2011)

    Google Scholar 

  55. Lee, Y.-K., Ding, S.-Y., Hoe, C.-H., Low, C.-S.: Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J. Appl. Phycol. 8, 163–169 (1996)

    Google Scholar 

  56. Pagnanelli, F., Altimari, P., Trabucco, F., Toro, L.: Mixotrophic growth of Chlorella vulgaris and Nannochloropsis oculata: interaction between glucose and nitrate. J. Chem. Technol. Biotechnol. 89, 652–661 (2014)

    Google Scholar 

  57. Salati, S., Dimorzano, G., Menin, B., Veronesi, D., Scagila, B., Abruscato, P., Mariani, P., Adani, F.: Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Bioresour. Technol. 230, 82–89 (2017)

    Google Scholar 

  58. Sforza, E., Cipriani, R., Morosinotto, T., Bertucco, A., Giacometti, G.M.: Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresour. Technol. 104, 523–529 (2012)

    Google Scholar 

  59. Yu, H., Jia, S., Dai, Y.: Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J. Appl. Phycol. 21, 127–133 (2008)

    Google Scholar 

  60. Mu, J., Li, S., Chen, D., Xu, H., Han, F., Feng, B., Li, Y.: Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides. Bioresour. Technol. 185, 99–105 (2015)

    Google Scholar 

  61. Wan, M., Liu, P., Xia, J., Rosenberg, J.N., Oyler, G.A., Betenbaugh, M.J., Qiu, G.D.: The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl. Microbiol. Biotechnol. 91, 835–844 (2011)

    Google Scholar 

  62. Zhao, G., Yu, J., Jiang, F., Zhang, X., Tan, T.: The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresour. Technol. 114, 466–471 (2012)

    Google Scholar 

  63. Arora, N., Patel, A., Pruthi, P.A., Pruthi, V.: Boosting TAG Accumulation with Improved Biodiesel Production from Novel Oleaginous Microalgae Scenedesmus sp. IITRIND2 Utilizing Waste Sugarcane Bagasse Aqueous Extract (SBAE). Appl. Biochem. Biotechnol. 180, 109–121 (2016)

    Google Scholar 

  64. Fang, X., Wei, C., Zhao-Ling, C., Fan, O.: Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J. Appl. Phycol. 16, 499–503 (2004)

    Google Scholar 

  65. Suen, Y., Hubbard, J.S., Holzer, G., Tornabene, T.G.: Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. J. Phycol. 23, 289–296 (1987)

    Google Scholar 

  66. Sevilla, J.M.F., García, M.C.C., Mirón, A.S., Belarbi, H., Garcia, C.F., Molina, E.G.: Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed-batch mode. Biotechnol. Progress. 20, 728–736 (2004)

    Google Scholar 

  67. Wood, B.J.B., Grimson, P.H.K., German, G.B., Turner, M.: Photoheterotrophy in the production of phytoplankton organisms. J. Biotechnol. 70, 175–183 (1999)

    Google Scholar 

  68. Saraf, S., Thomas, B.: Influence of feedstock and process chemistry on biodiesel quality. Process Saf. Environ. Prot. 85, 360–364 (2007)

    Google Scholar 

  69. Lin, T.S., Wu, J.Y.: Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour. Technol. 184, 100–107 (2015)

    Google Scholar 

  70. Miazek, K., Remacle, C., Richel, A., Goffin, D.: Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Bioresour. Technol. 230, 122–131 (2017)

    Google Scholar 

  71. Nguyen, H.C., Liang, S.-H., Chen, S.-S., Su, C.-H., Lin, J.-H., Chien, C.-C.: Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: optimization by using response surface methodology. Energy Convers. Manage. 158, 168–175 (2018)

    Google Scholar 

  72. Knothe, G.: A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae derived biodiesel perform? Green Chem. 13, 3048–3065 (2011)

    Google Scholar 

  73. Cho, K., Lee, C.H., Ko, K., Lee, Y.-L., Kim, K.-N., Kim, M.-K., Chung, Y.-H., Kim, I.D., Yeo, K., Oda, T.: Use of phenol-induced oxidative stress acclimation to stimulate cell growth and biodiesel production by the oceanic microalga Dunaliella salina. Algal Res. 17, 61–66 (2016)

    Google Scholar 

  74. Yang, C., Hua, Q., Shimizu, K.: Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem. Eng. J. 6, 87–102 (2000)

    Google Scholar 

  75. Ip, P.F., Wong, K.H., Chen, F.: Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process. Biochem. 39, 1761–1766 (2004)

    Google Scholar 

  76. Yan, R., Zhu, D., Zhang, Z., Zeng, Q., Chu, J.: Carbon metabolism and energy conversion of Synechococcus sp. PCC7942 under mixotrophic conditions: comparison with photoautotrophic conditions. J. Appl. Phycol. 24, 657–668 (2012)

    Google Scholar 

  77. Liu, X., Duan, S., Li, A., Xu, N., Cai, Z., Hu, Z.: Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. J. Appl. Phycol. 21, 239–246 (2009)

    Google Scholar 

  78. Abreu, A.P., Fernandes, B., Vicente, A.A., Teixeira, J., Dragone, G.: Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour. Technol. 118, 61–66 (2012)

    Google Scholar 

  79. Wang, J., Yang, H., Wang, F.: Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Appl. Biochem. Biotechnol. 172, 3307–3329 (2014)

    Google Scholar 

  80. Laliberté, G., Noüie, J.: Auto-, hetero- and mixotrophic growth of Chlamydomonas humicola (Chloroimyckak) on acetate. J. Phycol. 29, 612–620 (1993)

    Google Scholar 

  81. Hassall, K.A.: Xylose as a specific inhibitor of photosynthesis. Nature 181, 1273–1274 (1958)

    Google Scholar 

  82. Leite, G.B., Paranjape, K., Abdelaziz, A.E.M., Hallenbeck, P.C.: Utilization of biodiesel derived glycerol or xylose for increased growth and lipid production by indigenous microalgae. Bioresour. Technol. 184, 123–130 (2015)

    Google Scholar 

  83. Leite, G.B., Paranjape, K., Hallenbeck, P.C.: Breakfast of champions: fast lipid accumulation by cultures of Chlorella and Scenedesmus induced by xylose. Algal Res. 16, 338–348 (2016)

    Google Scholar 

  84. Griffiths, D.J., Thresler, C.L., Street, H.E.: The heterotrophic nutrition of Chlorella vulgaris. Ann. Bot. 2, 1–11 (1960)

    Google Scholar 

  85. Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., Bashan, Y.: Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45, 11–36 (2011)

    Google Scholar 

  86. Cardona, C.A., Quintero, J.A., Paz, I.C.: Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101, 4754–4766 (2010)

    Google Scholar 

  87. Gabov, K., Hemming, J., Fardim, P.: Sugarcane bagasse valorization by fractionation using a water-based hydrotropic process. Ind. Crops Prod. 108, 495–504 (2017)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Higher Education Commission of Pakistan to provide financial assistance for the first author to conduct the present study.

Author information

Authors and Affiliations

Authors

Contributions

MM, did all experimentation and contributed to manuscript writing. FJ, QAH, TY, helped in statistical analysis and acquisition of data. EE, helped in analyzing results and with experiments. PMS, contributed to study design, critical discussions and revision of the manuscript.

Corresponding author

Correspondence to Maleeha Manzoor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, M., Jabeen, F., Ahmad, QuA. et al. Sugarcane Bagasse Hydrolysate as Organic Carbon Substrate for Mixotrophic Cultivation of Nannochloropsis sp. BR2. Waste Biomass Valor 12, 2321–2331 (2021). https://doi.org/10.1007/s12649-020-01185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01185-0

Keywords

Navigation