Abstract
This review will show that low-CO2 cements can be produced to give superior durability, based on a sound understanding of their microstructure and how it impacts macro-engineering properties. For example, it is essential that aluminium is available in calcium-rich alkali-activated systems to offset the depolymerisation effect of alkali cations on C-(N-)A-S-H gel. The upper limit on alkali cation incorporation into a gel greatly affects mix design and source material selection. A high substitution of cement clinker in low-CO2 cements may result in a reduction of pH buffering capacity, hence susceptibility to carbonation and corrosion of steel reinforcement. With careful mix design, a more refined pore structure and associated lower permeability can still give a highly durable concrete. It is essential to expand thermodynamic databases for current and prospective cementitious materials so that concrete performance and durability can be predicted when using low-CO2 binders. Cationic copolymer and amphoteric plasticisers, when available commercially, will enhance the development of alkali-activated materials. The development of supersonic shockwave reactors will enable the conversion of a wide range of virgin and secondary source materials into cementitious materials, replacing blast furnace slag and coal fly ash that have dwindling supply. A major obstacle to the commercial adoption of low-CO2 concrete is the prescriptive nature of existing standards and design codes, so there is an urgent need to shift towards performance-based standards. The roadmap presented here is not an extension of current cement practice, but a new way of integrating fundamental research, equipment innovation, and commercial opportunity.
Graphic Abstract

This is a preview of subscription content, access via your institution.









Abbreviations
- AAFA:
-
Alkali-activated fly ash
- AAGBS:
-
Alkali-activated ground granulated blast furnace slag
- AAM:
-
Alkali-activated materials
- AAMK:
-
Alkali-activated metakaolin
- AFm:
-
Aluminate ferrite monosulphate
- AFt:
-
Aluminate ferrite tri-sulphate
- ASR:
-
Alkali silica reaction
- BFRP:
-
Basalt fibre reinforced polymer
- CAC:
-
Calcium aluminate cement
- C-(N,K-)(A-)S-H:
-
Calcium (alkali) (alumino)silicate hydrate
- C-A-S-H:
-
Calcium aluminosilicate hydrate
- C-S-H:
-
Calcium silicate hydrate
- C2S:
-
Dicalcium silicate
- DFT:
-
Density functional theory
- EESS:
-
Electrically-enhanced supersonic shockwave reactor
- FA:
-
Coal fly ash
- GBS:
-
Ground granulated blast furnace slag
- GDP:
-
Gross domestic product
- LC3 :
-
Calcined clay limestone cements
- LDH:
-
Layered double hydroxide
- MCL:
-
Mean chain length
- N-A-S(-H):
-
Alkali aluminosilicate hydrate
- NMR:
-
Nuclear magnetic resonance
- OPI:
-
Oxygen Permeability Index
- PC:
-
Portland cement
- PCE:
-
Polycarboxylate ethers
- PDF:
-
Pair distribution function
- SCM:
-
Supplementary cementitious material
- TEM:
-
Transmission electron microscopy
References
- 1.
United Nations Department of Economic and Social Affairs: World population prospects 2019. https://population.un.org/wpp/. Accessed 6 Feb 2020
- 2.
GCP Global: Global construction 2030: A global forecast for the construction industry to 2030. https://gcp.global/uk/products/global-construction-2030/. (2015).
- 3.
Schneider, M.: The cement industry on the way to a low-carbon future. Cem. Concr. Res. 124, 105792 (2019). https://doi.org/10.1016/j.cemconres.2019.105792
- 4.
IPCC (ed) Climate change 2014: Synthesis report. IPCC, Geneva (2014)
- 5.
Ellis, L.D., Badel, A.F., Chiang, M.L., Park, R.J.-Y., Chiang, Y.-M.: Toward electrochemical synthesis of cement—an electrolyzer-based process for decarbonating CaCO3 while producing useful gas streams. Proc Natl Acad Sci USA (2019). https://doi.org/10.1073/pnas.1821673116
- 6.
Beyond Zero Emissions: Zero carbon industry plan, rethinking cement. https://bze.org.au/research/manufacturing-industrial-processes/rethinking-cement/ (2017). Accessed 6 Feb 2020
- 7.
Chatterjee, A., Sui, T.: Alternative fuels—effects on clinker process and properties. Cem. Concr. Res. 123, 105777 (2019). https://doi.org/10.1016/j.cemconres.2019.105777
- 8.
Moranville-Regourd, M., Kamali-Bernard, S.: Cements from blastfurnace slag. In: Hewlett, P.C., Liska, M. (eds) Lea’s Chemistry of Cement and Concrete. Chapter 10. pp. 469–507. Butterworth-Heinemann/Elsevier (2019)
- 9.
Juenger, M.C.G., Snellings, R., Bernal, S.A.: Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 122, 257–273 (2019). https://doi.org/10.1016/j.cemconres.2019.05.008
- 10.
Skibsted, J., Snellings, R.: Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem. Concr. Res. 124, 105799 (2019). https://doi.org/10.1016/j.cemconres.2019.105799
- 11.
Giergiczny, Z.: Fly ash and slag. Cem. Concr. Res. 124, 105826 (2019). https://doi.org/10.1016/j.cemconres.2019.105826
- 12.
Provis, J.L., Palomo, A., Shi, C.: Advances in understanding alkali-activated materials. Cem. Concr. Res. 78A, 110–125 (2015). https://doi.org/10.1016/j.cemconres.2015.04.013
- 13.
Provis, J.L.: Alkali-activated materials. Cem. Concr. Res. 114, 40–48 (2018). https://doi.org/10.1016/j.cemconres.2017.02.009
- 14.
Shi, C., Qu, B., Provis, J.L.: Recent progress in low-carbon binders. Cem. Concr. Res. 122, 227–250 (2019). https://doi.org/10.1016/j.cemconres.2019.05.009
- 15.
Palomo, A., Monteiro, P., Martauz, P., Bilek, V., Fernandez-Jimenez, A.: Hybrid binders: A journey from the past to a sustainable future (opus caementicium futurum). Cem. Concr. Res. 124, 105829 (2019). https://doi.org/10.1016/j.cemconres.2019.105829
- 16.
Scrivener, K., Martirena, F., Bishnoi, S., Maity, S.: Calcined clay limestone cements (LC3). Cem. Concr. Res. 114, 49–56 (2018). https://doi.org/10.1016/j.cemconres.2017.08.017
- 17.
Geng, G., Myers, R.J., Qomi, M.J.A., Monteiro, P.J.M.: Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate. Sci. Rep. 7(1), 10986 (2017). https://doi.org/10.1038/s41598-017-11146-8
- 18.
Scrivener, K.L., Juilland, P., Monteiro, P.J.M.: Advances in understanding hydration of Portland cement. Cem. Concr. Res. 78A, 38–56 (2015). https://doi.org/10.1016/j.cemconres.2015.05.025
- 19.
Alexander, M., Beushausen, H.: Durability, service life prediction, and modelling for reinforced concrete structures—review and critique. Cem. Concr. Res. 122, 17–29 (2019). https://doi.org/10.1016/j.cemconres.2019.04.018
- 20.
Jennings, H.M., Bullard, J.W.: From electrons to infrastructure: Engineering concrete from the bottom up. Cem. Concr. Res. 41(7), 727–735 (2011). https://doi.org/10.1016/j.cemconres.2011.03.025
- 21.
Bullard, J.W., Lothenbach, B., Stutzman, P.E., Snyder, K.A.: Coupling thermodynamics and digital image models to simulate hydration and microstructure development of Portland cement pastes. J. Mater. Res. 26(4), 609–622 (2011). https://doi.org/10.1557/jmr.2010.41
- 22.
Damidot, D., Lothenbach, B., Herfort, D., Glasser, F.P.: Thermodynamics and cement science. Cem. Concr. Res. 41(7), 679–695 (2011). https://doi.org/10.1016/j.cemconres.2011.03.018
- 23.
Atkins, M., Bennett, D.G., Dawes, A.C., Glasser, F.P., Kindness, A., Read, D.: A thermodynamic model for blended cements. Cem. Concr. Res. 22(2–3), 497–502 (1992). https://doi.org/10.1016/0008-8846(92)90093-B
- 24.
Reardon, E.J.: An ion interaction model for the determination of chemical equilibria in cement/water systems. Cem. Concr. Res. 20(2), 175–192 (1990). https://doi.org/10.1016/0008-8846(90)90070-E
- 25.
Lothenbach, B., Winnefeld, F.: Thermodynamic modelling of the hydration of Portland cement. Cem. Concr. Res. 36(2), 209–226 (2006). https://doi.org/10.1016/j.cemconres.2005.03.001
- 26.
Berner, U.R.: Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment. Waste Manage. 12(2–3), 201–219 (1992). https://doi.org/10.1016/0956-053X(92)90049-O
- 27.
Sui, S., Georget, F., Maraghechi, H., Sun, W., Scrivener, K.: Towards a generic approach to durability: factors affecting chloride transport in binary and ternary cementitious materials. Cem. Concr. Res. 124, 105783 (2019). https://doi.org/10.1016/j.cemconres.2019.105783
- 28.
Azad, V.J., Li, C., Verba, C., Ideker, J.H., Isgor, O.B.: A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes. Comput. Geosci. 92, 79–89 (2016). https://doi.org/10.1016/j.cageo.2016.04.002
- 29.
Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb. Am. J. Sci. 281(10), 1249–1516 (1981). https://doi.org/10.2475/ajs.281.10.1249
- 30.
Kulik, D.A., Wagner, T., Dmytrieva, S.V., Kosakowski, G., Hingerl, F.F., Chudnenko, K.V., Berner, U.: GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. 17(1), 1–24 (2013). https://doi.org/10.1007/s10596-012-9310-6
- 31.
Anderson, G.M., Crerar, D.A.: Thermodynamics in Geochemistry: The Equilibrium Model. Oxford University Press, Oxford (1993)
- 32.
Myers, R.J.: Thermodynamic modelling of CaOAl2O3-SiO2-H2O-based cements. PhD thesis, University of Sheffield (2015)
- 33.
Rothstein, D., Thomas, J.J., Christensen, B.J., Jennings, H.M.: Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time. Cem. Concr. Res. 32(10), 1663–1671 (2002). https://doi.org/10.1016/S0008-8846(02)00855-4
- 34.
Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77(2), 268–277 (1973). https://doi.org/10.1021/j100621a026
- 35.
Lothenbach, B., Kulik, D.A., Matschei, T., Balonis, M., Baquerizo, L., Dilnesa, B., Miron, G.D., Myers, R.J.: Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res. 115, 472–506 (2019). https://doi.org/10.1016/j.cemconres.2018.04.018
- 36.
Kulik, D.A.: Improving the structural consistency of C-S-H solid solution thermodynamic models. Cem. Concr. Res. 41(5), 477–495 (2011). https://doi.org/10.1016/j.cemconres.2011.01.012
- 37.
Myers, R.J., Bernal, S.A., Provis, J.L.: A thermodynamic model for C-(N-)A-S-H gel: CNASH_SS. derivation and validation. Cem. Concr. Res. 66, 27–47 (2014). https://doi.org/10.1016/j.cemconres.2014.07.005
- 38.
Matschei, T., Lothenbach, B., Glasser, F.P.: Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O. Cem. Concr. Res. 37(10), 1379–1410 (2007). https://doi.org/10.1016/j.cemconres.2007.06.002
- 39.
Blanc, P., Bourbon, X., Lassin, A., Gaucher, E.C.: Chemical model for cement-based materials: temperature dependence of thermodynamic functions for nanocrystalline and crystalline C-S-H phases. Cem. Concr. Res. 40(6), 851–866 (2010). https://doi.org/10.1016/j.cemconres.2009.12.004
- 40.
Arthur, R., Sasamoto, H., Walker, C., Yui, M.: Polymer model of zeolite thermochemical stability. Clay Clay Miner. 59(6), 626–639 (2011). https://doi.org/10.1346/ccmn.2011.0590608
- 41.
Durdziński, P.T., Ben Haha, M., Bernal, S.A., De Belie, N., Gruyaert, E., Lothenbach, B., Menéndez Méndez, E., Provis, J.L., Schöler, A., Stabler, C., Tan, Z., Villagrán Zaccardi, Y., Vollpracht, A., Winnefeld, F., Zając, M., Scrivener, K.L.: Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements. Mater. Struct. 50(2), 135 (2017). https://doi.org/10.1617/s11527-017-1002-1
- 42.
Kocaba, V., Gallucci, E., Scrivener, K.L.: Methods for determination of degree of reaction of slag in blended cement pastes. Cem. Concr. Res. 42(3), 511–525 (2012). https://doi.org/10.1016/j.cemconres.2011.11.010
- 43.
Lothenbach, B., Xu, B., Winnefeld, F.: Thermodynamic data for magnesium (potassium) phosphates. Appl. Geochem. 111, 104450 (2019). https://doi.org/10.1016/j.apgeochem.2019.104450
- 44.
Bernard, E., Lothenbach, B., Cau-Dit-Coumes, C., Pochard, I., Rentsch, D.: Aluminum incorporation into magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 128, 105931 (2020). https://doi.org/10.1016/j.cemconres.2019.105931
- 45.
Gomez-Zamorano, L., Balonis, M., Erdemli, B., Neithalath, N., Sant, G.: C–(N)–S–H and N–A–S–H gels: compositions and solubility data at 25°C and 50°C. J. Am. Ceram. Soc. 100(6), 2700–2711 (2017). https://doi.org/10.1111/jace.14715
- 46.
UN Environment, Scrivener, K.L., John, V.M., Gartner, E.M.: Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 114, 2–26 (2018). https://doi.org/10.1016/j.cemconres.2018.03.015
- 47.
Duchesne, J., Bérubé, M.A.: Effect of supplementary cementing materials on the composition of cement hydration products. Adv. Cem. Based Mater. 2(2), 43–52 (1995). https://doi.org/10.1016/1065-7355(95)90024-1
- 48.
Taylor, H.F.W.: Nanostructure of C-S-H: Current status. Adv. Cem. Based Mater. 1(1), 38–46 (1993). https://doi.org/10.1016/1065-7355(93)90006-A
- 49.
Durdziński, P.T., Ben Haha, M., Zajac, M., Scrivener, K.L.: Phase assemblage of composite cements. Cem. Concr. Res. 99, 172–182 (2017). https://doi.org/10.1016/j.cemconres.2017.05.009
- 50.
Andersen, M.D., Jakobsen, H.J., Skibsted, J.: Incorporation of aluminum in the calcium silicate hydrate (C−S−H) of hydrated Portland cements: a high-field 27al and 29si mas nmr investigation. Inorg. Chem. 42(7), 2280–2287 (2003). https://doi.org/10.1021/ic020607b
- 51.
He, Z., Qian, C., Zhang, Y., Zhao, F., Hu, Y.: Nanoindentation characteristics of cement with different mineral admixtures. Sci. China Technol. Sci. 56(5), 1119–1123 (2013). https://doi.org/10.1007/s11431-013-5186-5
- 52.
Hu, C., Li, Z.: Property investigation of individual phases in cementitious composites containing silica fume and fly ash. Cem. Concr. Compos. 57, 17–26 (2015). https://doi.org/10.1016/j.cemconcomp.2014.11.011
- 53.
Myers, R.J., Bernal, S.A., Gehman, J.D., van Deventer, J.S.J., Provis, J.L.: The role of Al in cross-linking of alkali-activated slag cements. J. Am. Ceram. Soc. 98(3), 996–1004 (2015). https://doi.org/10.1111/jace.13360
- 54.
Richardson, I.G., Brough, A.R., Groves, G.W., Dobson, C.M.: The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase. Cem. Concr. Res. 24(5), 813–829 (1994). https://doi.org/10.1016/0008-8846(94)90002-7
- 55.
Brough, A.R., Atkinson, A.: Sodium silicate-based, alkali-activated slag mortars: Part I Strength, hydration and microstructure. Cem. Concr. Res. 32(6), 865–879 (2002). https://doi.org/10.1016/S0008-8846(02)00717-2
- 56.
Fernández-Jiménez, A., Puertas, F., Sobrados, I., Sanz, J.: Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator. J. Am. Ceram. Soc. 86(8), 1389–1394 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03481.x
- 57.
White, C.E., Daemen, L.L., Hartl, M., Page, K.: Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements. Cem. Concr. Res. 67, 66–73 (2015). https://doi.org/10.1016/j.cemconres.2014.08.006
- 58.
Gong, K., White, C.E.: Impact of chemical variability of ground granulated blast-furnace slag on the phase formation in alkali-activated slag pastes. Cem. Concr. Res. 89, 310–319 (2016). https://doi.org/10.1016/j.cemconres.2016.09.003
- 59.
Garg, N., White, C.E.: Mechanism of zinc oxide retardation in alkali-activated materials: An in situ X-ray pair distribution function investigation. J. Mater. Chem. A 5, 11794–11804 (2017). https://doi.org/10.1039/C7TA00412E
- 60.
Kurtis, K.E., Monteiro, P.J.M.: Chemical additives to control expansion of alkali-silica reaction gel: proposed mechanisms of control. J. Mater. Sci. 38(9), 2027–2036 (2003). https://doi.org/10.1023/a:1023549824201
- 61.
Rajabipour, F., Giannini, E., Dunant, C., Ideker, J.H., Thomas, M.D.A.: Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 76, 130–146 (2015). https://doi.org/10.1016/j.cemconres.2015.05.024
- 62.
Shi, Z., Geng, G., Leemann, A., Lothenbach, B.: Synthesis, characterization, and water uptake property of alkali-silica reaction products. Cem. Concr. Res. 121, 58–71 (2019). https://doi.org/10.1016/j.cemconres.2019.04.009
- 63.
Shi, Z., Lothenbach, B.: The combined effect of potassium, sodium and calcium on the formation of alkali-silica reaction products. Cem. Concr. Res. 127, 105914 (2020). https://doi.org/10.1016/j.cemconres.2019.105914
- 64.
Fernández-Jiménez, A., Puertas, F.: The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem. Concr. Res. 32(7), 1019–1024 (2002). https://doi.org/10.1016/S0008-8846(01)00745-1
- 65.
Shi, C., Shi, Z., Hu, X., Zhao, R., Chong, L.: A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Mater. Struct. 48(3), 621–628 (2015). https://doi.org/10.1617/s11527-014-0505-2
- 66.
Shi, Z., Shi, C., Wan, S., Zhang, Z.: Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars. Cem. Concr. Res. 111, 104–115 (2018). https://doi.org/10.1016/j.cemconres.2018.06.005
- 67.
Shi, Z., Lothenbach, B.: The role of calcium on the formation of alkali-silica reaction products. Cem. Concr. Res. 126, 105898 (2019). https://doi.org/10.1016/j.cemconres.2019.105898
- 68.
Federico, L.M., Chidiac, S.E.: Waste glass as a supplementary cementitious material in concrete—Critical review of treatment methods. Cem. Concr. Compos. 31(8), 606–610 (2009). https://doi.org/10.1016/j.cemconcomp.2009.02.001
- 69.
Marija, K., Julio, F.D.: Field application of recycled glass pozzolan for concrete. ACI Mater. J. 116(4), 123–131 (2019). https://doi.org/10.14359/51716716
- 70.
Saccani, A., Bignozzi, M.C.: ASR expansion behavior of recycled glass fine aggregates in concrete. Cem. Concr. Res. 40(4), 531–536 (2010). https://doi.org/10.1016/j.cemconres.2009.09.003
- 71.
Sánchez-Herrero, M.J., Fernández-Jiménez, A., Palomo, Á.: Alkaline hydration of C2S and C3S. J. Am. Ceram. Soc. 99(2), 604–611 (2016). https://doi.org/10.1111/jace.13985
- 72.
L'Hôpital, E., Lothenbach, B., Scrivener, K., Kulik, D.A.: Alkali uptake in calcium alumina silicate hydrate (C-A-S-H). Cem. Concr. Res. 85, 122–136 (2016). https://doi.org/10.1016/j.cemconres.2016.03.009
- 73.
Myers, R.J., L'Hôpital, E., Provis, J.L., Lothenbach, B.: Composition–solubility–structure relationships in calcium (alkali) aluminosilicate hydrate (C-(N,K-)A-S-H). Dalton Trans. 44(30), 13530–13544 (2015). https://doi.org/10.1039/C5DT01124H
- 74.
Walkley, B., San Nicolas, R., Sani, M.-A., Rees, G.J., Hanna, J.V., van Deventer, J.S.J., Provis, J.L.: Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cem. Concr. Res. 89, 120–135 (2016). https://doi.org/10.1016/j.cemconres.2016.08.010
- 75.
Vigna, E., Skibsted, J.: Optimization of alkali activated Portland cement–calcined clay blends based on phase assemblage in the Na2O–CaO–Al2O3–SiO2–H2O system. In: Scrivener, K., Favier, A. (eds.) Calcined Clays for Sustainable Concrete Calcined Clays for Sustainable Concrete, pp. 101–107. Springer, Netherlands, Dordrecht (2015)
- 76.
García Lodeiro, I., Fernández-Jimenez, A., Palomo, A., Macphee, D.E.: Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 40(1), 27–32 (2010). https://doi.org/10.1016/j.cemconres.2009.08.004
- 77.
Bernal, S.A., Mejía de Gutiérrez, R., Pedraza, A.L., Provis, J.L., Rodriguez, E.D., Delvasto, S.: Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 41(1), 1–8 (2011). https://doi.org/10.1016/j.cemconres.2010.08.017
- 78.
Bernal, S.A., Rodríguez, E.D., de Gutiérrez, R.M., Gordillo, M., Provis, J.L.: Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46(16), 5477–5486 (2011). https://doi.org/10.1007/s10853-011-5490-z
- 79.
Collins, F.G., Sanjayan, J.G.: Workability and mechanical properties of alkali activated slag concrete. Cem. Concr. Res. 29(3), 455–458 (1999). https://doi.org/10.1016/S0008-8846(98)00236-1
- 80.
Shi, C.J.: Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 26(12), 1789–1799 (1996). https://doi.org/10.1016/s0008-8846(96)00174-3
- 81.
Puertas, F., Palacios, M., Manzano, H., Dolado, J.S., Rico, A., Rodríguez, J.: A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31(12), 2043–2056 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.04.036
- 82.
Hafner, J.: Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 29(13), 2044–2078 (2008). https://doi.org/10.1002/jcc.21057
- 83.
Jones, R.O.: Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 87(3), 897–923 (2015). https://doi.org/10.1103/RevModPhys.87.897
- 84.
Skylaris, C.-K.: A benchmark for materials simulation. Science 351(6280), 1394–1395 (2016). https://doi.org/10.1126/science.aaf3412
- 85.
Kumar, A., Walder, B.J., Kunhi Mohamed, A., Hofstetter, A., Srinivasan, B., Rossini, A.J., Scrivener, K., Emsley, L., Bowen, P.: The atomic-level structure of cementitious calcium silicate hydrate. J. Phys. Chem. C 121(32), 17188–17196 (2017). https://doi.org/10.1021/acs.jpcc.7b02439
- 86.
Churakov, S.V., Labbez, C.: Thermodynamics and molecular mechanism of Al incorporation in calcium silicate hydrates. J. Phys. Chem. C 121(8), 4412–4419 (2017). https://doi.org/10.1021/acs.jpcc.6b12850
- 87.
Kunhi Mohamed, A., Parker, S.C., Bowen, P., Galmarini, S.: An atomistic building block description of C-S-H - towards a realistic C-S-H model. Cem. Concr. Res. 107, 221–235 (2018). https://doi.org/10.1016/j.cemconres.2018.01.007
- 88.
Özçelik, V.O., Garg, N., White, C.E.: Symmetry-induced stability in alkali-doped calcium silicate hydrate. J. Phys. Chem. C 123(22), 14081–14088 (2019). https://doi.org/10.1021/acs.jpcc.9b04031
- 89.
Özçelik, V.O., White, C.E.: Nanoscale charge-balancing mechanism in alkali-substituted calcium–silicate–hydrate gels. J. Phys. Chem. Lett. 7(24), 5266–5272 (2016). https://doi.org/10.1021/acs.jpclett.6b02233
- 90.
Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: Effect of alumina release rate on the mechanism of geopolymer gel formation. Chem. Mater. 22(18), 5199–5208 (2010). https://doi.org/10.1021/cm101151n
- 91.
Ben Haha, M., Le Saout, G., Winnefeld, F., Lothenbach, B.: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 41(3), 301–310 (2011). https://doi.org/10.1016/j.cemconres.2010.11.016
- 92.
Garg, N., Özçelik, V.O., Skibsted, J., White, C.E.: Nanoscale ordering and depolymerization of calcium silicate hydrates in presence of alkalis. J. Phys. Chem. C 123(40), 24873–24883 (2019). https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b06412
- 93.
L’Hôpital, E., Lothenbach, B., Le Saout, G., Kulik, D., Scrivener, K.: Incorporation of aluminium in calcium-silicate-hydrates. Cem. Concr. Res. 75, 91–103 (2015). https://doi.org/10.1016/j.cemconres.2015.04.007
- 94.
Davidovits, J.: Geopolymers—inorganic polymeric new materials. J. Therm. Anal. 37(8), 1633–1656 (1991). https://doi.org/10.1007/bf01912193
- 95.
Barbosa, V.F.F., MacKenzie, K.J.D., Thaumaturgo, C.: Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int. J. Inorg. Mater. 2(4), 309–317 (2000). https://doi.org/10.1016/S1466-6049(00)00041-6
- 96.
White, C.E., Page, K., Henson, N.J., Provis, J.L.: In situ synchrotron X-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers. Appl. Clay Sci. 73, 17–25 (2013). https://doi.org/10.1016/j.clay.2012.09.009
- 97.
Provis, J.L., Bernal, S.A.: Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44(1), 299–327 (2014). https://doi.org/10.1146/annurev-matsci-070813-113515
- 98.
Walkley, B., Rees, G.J., San Nicolas, R., van Deventer, J.S.J., Hanna, J.V., Provis, J.L.: New structural model of hydrous sodium aluminosilicate gels and the role of charge-balancing extra-framework Al. J. Phys. Chem. C 122(10), 5673–5685 (2018). https://doi.org/10.1021/acs.jpcc.8b00259
- 99.
Thomas, J.J., FitzGerald, S.A., Neumann, D.A., Livingston, R.A.: State of water in hydrating tricalcium silicate and Portland cement pastes as measured by quasi-elastic neutron scattering. J. Am. Ceram. Soc. 84(8), 1811–1816 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00919.x
- 100.
Duxson, P., Lukey, G.C., van Deventer, J.S.J.: Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J. Mater. Sci. 42(9), 3044–3054 (2007). https://doi.org/10.1007/s10853-006-0535-4
- 101.
Jiao, D., King, C., Grossfield, A., Darden, T.A., Ren, P.: Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. J. Phys. Chem. B 110(37), 18553–18559 (2006). https://doi.org/10.1021/jp062230r
- 102.
Kutus, B., Gácsi, A., Pallagi, A., Pálinkó, I., Peintler, G., Sipos, P.: A comprehensive study on the dominant formation of the dissolved Ca(OH)2(aq) in strongly alkaline solutions saturated by Ca(II). RSC Adv. 6(51), 45231–45240 (2016). https://doi.org/10.1039/C6RA05337H
- 103.
Rumble, J.R. (ed): Properties of the elements and inorganics. In: CRC Handbook of Chemistry and Physics Online, 101st Edition. CRC Press/Taylor & Francis, Boca Raton, FL (2020). http://hbcponline.com/faces/contents/ContentsSearch.xhtml
- 104.
Scherer, G.W., Valenza II, J.J., Simmons, G.: New methods to measure liquid permeability in porous materials. Cem. Concr. Res. 37(3), 386–397 (2007). https://doi.org/10.1016/j.cemconres.2006.09.020
- 105.
Blyth, A., Eiben, C.A., Scherer, G.W., White, C.E.: Impact of activator chemistry on permeability of alkali-activated slags. J. Am. Ceram. Soc. 100(10), 4848–4859 (2017). https://doi.org/10.1111/jace.14996
- 106.
Ma, Y., Wang, G., Ye, G., Hu, J.: A comparative study on the pore structure of alkali-activated fly ash evaluated by mercury intrusion porosimetry, N2 adsorption and image analysis. J. Mater. Sci. 53(8), 5958–5972 (2018). https://doi.org/10.1007/s10853-017-1965-x
- 107.
White, C.E.: Alkali-activated materials: The role of molecular-scale research and lessons from the energy transition to combat climate change. RILEM Tech. Lett. 4, 110–121 (2019). https://doi.org/10.21809/rilemtechlett.2019.98
- 108.
Provis, J.L., Myers, R.J., White, C.E., Rose, V., van Deventer, J.S.J.: X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 42(6), 855–864 (2012). https://doi.org/10.1016/j.cemconres.2012.03.004
- 109.
Ma, Y., Hu, J., Ye, G.: The pore structure and permeability of alkali activated fly ash. Fuel 104, 771–780 (2013). https://doi.org/10.1016/j.fuel.2012.05.034
- 110.
Sun, Z., Scherer, G.W.: Pore size and shape in mortar by thermoporometry. Cem. Concr. Res. 40(5), 740–751 (2010). https://doi.org/10.1016/j.cemconres.2009.11.011
- 111.
Abell, A.B., Willis, K.L., Lange, D.A.: Mercury intrusion porosimetry and image analysis of cement-based materials. J. Colloid Interface Sci. 211(1), 39–44 (1999). https://doi.org/10.1006/jcis.1998.5986
- 112.
Xu, H., Provis, J.L., van Deventer, J.S.J., Krivenko, P.V.: Characterization of aged slag concretes. ACI Mater. J. 105(2), 131–139 (2008). https://doi.org/10.14359/19753
- 113.
Buchwald, A., Vanooteghem, M., Gruyaert, E., Hilbig, H., De Belie, N.: Purdocement: application of alkali-activated slag cement in Belgium in the 1950s. Mater. Struct. 48(1), 501–511 (1950s). https://doi.org/10.1617/s11527-013-0200-8
- 114.
Dufresne, A., Arayro, J., Zhou, T., Ioannidou, K., Ulm, F.-J., Pellenq, R., Béland, L.K.: Atomistic and mesoscale simulation of sodium and potassium adsorption in cement paste. J. Chem. Phys. 149(7), 074705 (2018). https://doi.org/10.1063/1.5042755
- 115.
Chen, J.J., Thomas, J.J., Taylor, H.F.W., Jennings, H.M.: Solubility and structure of calcium silicate hydrate. Cem. Concr. Res. 34(9), 1499–1519 (2004). https://doi.org/10.1016/j.cemconres.2004.04.034
- 116.
Lothenbach, B., Zajac, M.: Application of thermodynamic modelling to hydrated cements. Cem. Concr. Res. 123, 105779 (2019). https://doi.org/10.1016/j.cemconres.2019.105779
- 117.
Keyte, L.: What's wrong with Tarong? The importance of coal fly ash glass chemistry in inorganic polymer synthesis. PhD thesis. The University of Melbourne (2008)
- 118.
Kinnunen, P., Sreenivasan, H., Cheeseman, C.R., Illikainen, M.: Phase separation in alumina-rich glasses to increase glass reactivity for low-CO2 alkali-activated cements. J. Clean. Prod. 213, 126–133 (2019). https://doi.org/10.1016/j.jclepro.2018.12.123
- 119.
Suraneni, P., Palacios, M., Flatt, R.J.: New insights into the hydration of slag in alkaline media using a micro-reactor approach. Cem. Concr. Res. 79, 209–216 (2016). https://doi.org/10.1016/j.cemconres.2015.09.015
- 120.
Scrivener, K., Ouzia, A., Juilland, P., Kunhi Mohamed, A.: Advances in understanding cement hydration mechanisms. Cem. Concr. Res. 124, 105823 (2019). https://doi.org/10.1016/j.cemconres.2019.105823
- 121.
Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloid Surf. A 318(1), 97–105 (2008). https://doi.org/10.1016/j.colsurfa.2007.12.019
- 122.
Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J. Colloid Interface Sci. 357(2), 384–392 (2011). https://doi.org/10.1016/j.jcis.2011.02.045
- 123.
Berodier, E., Scrivener, K.: Understanding the filler effect on the nucleation and growth of C-S-H. J. Am. Ceram. Soc. 97(12), 3764–3773 (2014). https://doi.org/10.1111/jace.13177
- 124.
Ouyang, X., Koleva, D.A., Ye, G., van Breugel, K.: Insights into the mechanisms of nucleation and growth of C-S-H on fillers. Mater. Struct. 50(5), 213 (2017). https://doi.org/10.1617/s11527-017-1082-y
- 125.
Bellmann, F., Stark, J.: Activation of blast furnace slag by a new method. Cem. Concr. Res. 39(8), 644–650 (2009). https://doi.org/10.1016/j.cemconres.2009.05.012
- 126.
Monkman, S., MacDonald, M., Hooton, R.D., Sandberg, P.: Properties and durability of concrete produced using CO2 as an accelerating admixture. Cem. Concr. Compos. 74, 218–224 (2016). https://doi.org/10.1016/j.cemconcomp.2016.10.007
- 127.
Plank, J., Sakai, E., Miao, C.W., Yu, C., Hong, J.X.: Chemical admixtures—Chemistry, applications and their impact on concrete microstructure and durability. Cem. Concr. Res. 78, 81–99 (2015). https://doi.org/10.1016/j.cemconres.2015.05.016
- 128.
Cheung, J., Roberts, L., Liu, J.: Admixtures and sustainability. Cem. Concr. Res. 114, 79–89 (2018). https://doi.org/10.1016/j.cemconres.2017.04.011
- 129.
Liu, J., Yu, C., Shu, X., Ran, Q., Yang, Y.: Recent advance of chemical admixtures in concrete. Cem. Concr. Res. 124, 105834 (2019). https://doi.org/10.1016/j.cemconres.2019.105834
- 130.
Lowke, D., Gehlen, C.: Effect of pore solution composition on zeta potential and superplasticizer adsorption. American Concrete Institute (ACI) Symposium Publication SP-302-19. 253–264 (2019)
- 131.
Ersoy, B., Dikmen, S., Uygunoğlu, T., İçduygu Mehmet, G., Kavas, T., Olgun, A.: Effect of mixing water types on the time-dependent zeta potential of Portland cement paste. Sci. Eng. Compos. Mater. 20(3), 285 (2013). https://doi.org/10.1515/secm-2012-0099
- 132.
Elakneswaran, Y., Nawa, T., Kurumisawa, K.: Zeta potential study of paste blends with slag. Cem. Concr. Compos. 31(1), 72–76 (2009). https://doi.org/10.1016/j.cemconcomp.2008.09.007
- 133.
Kraus, A., Mitkina, T., Dierschke, F., Pulkin, M., Nicoleau, L.: Cationic polymers. US Patent No. 2016/03699024A1 (2016)
- 134.
Kashani, A., Provis, J.L., Qiao, G.G., van Deventer, J.S.J.: The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr. Build. Mater. 65, 583–591 (2014). https://doi.org/10.1016/j.conbuildmat.2014.04.127
- 135.
Khayat, K.H., Meng, W., Vallurupalli, K., Teng, L.: Rheological properties of ultra-high-performance concrete — An overview. Cem. Concr. Res. 124, 105828 (2019). https://doi.org/10.1016/j.cemconres.2019.105828
- 136.
Ng, S., Justness, H.: Influence of plasticizers on the rheology and early heat of hydration of blended cements with high content of fly ash. Cem. Concr. Compos. 65, 41–54 (2016). https://doi.org/10.1016/j.cemconcomp.2015.10.005
- 137.
Kashani, A., SanNicolas, R., Qiao, G.G., van Deventer, J.S.J., Provis, J.L.: Modelling the yield stress of ternary cement–slag–fly ash pastes based on particle size distribution. Powder Technol. 266, 203–209 (2014). https://doi.org/10.1016/j.powtec.2014.06.041
- 138.
Stecher, J., Plank, J.: Novel concrete superplasticizers based on phosphate esters. Cem. Concr. Res. 119, 36–43 (2019). https://doi.org/10.1016/j.cemconres.2019.01.006
- 139.
Akhlaghi, O., Menceloglu, Y.Z., Akbulut, O.: Poly(carboxylate ether)-based superplasticizer achieves workability retention in calcium aluminate cement. Sci. Rep. 7(1), 41743 (2017). https://doi.org/10.1038/srep41743
- 140.
Keulen, A., Yu, Q.L., Zhang, S., Grünewald, S.: Effect of admixture on the pore structure refinement and enhanced performance of alkali-activated fly ash-slag concrete. Constr. Build. Mater. 162, 27–36 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.136
- 141.
Marchon, D., Sulser, U., Eberhardt, A., Flatt, R.J.: Molecular design of comb-shaped polycarboxylate dispersants for environmentally friendly concrete. Soft Matter 9(45), 10719–10728 (2013). https://doi.org/10.1039/C3SM51030A
- 142.
Conte, T., Plank, J.: Impact of molecular structure and composition of polycarboxylate comb polymers on the flow properties of alkali-activated slag. Cem. Concr. Res. 116, 95–101 (2019). https://doi.org/10.1016/j.cemconres.2018.11.014
- 143.
Jang, J.G., Lee, N.K., Lee, H.K.: Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Constr. Build. Mater. 50, 169–176 (2014). https://doi.org/10.1016/j.conbuildmat.2013.09.048
- 144.
Liu, X.F., Peng, J.H., Wei, G.F., Yang, C.H., Huang, L.Q.: Adsorption characteristics of surfactant on slag in alkali activated slag cement system. Appl. Mech. Mater. 174–177, 1072–1078 (2012). https://doi.org/10.4028/www.scientific.net/AMM.174-177.1072
- 145.
Jacquet, A., Geatches, D.L., Clark, S.J., Greenwell, H.C.: Understanding cationic polymer adsorption on mineral surfaces: Kaolinite in cement aggregates. Minerals 8(4), 130 (2018). https://doi.org/10.3390/min8040130
- 146.
Hampel, C., Zimmermann, J., Alshemari, J., Friederich, M.: Plasticizer having cationic side chains without polyether side chains. US Patent No. 9758608B2 (2017)
- 147.
Jiang, L., Kong, X., Lu, Z., Hou, S.: Preparation of amphoteric polycarboxylate superplasticizers and their performances in cementitious system. J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.41348
- 148.
Loesche: Compact cement grinding plant (CCG plant). https://www.youtube.com/watch?v=U5n3UnK3oHY (2019). Accessed 6 Feb 2020
- 149.
Kelsey, C.G., Kelly, J.R.: Super fine crushing—pivotal comminution technology from IMP Technologies Pty. Ltd. In: IMPC 2016: XXVIII International Mineral Processing Congress Proceedings. Canadian Institute of Mining, Metallurgy and Petroleum (CIM), Quebec City, Canada (2016)
- 150.
Van Deventer, J.S.J.: Valorisation of slag in construction: So much more than just technology. In: Proceedings of the 5th Slag Valorisation Symposium. Leuven, Belgium (2017)
- 151.
Lansell, P., Keating, W., Lowe, D.: Systems and methods for processing solid materials using shockwaves produced in a supersonic gaseous vortex. US Patent No. 9724703B2 (2017)
- 152.
Andres, U.: Electrical disintegration of rock. Miner. Process. Extr. Metall. Rev. 14(2), 87–110 (1995). https://doi.org/10.1080/08827509508914118
- 153.
de Knoop, L., Juhani Kuisma, M., Löfgren, J., Lodewijks, K., Thuvander, M., Erhart, P., Dmitriev, A., Olsson, E.: Electric-field-controlled reversible order-disorder switching of a metal tip surface. Phys. Rev. Mater. 2(8), 085006 (2018). https://doi.org/10.1103/PhysRevMaterials.2.085006
- 154.
San Nicolas, R., Cyr, M., Escadeillas, G.: Characteristics and applications of flash metakaolins. Appl. Clay Sci. 83–84, 253–262 (2013). https://doi.org/10.1016/j.clay.2013.08.036
- 155.
Long, S., Yan, C., Dong, J.: Microwave-promoted burning of Portland cement clinker. Cem. Concr. Res. 32(1), 17–21 (2002). https://doi.org/10.1016/S0008-8846(01)00622-6
- 156.
Snellings, R., Mertens, G., Elsen, J.: Supplementary cementitious materials. Rev. Min. Geochem. 74(1), 211–278 (2012). https://doi.org/10.2138/rmg.2012.74.6
- 157.
Salman, M., Dubois, M., Maria, A.D., Van Acker, K., Van Balen, K.: Construction materials from stainless steel slags: Technical aspects, environmental benefits, and economic opportunities. J. Ind. Ecol. 20(4), 854–866 (2016). https://doi.org/10.1111/jiec.12314
- 158.
Onisei, S., Pontikes, Y., Van Gerven, T., Angelopoulos, G.N., Velea, T., Predica, V., Moldovan, P.: Synthesis of inorganic polymers using fly ash and primary lead slag. J. Hazard. Mater. 205–206, 101–110 (2012). https://doi.org/10.1016/j.jhazmat.2011.12.039
- 159.
Donatello, S., Cheeseman, C.R.: Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manage. 33(11), 2328–2340 (2013). https://doi.org/10.1016/j.wasman.2013.05.024
- 160.
Joseph, A.M., Snellings, R., Van den Heede, P., Matthys, S., De Belie, N.: The use of municipal solid waste incineration ash in various building materials: A Belgian point of view. Materials 11(1), 141 (2018). https://doi.org/10.3390/ma11010141
- 161.
Scrivener, K.L.: Options for future of cement. Indian Concr. J. 88(7), 11–21 (2014)
- 162.
Snellings, R.: Solution-controlled dissolution of supplementary cementitious material glasses at pH 13: The effect of solution composition on glass dissolution rates. J. Am. Ceram. Soc. 96(8), 2467–2475 (2013). https://doi.org/10.1111/jace.12480
- 163.
Hanein, T., Galan, I., Glasser, F.P., Skalamprinos, S., Elhoweris, A., Imbabi, M.S., Bannerman, M.N.: Stability of ternesite and the production at scale of ternesite-based clinkers. Cem. Concr. Res. 98, 91–100 (2017). https://doi.org/10.1016/j.cemconres.2017.04.010
- 164.
Yliniemi, J., Walkley, B., Provis, J.L., Kinnunen, P., Illikainen, M.: Nanostructural evolution of alkali-activated mineral wools. Cem. Concr. Compos. 106, 103472 (2020). https://doi.org/10.1016/j.cemconcomp.2019.103472
- 165.
Ke, X., Criado, M., Provis, J.L., Bernal, S.A.: Slag-based cements that resist damage induced by carbon dioxide. ACS Sustain. Chem. Eng. 6(4), 5067–5075 (2018). https://doi.org/10.1021/acssuschemeng.7b04730
- 166.
Bernal, S.A., San Nicolas, R., Myers, R.J., de Gutiérrez, R.M., Puertas, F., van Deventer, J.S.J., Provis, J.L.: MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem. Concr. Res. 57, 33–43 (2014). https://doi.org/10.1016/j.cemconres.2013.12.003
- 167.
Mindess, S.: Resistance of concrete to destructive agencies. In: Hewlett, P.C., Liska, M. (eds.) Lea’s Chemistry of Cement and Concrete. Chapter 6. pp. 251–283. Butterworth-Heinemann/Elsevier (2019)
- 168.
Bernal, S.A., Provis, J.L., Brice, D.G., Kilcullen, A., Duxson, P., van Deventer, J.S.J.: Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: The role of pore solution chemistry. Cem. Concr. Res. 42(10), 1317–1326 (2012). https://doi.org/10.1016/j.cemconres.2012.07.002
- 169.
Vichit-Vadakan, W., Scherer, G.W.: Measuring permeability and stress relaxation of young cement paste by beam bending. Cem. Concr. Res. 33(12), 1925–1932 (2003). https://doi.org/10.1016/s0008-8846(03)00168-6
- 170.
Williams, R.P., Hart, R.D., van Riessen, A.: Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. J. Am. Ceram. Soc. 94(8), 2663–2670 (2011). https://doi.org/10.1111/j.1551-2916.2011.04410.x
- 171.
White, C.E., Provis, J.L., Bloomer, B., Henson, N.J., Page, K.: In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics. Phys. Chem. Chem. Phys. 15(22), 8573–8582 (2013)
- 172.
Gong, K., Cheng, Y., Daemen, L.L., White, C.E.: In situ quasi-elastic neutron scattering study on the water dynamics and reaction mechanisms in alkali-activated slags. Phys. Chem. Chem. Phys. 21(20), 10277–10292 (2019). https://doi.org/10.1039/C9CP00889F
- 173.
Criado, M., Fernández-Jiménez, A., de la Torre, A.G., Aranda, M.A.G., Palomo, A.: An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 37, 671–679 (2007). https://doi.org/10.1016/j.cemconres.2007.01.013
- 174.
Yang, K., White, C.E.: Modeling the formation of alkali aluminosilicate gels at the mesoscale using coarse-grained Monte Carlo. Langmuir 32(44), 11580–11590 (2016). https://doi.org/10.1021/acs.langmuir.6b02592
- 175.
Glasser, F.P., Marchand, J., Samson, E.: Durability of concrete — Degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 38(2), 226–246 (2008). https://doi.org/10.1016/j.cemconres.2007.09.015
- 176.
Lothenbach, B., Scrivener, K., Hooton, R.D.: Supplementary cementitious materials. Cem. Concr. Res. 41(12), 1244–1256 (2011). https://doi.org/10.1016/j.cemconres.2010.12.001
- 177.
Shi, Z., Ferreiro, S., Lothenbach, B., Geiker, M.R., Kunther, W., Kaufmann, J., Herfort, D., Skibsted, J.: Sulfate resistance of calcined clay—limestone—portland cements. Cem. Concr. Res. 116, 238–251 (2019). https://doi.org/10.1016/j.cemconres.2018.11.003
- 178.
Puertas, F., Fernández-Jiménez, A., Blanco-Varela, M.T.: Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem. Concr. Res. 34(1), 139–148 (2004). https://doi.org/10.1016/S0008-8846(03)00254-0
- 179.
Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Pore solution composition and alkali diffusion in inorganic polymer cement. Cem. Concr. Res. 40(9), 1386–1392 (2010). https://doi.org/10.1016/j.cemconres.2010.04.008
- 180.
Nedeljković, M., Ghiassi, B., van der Laan, S., Li, Z., Ye, G.: Effect of curing conditions on the pore solution and carbonation resistance of alkali-activated fly ash and slag pastes. Cem. Concr. Res. 116, 146–158 (2019). https://doi.org/10.1016/j.cemconres.2018.11.011
- 181.
Lothenbach, B., Winnefeld, F., Alder, C., Wieland, E., Lunk, P.: Effect of temperature on the pore solution, microstructure and hydration products of portland cement pastes. Cem. Concr. Res. 37(4), 483–491 (2007). https://doi.org/10.1016/j.cemconres.2006.11.016
- 182.
Han, S.-J., Yoo, M., Kim, D.-W., Wee, J.-H.: Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent. Energy Fuels 25, 3825–3834 (2011). https://doi.org/10.1021/ef200415p
- 183.
Lucile, F., Cézac, P., Contamine, F., Serin, J.-P., Houssin, D., Arpentinier, P.: Solubility of carbon dioxide in water and aqueous solution containing sodium hydroxide at temperatures from (293.15 to 393.15) K and pressure up to 5 MPa: experimental measurements. J. Chem. Eng. Data 57(3), 784–789 (2012). https://doi.org/10.1021/je200991x
- 184.
Ke, X., Bernal, S.A., Provis, J.L.: Layered double hydroxides modify the reaction of sodium silicate-activated slag cements. Green Mater. 7(2), 52–60 (2019). https://doi.org/10.1680/jgrma.18.00024
- 185.
Pan, X., Shi, C., Zhang, J., Jia, L., Chong, L.: Effect of inorganic surface treatment on surface hardness and carbonation of cement-based materials. Cem. Concr. Compos. 90, 218–224 (2018). https://doi.org/10.1016/j.cemconcomp.2018.03.026
- 186.
Li, Q., Yang, Y., Yang, K., Chao, Z., Tang, D., Tian, Y., Wu, F., Basheer, M., Yang, C.: The role of calcium stearate on regulating activation to form stable, uniform and flawless reaction products in alkali-activated slag cement. Cem. Concr. Compos. 103, 242–251 (2019). https://doi.org/10.1016/j.cemconcomp.2019.05.009
- 187.
Balonis, M., Sant, G., Burkan Isgor, O.: Mitigating steel corrosion in reinforced concrete using functional coatings, corrosion inhibitors, and atomistic simulations. Cem. Concr. Compos. 101, 15–23 (2019). https://doi.org/10.1016/j.cemconcomp.2018.08.006
- 188.
Criado, M., Bernal, S.A., Garcia-Triñanes, P., Provis, J.L.: Influence of slag composition on the stability of steel in alkali-activated cementitious materials. J. Mater. Sci. 53(7), 5016–5035 (2018). https://doi.org/10.1007/s10853-017-1919-3
- 189.
Criado, M., Provis, J.L.: Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel. Front. Mater. 5, 34 (2018). https://doi.org/10.3389/fmats.2018.00034
- 190.
Neville, A.: Chloride attack of reinforced concrete: An overview. Mater. Struct. 28(2), 63 (1995). https://doi.org/10.1007/BF02473172
- 191.
Li, K., Li, L.: Crack-altered durability properties and performance of structural concretes. Cem. Concr. Res. 124, 105811 (2019). https://doi.org/10.1016/j.cemconres.2019.105811
- 192.
Walling, S.A., Provis, J.L.: Magnesia-based cements: A journey of 150 years, and cements for the future? Chem. Rev. 116(7), 4170–4204 (2016). https://doi.org/10.1021/acs.chemrev.5b00463
- 193.
Iyengar, S.R., Al-Tabbaa, A.: Developmental study of a low-pH magnesium phosphate cement for environmental applications. Environ. Technol. 28(12), 1387–1401 (2007). https://doi.org/10.1080/09593332808618899
- 194.
Sharkawi, A.E., Rizkala, S., Zia, P.: Corrosion activity of steel bars embedded in magnesium phosphate fiber reinforced cementitious material “PCW Grancrete”. In: American Society of Civil Engineers 6th International Engineering and Construction Conference (IECC’6). Cairo, Egypt (2010)
- 195.
Subramanian, N.: Sustainability of RCC structures using basalt composite rebars. The Masterbuilder (2010).
- 196.
Dhand, V., Mittal, G., Rhee, K.Y., Park, S.-J., Hui, D.: A short review on basalt fiber reinforced polymer composites. Compos. B 73, 166–180 (2015). https://doi.org/10.1016/j.compositesb.2014.12.011
- 197.
Inman, M., Thorhallsson, E.R., Azrague, K.: A mechanical and environmental assessment and comparison of basalt fibre reinforced polymer (BFRP) rebar and steel rebar in concrete beams. Energy Proc. 111, 31–40 (2017). https://doi.org/10.1016/j.egypro.2017.03.005
- 198.
Antonopoulou, S., McNally, C., Byrne, G.: Development of braided basalt FRP rebar for reinforcement of concrete structures. In: 8th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2016). Hong Kong (2016)
- 199.
Ding, Z., Lu, Z.X., Li, Y.: Feasibility of basalt fiber reinforced inorganic adhesive for concrete strengtening. Adv. Mater. Res. 287–290, 1197–1200 (2011). https://doi.org/10.4028/www.scientific.net/AMR.287-290.1197
- 200.
Urbanski, M., Lapko, A., Garbacz, A.: Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures. Proc. Eng. 57, 1183–1191 (2013). https://doi.org/10.1016/j.proeng.2013.04.149
- 201.
Lapko, A., Urbański, M.: Experimental and theoretical analysis of deflections of concrete beams reinforced with basalt rebar. Archives of Civil and Mechanical Engineering 15(1), 223–230 (2015). https://doi.org/10.1016/j.acme.2014.03.008
- 202.
Duic, J., Kenno, S., Das, S.: Performance of concrete beams reinforced with basalt fibre composite rebar. Constr. Build. Mater. 176, 470–481 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.208
- 203.
Elavenil, S., Saravanan, S., Reddy, R.: Investigation of structural members with basalt rebar reinforcement as effective alternative of standard steel rebar. J. Ind. Pollut. Control 33(S3), 1422–1429 (2017)
- 204.
Tomlinson, D., Fam, A.: Performance of concrete beams reinforced with basalt FRP for flexure and shear. J. Compos. Constr. 19(2), 04014036 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000491
- 205.
Bang, J.W., Prabhu, G.G., Jang, Y.I., Kim, Y.Y.: Development of ecoefficient engineered cementitious composites using supplementary cementitious materials as a binder and bottom ash aggregate as fine aggregate. Int. J. Polym. Sci. 681051 (2015). https://doi.org/10.1155/2015/681051
- 206.
Cai, J., Pan, J., Zhou, X.: Flexural behavior of basalt FRP reinforced ECC and concrete beams. Constr. Build. Mater. 142, 423–430 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.087
- 207.
Fan, X., Zhang, M.: Behaviour of inorganic polymer concrete columns reinforced with basalt FRP bars under eccentric compression: An experimental study. Compos. B 104, 44–56 (2016). https://doi.org/10.1016/j.compositesb.2016.08.020
- 208.
Serbescu, A., Guadagnini, M., Pilakoutas, K.: Mechanical characterization of basalt FRP rebars and long-term strength predictive model. J. Compos. Constr. 19(2), 04014037 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000497
- 209.
John, V.M., Quattrone, M., Abrão, P.C.R.A., Cardoso, F.A.: Rethinking cement standards: Opportunities for a better future. Cem. Concr. Res. 124, 105832 (2019). https://doi.org/10.1016/j.cemconres.2019.105832
- 210.
van Deventer, J.S.J., Provis, J.L., Duxson, P.: Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29, 89–104 (2012). https://doi.org/10.1016/j.mineng.2011.09.009
- 211.
Van Deventer, J.S.J., Brice, D.G., Bernal, S.A., Provis, J.L.: Development, standardization and applications of alkali-activated concretes. In: Struble, L., Hicks, J.K. (eds.) ASTM Symposium on Geopolymer Binder Systems, Special Technical Paper 1566. California, United States (2013)
- 212.
Provis, J.L., van Deventer, J.S.J. (eds.): Alkali-activated Materials. Springer/RILEM, Dordrecht, Netherlands (2014)
- 213.
Van Deventer, J.S.J., Provis, J.L.: Low carbon emission geopolymer concrete: From research into practice. In: 27th Biennial National Conference of the Concrete Institute of Australia in conjunction with the 69th RILEM Week. Melbourne, Australia (2015)
- 214.
San Nicolas, R.V.R., Walkley, B., van Deventer, J.S.J.: Fly ash-based geopolymer chemistry and behavior. In: Robl, T., Oberlink, A., Jones, R. (eds.) Coal Combustion Products (CCP’s): Characteristics, Utilization, Beneficiation and Risk Assessment. Chapter 7. pp. 185–214. Woodhead Publishing, (2017)
- 215.
Alexander, M., Thomas, M.: Service life prediction and performance testing—current developments and practical applications. Cem. Concr. Res. 78, 155–164 (2015). https://doi.org/10.1016/j.cemconres.2015.05.013
- 216.
Beushausen, H., Torrent, R., Alexander, M.G.: Performance-based approaches for concrete durability: State of the art and future research needs. Cem. Concr. Res. 119, 11–20 (2019). https://doi.org/10.1016/j.cemconres.2019.01.003
- 217.
Hooton, D.R.: Future directions for design, specification, testing, and construction of durable concrete structures. Cem. Concr. Res. 124, 105827 (2019). https://doi.org/10.1016/j.cemconres.2019.105827
Acknowledgements
RJM acknowledges funding provided by the Engineering and Physical Sciences Research Council of the U.K. (EP/S006079/1). The research leading to this publication benefitted from EPSRC funding under Grant No. EP/R010161/1 and from support from the UKCRIC Coordination Node, EPSRC grant number EP/R017727/1, which funds UKCRIC’s ongoing coordination. CEW acknowledges financial support from Grant Nos. 1362039 and 1553607 and the MRSEC Center (Grant No. DMR-1420541) from the National Science Foundation, USA. Access to the Princeton Institute for Computational Science and Engineering (PICSciE) and the Office of Information Technology’s High Performance Computing Center and Visualization Laboratory at Princeton University is acknowledged. Unpublished pore structure and permeability data were obtained and analysed by Kengran Yang, Anna Blyth and Bridget Zakrzewski (Princeton University).
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Jannie S.J. van Deventer declares a conflict of interest through the commercial application of electrically-enhanced supersonic shockwave reactors for the processing of minerals, secondary sources and cementitious materials. RJM and CEW declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
van Deventer, J.S.J., White, C.E. & Myers, R.J. A Roadmap for Production of Cement and Concrete with Low-CO2 Emissions. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-01180-5
Received:
Accepted:
Published:
Keyword
- Alkali-activated material
- Cementitious materials
- Commercialisation
- Durability
- Standards
- Thermodynamic modelling