A Roadmap for Production of Cement and Concrete with Low-CO2 Emissions


This review will show that low-CO2 cements can be produced to give superior durability, based on a sound understanding of their microstructure and how it impacts macro-engineering properties. For example, it is essential that aluminium is available in calcium-rich alkali-activated systems to offset the depolymerisation effect of alkali cations on C-(N-)A-S-H gel. The upper limit on alkali cation incorporation into a gel greatly affects mix design and source material selection. A high substitution of cement clinker in low-CO2 cements may result in a reduction of pH buffering capacity, hence susceptibility to carbonation and corrosion of steel reinforcement. With careful mix design, a more refined pore structure and associated lower permeability can still give a highly durable concrete. It is essential to expand thermodynamic databases for current and prospective cementitious materials so that concrete performance and durability can be predicted when using low-CO2 binders. Cationic copolymer and amphoteric plasticisers, when available commercially, will enhance the development of alkali-activated materials. The development of supersonic shockwave reactors will enable the conversion of a wide range of virgin and secondary source materials into cementitious materials, replacing blast furnace slag and coal fly ash that have dwindling supply. A major obstacle to the commercial adoption of low-CO2 concrete is the prescriptive nature of existing standards and design codes, so there is an urgent need to shift towards performance-based standards. The roadmap presented here is not an extension of current cement practice, but a new way of integrating fundamental research, equipment innovation, and commercial opportunity.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9



Alkali-activated fly ash


Alkali-activated ground granulated blast furnace slag


Alkali-activated materials


Alkali-activated metakaolin


Aluminate ferrite monosulphate


Aluminate ferrite tri-sulphate


Alkali silica reaction


Basalt fibre reinforced polymer


Calcium aluminate cement


Calcium (alkali) (alumino)silicate hydrate


Calcium aluminosilicate hydrate


Calcium silicate hydrate


Dicalcium silicate


Density functional theory


Electrically-enhanced supersonic shockwave reactor


Coal fly ash


Ground granulated blast furnace slag


Gross domestic product

LC3 :

Calcined clay limestone cements


Layered double hydroxide


Mean chain length


Alkali aluminosilicate hydrate


Nuclear magnetic resonance


Oxygen Permeability Index


Portland cement


Polycarboxylate ethers


Pair distribution function


Supplementary cementitious material


Transmission electron microscopy


  1. 1.

    United Nations Department of Economic and Social Affairs: World population prospects 2019. https://population.un.org/wpp/. Accessed 6 Feb 2020

  2. 2.

    GCP Global: Global construction 2030: A global forecast for the construction industry to 2030. https://gcp.global/uk/products/global-construction-2030/. (2015).

  3. 3.

    Schneider, M.: The cement industry on the way to a low-carbon future. Cem. Concr. Res. 124, 105792 (2019). https://doi.org/10.1016/j.cemconres.2019.105792

    Article  Google Scholar 

  4. 4.

    IPCC (ed) Climate change 2014: Synthesis report. IPCC, Geneva (2014)

  5. 5.

    Ellis, L.D., Badel, A.F., Chiang, M.L., Park, R.J.-Y., Chiang, Y.-M.: Toward electrochemical synthesis of cement—an electrolyzer-based process for decarbonating CaCO3 while producing useful gas streams. Proc Natl Acad Sci USA (2019). https://doi.org/10.1073/pnas.1821673116

    Article  Google Scholar 

  6. 6.

    Beyond Zero Emissions: Zero carbon industry plan, rethinking cement. https://bze.org.au/research/manufacturing-industrial-processes/rethinking-cement/ (2017). Accessed 6 Feb 2020

  7. 7.

    Chatterjee, A., Sui, T.: Alternative fuels—effects on clinker process and properties. Cem. Concr. Res. 123, 105777 (2019). https://doi.org/10.1016/j.cemconres.2019.105777

    Article  Google Scholar 

  8. 8.

    Moranville-Regourd, M., Kamali-Bernard, S.: Cements from blastfurnace slag. In: Hewlett, P.C., Liska, M. (eds) Lea’s Chemistry of Cement and Concrete. Chapter 10. pp. 469–507. Butterworth-Heinemann/Elsevier (2019)

  9. 9.

    Juenger, M.C.G., Snellings, R., Bernal, S.A.: Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 122, 257–273 (2019). https://doi.org/10.1016/j.cemconres.2019.05.008

    Article  Google Scholar 

  10. 10.

    Skibsted, J., Snellings, R.: Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem. Concr. Res. 124, 105799 (2019). https://doi.org/10.1016/j.cemconres.2019.105799

    Article  Google Scholar 

  11. 11.

    Giergiczny, Z.: Fly ash and slag. Cem. Concr. Res. 124, 105826 (2019). https://doi.org/10.1016/j.cemconres.2019.105826

    Article  Google Scholar 

  12. 12.

    Provis, J.L., Palomo, A., Shi, C.: Advances in understanding alkali-activated materials. Cem. Concr. Res. 78A, 110–125 (2015). https://doi.org/10.1016/j.cemconres.2015.04.013

    Article  Google Scholar 

  13. 13.

    Provis, J.L.: Alkali-activated materials. Cem. Concr. Res. 114, 40–48 (2018). https://doi.org/10.1016/j.cemconres.2017.02.009

    Article  Google Scholar 

  14. 14.

    Shi, C., Qu, B., Provis, J.L.: Recent progress in low-carbon binders. Cem. Concr. Res. 122, 227–250 (2019). https://doi.org/10.1016/j.cemconres.2019.05.009

    Article  Google Scholar 

  15. 15.

    Palomo, A., Monteiro, P., Martauz, P., Bilek, V., Fernandez-Jimenez, A.: Hybrid binders: A journey from the past to a sustainable future (opus caementicium futurum). Cem. Concr. Res. 124, 105829 (2019). https://doi.org/10.1016/j.cemconres.2019.105829

    Article  Google Scholar 

  16. 16.

    Scrivener, K., Martirena, F., Bishnoi, S., Maity, S.: Calcined clay limestone cements (LC3). Cem. Concr. Res. 114, 49–56 (2018). https://doi.org/10.1016/j.cemconres.2017.08.017

    Article  Google Scholar 

  17. 17.

    Geng, G., Myers, R.J., Qomi, M.J.A., Monteiro, P.J.M.: Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate. Sci. Rep. 7(1), 10986 (2017). https://doi.org/10.1038/s41598-017-11146-8

    Article  Google Scholar 

  18. 18.

    Scrivener, K.L., Juilland, P., Monteiro, P.J.M.: Advances in understanding hydration of Portland cement. Cem. Concr. Res. 78A, 38–56 (2015). https://doi.org/10.1016/j.cemconres.2015.05.025

    Article  Google Scholar 

  19. 19.

    Alexander, M., Beushausen, H.: Durability, service life prediction, and modelling for reinforced concrete structures—review and critique. Cem. Concr. Res. 122, 17–29 (2019). https://doi.org/10.1016/j.cemconres.2019.04.018

    Article  Google Scholar 

  20. 20.

    Jennings, H.M., Bullard, J.W.: From electrons to infrastructure: Engineering concrete from the bottom up. Cem. Concr. Res. 41(7), 727–735 (2011). https://doi.org/10.1016/j.cemconres.2011.03.025

    Article  Google Scholar 

  21. 21.

    Bullard, J.W., Lothenbach, B., Stutzman, P.E., Snyder, K.A.: Coupling thermodynamics and digital image models to simulate hydration and microstructure development of Portland cement pastes. J. Mater. Res. 26(4), 609–622 (2011). https://doi.org/10.1557/jmr.2010.41

    Article  Google Scholar 

  22. 22.

    Damidot, D., Lothenbach, B., Herfort, D., Glasser, F.P.: Thermodynamics and cement science. Cem. Concr. Res. 41(7), 679–695 (2011). https://doi.org/10.1016/j.cemconres.2011.03.018

    Article  Google Scholar 

  23. 23.

    Atkins, M., Bennett, D.G., Dawes, A.C., Glasser, F.P., Kindness, A., Read, D.: A thermodynamic model for blended cements. Cem. Concr. Res. 22(2–3), 497–502 (1992). https://doi.org/10.1016/0008-8846(92)90093-B

    Article  Google Scholar 

  24. 24.

    Reardon, E.J.: An ion interaction model for the determination of chemical equilibria in cement/water systems. Cem. Concr. Res. 20(2), 175–192 (1990). https://doi.org/10.1016/0008-8846(90)90070-E

    Article  Google Scholar 

  25. 25.

    Lothenbach, B., Winnefeld, F.: Thermodynamic modelling of the hydration of Portland cement. Cem. Concr. Res. 36(2), 209–226 (2006). https://doi.org/10.1016/j.cemconres.2005.03.001

    Article  Google Scholar 

  26. 26.

    Berner, U.R.: Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment. Waste Manage. 12(2–3), 201–219 (1992). https://doi.org/10.1016/0956-053X(92)90049-O

    Article  Google Scholar 

  27. 27.

    Sui, S., Georget, F., Maraghechi, H., Sun, W., Scrivener, K.: Towards a generic approach to durability: factors affecting chloride transport in binary and ternary cementitious materials. Cem. Concr. Res. 124, 105783 (2019). https://doi.org/10.1016/j.cemconres.2019.105783

    Article  Google Scholar 

  28. 28.

    Azad, V.J., Li, C., Verba, C., Ideker, J.H., Isgor, O.B.: A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes. Comput. Geosci. 92, 79–89 (2016). https://doi.org/10.1016/j.cageo.2016.04.002

    Article  Google Scholar 

  29. 29.

    Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb. Am. J. Sci. 281(10), 1249–1516 (1981). https://doi.org/10.2475/ajs.281.10.1249

    Article  Google Scholar 

  30. 30.

    Kulik, D.A., Wagner, T., Dmytrieva, S.V., Kosakowski, G., Hingerl, F.F., Chudnenko, K.V., Berner, U.: GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. 17(1), 1–24 (2013). https://doi.org/10.1007/s10596-012-9310-6

    Article  MATH  Google Scholar 

  31. 31.

    Anderson, G.M., Crerar, D.A.: Thermodynamics in Geochemistry: The Equilibrium Model. Oxford University Press, Oxford (1993)

    Google Scholar 

  32. 32.

    Myers, R.J.: Thermodynamic modelling of CaOAl2O3-SiO2-H2O-based cements. PhD thesis, University of Sheffield (2015)

  33. 33.

    Rothstein, D., Thomas, J.J., Christensen, B.J., Jennings, H.M.: Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time. Cem. Concr. Res. 32(10), 1663–1671 (2002). https://doi.org/10.1016/S0008-8846(02)00855-4

    Article  Google Scholar 

  34. 34.

    Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77(2), 268–277 (1973). https://doi.org/10.1021/j100621a026

    Article  Google Scholar 

  35. 35.

    Lothenbach, B., Kulik, D.A., Matschei, T., Balonis, M., Baquerizo, L., Dilnesa, B., Miron, G.D., Myers, R.J.: Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res. 115, 472–506 (2019). https://doi.org/10.1016/j.cemconres.2018.04.018

    Article  Google Scholar 

  36. 36.

    Kulik, D.A.: Improving the structural consistency of C-S-H solid solution thermodynamic models. Cem. Concr. Res. 41(5), 477–495 (2011). https://doi.org/10.1016/j.cemconres.2011.01.012

    Article  Google Scholar 

  37. 37.

    Myers, R.J., Bernal, S.A., Provis, J.L.: A thermodynamic model for C-(N-)A-S-H gel: CNASH_SS. derivation and validation. Cem. Concr. Res. 66, 27–47 (2014). https://doi.org/10.1016/j.cemconres.2014.07.005

    Article  Google Scholar 

  38. 38.

    Matschei, T., Lothenbach, B., Glasser, F.P.: Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O. Cem. Concr. Res. 37(10), 1379–1410 (2007). https://doi.org/10.1016/j.cemconres.2007.06.002

    Article  Google Scholar 

  39. 39.

    Blanc, P., Bourbon, X., Lassin, A., Gaucher, E.C.: Chemical model for cement-based materials: temperature dependence of thermodynamic functions for nanocrystalline and crystalline C-S-H phases. Cem. Concr. Res. 40(6), 851–866 (2010). https://doi.org/10.1016/j.cemconres.2009.12.004

    Article  Google Scholar 

  40. 40.

    Arthur, R., Sasamoto, H., Walker, C., Yui, M.: Polymer model of zeolite thermochemical stability. Clay Clay Miner. 59(6), 626–639 (2011). https://doi.org/10.1346/ccmn.2011.0590608

    Article  Google Scholar 

  41. 41.

    Durdziński, P.T., Ben Haha, M., Bernal, S.A., De Belie, N., Gruyaert, E., Lothenbach, B., Menéndez Méndez, E., Provis, J.L., Schöler, A., Stabler, C., Tan, Z., Villagrán Zaccardi, Y., Vollpracht, A., Winnefeld, F., Zając, M., Scrivener, K.L.: Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements. Mater. Struct. 50(2), 135 (2017). https://doi.org/10.1617/s11527-017-1002-1

    Article  Google Scholar 

  42. 42.

    Kocaba, V., Gallucci, E., Scrivener, K.L.: Methods for determination of degree of reaction of slag in blended cement pastes. Cem. Concr. Res. 42(3), 511–525 (2012). https://doi.org/10.1016/j.cemconres.2011.11.010

    Article  Google Scholar 

  43. 43.

    Lothenbach, B., Xu, B., Winnefeld, F.: Thermodynamic data for magnesium (potassium) phosphates. Appl. Geochem. 111, 104450 (2019). https://doi.org/10.1016/j.apgeochem.2019.104450

    Article  Google Scholar 

  44. 44.

    Bernard, E., Lothenbach, B., Cau-Dit-Coumes, C., Pochard, I., Rentsch, D.: Aluminum incorporation into magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 128, 105931 (2020). https://doi.org/10.1016/j.cemconres.2019.105931

    Article  Google Scholar 

  45. 45.

    Gomez-Zamorano, L., Balonis, M., Erdemli, B., Neithalath, N., Sant, G.: C–(N)–S–H and N–A–S–H gels: compositions and solubility data at 25°C and 50°C. J. Am. Ceram. Soc. 100(6), 2700–2711 (2017). https://doi.org/10.1111/jace.14715

    Article  Google Scholar 

  46. 46.

    UN Environment, Scrivener, K.L., John, V.M., Gartner, E.M.: Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 114, 2–26 (2018). https://doi.org/10.1016/j.cemconres.2018.03.015

    Article  Google Scholar 

  47. 47.

    Duchesne, J., Bérubé, M.A.: Effect of supplementary cementing materials on the composition of cement hydration products. Adv. Cem. Based Mater. 2(2), 43–52 (1995). https://doi.org/10.1016/1065-7355(95)90024-1

    Article  Google Scholar 

  48. 48.

    Taylor, H.F.W.: Nanostructure of C-S-H: Current status. Adv. Cem. Based Mater. 1(1), 38–46 (1993). https://doi.org/10.1016/1065-7355(93)90006-A

    Article  Google Scholar 

  49. 49.

    Durdziński, P.T., Ben Haha, M., Zajac, M., Scrivener, K.L.: Phase assemblage of composite cements. Cem. Concr. Res. 99, 172–182 (2017). https://doi.org/10.1016/j.cemconres.2017.05.009

    Article  Google Scholar 

  50. 50.

    Andersen, M.D., Jakobsen, H.J., Skibsted, J.: Incorporation of aluminum in the calcium silicate hydrate (C−S−H) of hydrated Portland cements: a high-field 27al and 29si mas nmr investigation. Inorg. Chem. 42(7), 2280–2287 (2003). https://doi.org/10.1021/ic020607b

    Article  Google Scholar 

  51. 51.

    He, Z., Qian, C., Zhang, Y., Zhao, F., Hu, Y.: Nanoindentation characteristics of cement with different mineral admixtures. Sci. China Technol. Sci. 56(5), 1119–1123 (2013). https://doi.org/10.1007/s11431-013-5186-5

    Article  Google Scholar 

  52. 52.

    Hu, C., Li, Z.: Property investigation of individual phases in cementitious composites containing silica fume and fly ash. Cem. Concr. Compos. 57, 17–26 (2015). https://doi.org/10.1016/j.cemconcomp.2014.11.011

    Article  Google Scholar 

  53. 53.

    Myers, R.J., Bernal, S.A., Gehman, J.D., van Deventer, J.S.J., Provis, J.L.: The role of Al in cross-linking of alkali-activated slag cements. J. Am. Ceram. Soc. 98(3), 996–1004 (2015). https://doi.org/10.1111/jace.13360

    Article  Google Scholar 

  54. 54.

    Richardson, I.G., Brough, A.R., Groves, G.W., Dobson, C.M.: The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase. Cem. Concr. Res. 24(5), 813–829 (1994). https://doi.org/10.1016/0008-8846(94)90002-7

    Article  Google Scholar 

  55. 55.

    Brough, A.R., Atkinson, A.: Sodium silicate-based, alkali-activated slag mortars: Part I Strength, hydration and microstructure. Cem. Concr. Res. 32(6), 865–879 (2002). https://doi.org/10.1016/S0008-8846(02)00717-2

    Article  Google Scholar 

  56. 56.

    Fernández-Jiménez, A., Puertas, F., Sobrados, I., Sanz, J.: Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator. J. Am. Ceram. Soc. 86(8), 1389–1394 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03481.x

    Article  Google Scholar 

  57. 57.

    White, C.E., Daemen, L.L., Hartl, M., Page, K.: Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements. Cem. Concr. Res. 67, 66–73 (2015). https://doi.org/10.1016/j.cemconres.2014.08.006

    Article  Google Scholar 

  58. 58.

    Gong, K., White, C.E.: Impact of chemical variability of ground granulated blast-furnace slag on the phase formation in alkali-activated slag pastes. Cem. Concr. Res. 89, 310–319 (2016). https://doi.org/10.1016/j.cemconres.2016.09.003

    Article  Google Scholar 

  59. 59.

    Garg, N., White, C.E.: Mechanism of zinc oxide retardation in alkali-activated materials: An in situ X-ray pair distribution function investigation. J. Mater. Chem. A 5, 11794–11804 (2017). https://doi.org/10.1039/C7TA00412E

    Article  Google Scholar 

  60. 60.

    Kurtis, K.E., Monteiro, P.J.M.: Chemical additives to control expansion of alkali-silica reaction gel: proposed mechanisms of control. J. Mater. Sci. 38(9), 2027–2036 (2003). https://doi.org/10.1023/a:1023549824201

    Article  Google Scholar 

  61. 61.

    Rajabipour, F., Giannini, E., Dunant, C., Ideker, J.H., Thomas, M.D.A.: Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 76, 130–146 (2015). https://doi.org/10.1016/j.cemconres.2015.05.024

    Article  Google Scholar 

  62. 62.

    Shi, Z., Geng, G., Leemann, A., Lothenbach, B.: Synthesis, characterization, and water uptake property of alkali-silica reaction products. Cem. Concr. Res. 121, 58–71 (2019). https://doi.org/10.1016/j.cemconres.2019.04.009

    Article  Google Scholar 

  63. 63.

    Shi, Z., Lothenbach, B.: The combined effect of potassium, sodium and calcium on the formation of alkali-silica reaction products. Cem. Concr. Res. 127, 105914 (2020). https://doi.org/10.1016/j.cemconres.2019.105914

    Article  Google Scholar 

  64. 64.

    Fernández-Jiménez, A., Puertas, F.: The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem. Concr. Res. 32(7), 1019–1024 (2002). https://doi.org/10.1016/S0008-8846(01)00745-1

    Article  Google Scholar 

  65. 65.

    Shi, C., Shi, Z., Hu, X., Zhao, R., Chong, L.: A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Mater. Struct. 48(3), 621–628 (2015). https://doi.org/10.1617/s11527-014-0505-2

    Article  Google Scholar 

  66. 66.

    Shi, Z., Shi, C., Wan, S., Zhang, Z.: Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars. Cem. Concr. Res. 111, 104–115 (2018). https://doi.org/10.1016/j.cemconres.2018.06.005

    Article  Google Scholar 

  67. 67.

    Shi, Z., Lothenbach, B.: The role of calcium on the formation of alkali-silica reaction products. Cem. Concr. Res. 126, 105898 (2019). https://doi.org/10.1016/j.cemconres.2019.105898

    Article  Google Scholar 

  68. 68.

    Federico, L.M., Chidiac, S.E.: Waste glass as a supplementary cementitious material in concrete—Critical review of treatment methods. Cem. Concr. Compos. 31(8), 606–610 (2009). https://doi.org/10.1016/j.cemconcomp.2009.02.001

    Article  Google Scholar 

  69. 69.

    Marija, K., Julio, F.D.: Field application of recycled glass pozzolan for concrete. ACI Mater. J. 116(4), 123–131 (2019). https://doi.org/10.14359/51716716

    Article  Google Scholar 

  70. 70.

    Saccani, A., Bignozzi, M.C.: ASR expansion behavior of recycled glass fine aggregates in concrete. Cem. Concr. Res. 40(4), 531–536 (2010). https://doi.org/10.1016/j.cemconres.2009.09.003

    Article  Google Scholar 

  71. 71.

    Sánchez-Herrero, M.J., Fernández-Jiménez, A., Palomo, Á.: Alkaline hydration of C2S and C3S. J. Am. Ceram. Soc. 99(2), 604–611 (2016). https://doi.org/10.1111/jace.13985

    Article  Google Scholar 

  72. 72.

    L'Hôpital, E., Lothenbach, B., Scrivener, K., Kulik, D.A.: Alkali uptake in calcium alumina silicate hydrate (C-A-S-H). Cem. Concr. Res. 85, 122–136 (2016). https://doi.org/10.1016/j.cemconres.2016.03.009

    Article  Google Scholar 

  73. 73.

    Myers, R.J., L'Hôpital, E., Provis, J.L., Lothenbach, B.: Composition–solubility–structure relationships in calcium (alkali) aluminosilicate hydrate (C-(N,K-)A-S-H). Dalton Trans. 44(30), 13530–13544 (2015). https://doi.org/10.1039/C5DT01124H

    Article  Google Scholar 

  74. 74.

    Walkley, B., San Nicolas, R., Sani, M.-A., Rees, G.J., Hanna, J.V., van Deventer, J.S.J., Provis, J.L.: Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cem. Concr. Res. 89, 120–135 (2016). https://doi.org/10.1016/j.cemconres.2016.08.010

    Article  Google Scholar 

  75. 75.

    Vigna, E., Skibsted, J.: Optimization of alkali activated Portland cement–calcined clay blends based on phase assemblage in the Na2O–CaO–Al2O3–SiO2–H2O system. In: Scrivener, K., Favier, A. (eds.) Calcined Clays for Sustainable Concrete Calcined Clays for Sustainable Concrete, pp. 101–107. Springer, Netherlands, Dordrecht (2015)

    Google Scholar 

  76. 76.

    García Lodeiro, I., Fernández-Jimenez, A., Palomo, A., Macphee, D.E.: Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 40(1), 27–32 (2010). https://doi.org/10.1016/j.cemconres.2009.08.004

    Article  Google Scholar 

  77. 77.

    Bernal, S.A., Mejía de Gutiérrez, R., Pedraza, A.L., Provis, J.L., Rodriguez, E.D., Delvasto, S.: Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 41(1), 1–8 (2011). https://doi.org/10.1016/j.cemconres.2010.08.017

    Article  Google Scholar 

  78. 78.

    Bernal, S.A., Rodríguez, E.D., de Gutiérrez, R.M., Gordillo, M., Provis, J.L.: Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46(16), 5477–5486 (2011). https://doi.org/10.1007/s10853-011-5490-z

    Article  Google Scholar 

  79. 79.

    Collins, F.G., Sanjayan, J.G.: Workability and mechanical properties of alkali activated slag concrete. Cem. Concr. Res. 29(3), 455–458 (1999). https://doi.org/10.1016/S0008-8846(98)00236-1

    Article  Google Scholar 

  80. 80.

    Shi, C.J.: Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 26(12), 1789–1799 (1996). https://doi.org/10.1016/s0008-8846(96)00174-3

    Article  Google Scholar 

  81. 81.

    Puertas, F., Palacios, M., Manzano, H., Dolado, J.S., Rico, A., Rodríguez, J.: A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31(12), 2043–2056 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.04.036

    Article  Google Scholar 

  82. 82.

    Hafner, J.: Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 29(13), 2044–2078 (2008). https://doi.org/10.1002/jcc.21057

    Article  Google Scholar 

  83. 83.

    Jones, R.O.: Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 87(3), 897–923 (2015). https://doi.org/10.1103/RevModPhys.87.897

    MathSciNet  Article  Google Scholar 

  84. 84.

    Skylaris, C.-K.: A benchmark for materials simulation. Science 351(6280), 1394–1395 (2016). https://doi.org/10.1126/science.aaf3412

    Article  Google Scholar 

  85. 85.

    Kumar, A., Walder, B.J., Kunhi Mohamed, A., Hofstetter, A., Srinivasan, B., Rossini, A.J., Scrivener, K., Emsley, L., Bowen, P.: The atomic-level structure of cementitious calcium silicate hydrate. J. Phys. Chem. C 121(32), 17188–17196 (2017). https://doi.org/10.1021/acs.jpcc.7b02439

    Article  Google Scholar 

  86. 86.

    Churakov, S.V., Labbez, C.: Thermodynamics and molecular mechanism of Al incorporation in calcium silicate hydrates. J. Phys. Chem. C 121(8), 4412–4419 (2017). https://doi.org/10.1021/acs.jpcc.6b12850

    Article  Google Scholar 

  87. 87.

    Kunhi Mohamed, A., Parker, S.C., Bowen, P., Galmarini, S.: An atomistic building block description of C-S-H - towards a realistic C-S-H model. Cem. Concr. Res. 107, 221–235 (2018). https://doi.org/10.1016/j.cemconres.2018.01.007

    Article  Google Scholar 

  88. 88.

    Özçelik, V.O., Garg, N., White, C.E.: Symmetry-induced stability in alkali-doped calcium silicate hydrate. J. Phys. Chem. C 123(22), 14081–14088 (2019). https://doi.org/10.1021/acs.jpcc.9b04031

    Article  Google Scholar 

  89. 89.

    Özçelik, V.O., White, C.E.: Nanoscale charge-balancing mechanism in alkali-substituted calcium–silicate–hydrate gels. J. Phys. Chem. Lett. 7(24), 5266–5272 (2016). https://doi.org/10.1021/acs.jpclett.6b02233

    Article  Google Scholar 

  90. 90.

    Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: Effect of alumina release rate on the mechanism of geopolymer gel formation. Chem. Mater. 22(18), 5199–5208 (2010). https://doi.org/10.1021/cm101151n

    Article  Google Scholar 

  91. 91.

    Ben Haha, M., Le Saout, G., Winnefeld, F., Lothenbach, B.: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 41(3), 301–310 (2011). https://doi.org/10.1016/j.cemconres.2010.11.016

    Article  Google Scholar 

  92. 92.

    Garg, N., Özçelik, V.O., Skibsted, J., White, C.E.: Nanoscale ordering and depolymerization of calcium silicate hydrates in presence of alkalis. J. Phys. Chem. C 123(40), 24873–24883 (2019). https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b06412

  93. 93.

    L’Hôpital, E., Lothenbach, B., Le Saout, G., Kulik, D., Scrivener, K.: Incorporation of aluminium in calcium-silicate-hydrates. Cem. Concr. Res. 75, 91–103 (2015). https://doi.org/10.1016/j.cemconres.2015.04.007

    Article  Google Scholar 

  94. 94.

    Davidovits, J.: Geopolymers—inorganic polymeric new materials. J. Therm. Anal. 37(8), 1633–1656 (1991). https://doi.org/10.1007/bf01912193

    Article  Google Scholar 

  95. 95.

    Barbosa, V.F.F., MacKenzie, K.J.D., Thaumaturgo, C.: Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int. J. Inorg. Mater. 2(4), 309–317 (2000). https://doi.org/10.1016/S1466-6049(00)00041-6

    Article  Google Scholar 

  96. 96.

    White, C.E., Page, K., Henson, N.J., Provis, J.L.: In situ synchrotron X-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers. Appl. Clay Sci. 73, 17–25 (2013). https://doi.org/10.1016/j.clay.2012.09.009

    Article  Google Scholar 

  97. 97.

    Provis, J.L., Bernal, S.A.: Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44(1), 299–327 (2014). https://doi.org/10.1146/annurev-matsci-070813-113515

    Article  Google Scholar 

  98. 98.

    Walkley, B., Rees, G.J., San Nicolas, R., van Deventer, J.S.J., Hanna, J.V., Provis, J.L.: New structural model of hydrous sodium aluminosilicate gels and the role of charge-balancing extra-framework Al. J. Phys. Chem. C 122(10), 5673–5685 (2018). https://doi.org/10.1021/acs.jpcc.8b00259

    Article  Google Scholar 

  99. 99.

    Thomas, J.J., FitzGerald, S.A., Neumann, D.A., Livingston, R.A.: State of water in hydrating tricalcium silicate and Portland cement pastes as measured by quasi-elastic neutron scattering. J. Am. Ceram. Soc. 84(8), 1811–1816 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00919.x

    Article  Google Scholar 

  100. 100.

    Duxson, P., Lukey, G.C., van Deventer, J.S.J.: Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J. Mater. Sci. 42(9), 3044–3054 (2007). https://doi.org/10.1007/s10853-006-0535-4

    Article  Google Scholar 

  101. 101.

    Jiao, D., King, C., Grossfield, A., Darden, T.A., Ren, P.: Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. J. Phys. Chem. B 110(37), 18553–18559 (2006). https://doi.org/10.1021/jp062230r

    Article  Google Scholar 

  102. 102.

    Kutus, B., Gácsi, A., Pallagi, A., Pálinkó, I., Peintler, G., Sipos, P.: A comprehensive study on the dominant formation of the dissolved Ca(OH)2(aq) in strongly alkaline solutions saturated by Ca(II). RSC Adv. 6(51), 45231–45240 (2016). https://doi.org/10.1039/C6RA05337H

    Article  Google Scholar 

  103. 103.

    Rumble, J.R. (ed): Properties of the elements and inorganics. In: CRC Handbook of Chemistry and Physics Online, 101st Edition. CRC Press/Taylor & Francis, Boca Raton, FL (2020). http://hbcponline.com/faces/contents/ContentsSearch.xhtml

  104. 104.

    Scherer, G.W., Valenza II, J.J., Simmons, G.: New methods to measure liquid permeability in porous materials. Cem. Concr. Res. 37(3), 386–397 (2007). https://doi.org/10.1016/j.cemconres.2006.09.020

    Article  Google Scholar 

  105. 105.

    Blyth, A., Eiben, C.A., Scherer, G.W., White, C.E.: Impact of activator chemistry on permeability of alkali-activated slags. J. Am. Ceram. Soc. 100(10), 4848–4859 (2017). https://doi.org/10.1111/jace.14996

    Article  Google Scholar 

  106. 106.

    Ma, Y., Wang, G., Ye, G., Hu, J.: A comparative study on the pore structure of alkali-activated fly ash evaluated by mercury intrusion porosimetry, N2 adsorption and image analysis. J. Mater. Sci. 53(8), 5958–5972 (2018). https://doi.org/10.1007/s10853-017-1965-x

    Article  Google Scholar 

  107. 107.

    White, C.E.: Alkali-activated materials: The role of molecular-scale research and lessons from the energy transition to combat climate change. RILEM Tech. Lett. 4, 110–121 (2019). https://doi.org/10.21809/rilemtechlett.2019.98

    Article  Google Scholar 

  108. 108.

    Provis, J.L., Myers, R.J., White, C.E., Rose, V., van Deventer, J.S.J.: X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 42(6), 855–864 (2012). https://doi.org/10.1016/j.cemconres.2012.03.004

    Article  Google Scholar 

  109. 109.

    Ma, Y., Hu, J., Ye, G.: The pore structure and permeability of alkali activated fly ash. Fuel 104, 771–780 (2013). https://doi.org/10.1016/j.fuel.2012.05.034

    Article  Google Scholar 

  110. 110.

    Sun, Z., Scherer, G.W.: Pore size and shape in mortar by thermoporometry. Cem. Concr. Res. 40(5), 740–751 (2010). https://doi.org/10.1016/j.cemconres.2009.11.011

    Article  Google Scholar 

  111. 111.

    Abell, A.B., Willis, K.L., Lange, D.A.: Mercury intrusion porosimetry and image analysis of cement-based materials. J. Colloid Interface Sci. 211(1), 39–44 (1999). https://doi.org/10.1006/jcis.1998.5986

    Article  Google Scholar 

  112. 112.

    Xu, H., Provis, J.L., van Deventer, J.S.J., Krivenko, P.V.: Characterization of aged slag concretes. ACI Mater. J. 105(2), 131–139 (2008). https://doi.org/10.14359/19753

    Article  Google Scholar 

  113. 113.

    Buchwald, A., Vanooteghem, M., Gruyaert, E., Hilbig, H., De Belie, N.: Purdocement: application of alkali-activated slag cement in Belgium in the 1950s. Mater. Struct. 48(1), 501–511 (1950s). https://doi.org/10.1617/s11527-013-0200-8

    Article  Google Scholar 

  114. 114.

    Dufresne, A., Arayro, J., Zhou, T., Ioannidou, K., Ulm, F.-J., Pellenq, R., Béland, L.K.: Atomistic and mesoscale simulation of sodium and potassium adsorption in cement paste. J. Chem. Phys. 149(7), 074705 (2018). https://doi.org/10.1063/1.5042755

    Article  Google Scholar 

  115. 115.

    Chen, J.J., Thomas, J.J., Taylor, H.F.W., Jennings, H.M.: Solubility and structure of calcium silicate hydrate. Cem. Concr. Res. 34(9), 1499–1519 (2004). https://doi.org/10.1016/j.cemconres.2004.04.034

    Article  Google Scholar 

  116. 116.

    Lothenbach, B., Zajac, M.: Application of thermodynamic modelling to hydrated cements. Cem. Concr. Res. 123, 105779 (2019). https://doi.org/10.1016/j.cemconres.2019.105779

    Article  Google Scholar 

  117. 117.

    Keyte, L.: What's wrong with Tarong? The importance of coal fly ash glass chemistry in inorganic polymer synthesis. PhD thesis. The University of Melbourne (2008)

  118. 118.

    Kinnunen, P., Sreenivasan, H., Cheeseman, C.R., Illikainen, M.: Phase separation in alumina-rich glasses to increase glass reactivity for low-CO2 alkali-activated cements. J. Clean. Prod. 213, 126–133 (2019). https://doi.org/10.1016/j.jclepro.2018.12.123

    Article  Google Scholar 

  119. 119.

    Suraneni, P., Palacios, M., Flatt, R.J.: New insights into the hydration of slag in alkaline media using a micro-reactor approach. Cem. Concr. Res. 79, 209–216 (2016). https://doi.org/10.1016/j.cemconres.2015.09.015

    Article  Google Scholar 

  120. 120.

    Scrivener, K., Ouzia, A., Juilland, P., Kunhi Mohamed, A.: Advances in understanding cement hydration mechanisms. Cem. Concr. Res. 124, 105823 (2019). https://doi.org/10.1016/j.cemconres.2019.105823

    Article  Google Scholar 

  121. 121.

    Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloid Surf. A 318(1), 97–105 (2008). https://doi.org/10.1016/j.colsurfa.2007.12.019

    Article  Google Scholar 

  122. 122.

    Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J. Colloid Interface Sci. 357(2), 384–392 (2011). https://doi.org/10.1016/j.jcis.2011.02.045

    Article  Google Scholar 

  123. 123.

    Berodier, E., Scrivener, K.: Understanding the filler effect on the nucleation and growth of C-S-H. J. Am. Ceram. Soc. 97(12), 3764–3773 (2014). https://doi.org/10.1111/jace.13177

    Article  Google Scholar 

  124. 124.

    Ouyang, X., Koleva, D.A., Ye, G., van Breugel, K.: Insights into the mechanisms of nucleation and growth of C-S-H on fillers. Mater. Struct. 50(5), 213 (2017). https://doi.org/10.1617/s11527-017-1082-y

    Article  Google Scholar 

  125. 125.

    Bellmann, F., Stark, J.: Activation of blast furnace slag by a new method. Cem. Concr. Res. 39(8), 644–650 (2009). https://doi.org/10.1016/j.cemconres.2009.05.012

    Article  Google Scholar 

  126. 126.

    Monkman, S., MacDonald, M., Hooton, R.D., Sandberg, P.: Properties and durability of concrete produced using CO2 as an accelerating admixture. Cem. Concr. Compos. 74, 218–224 (2016). https://doi.org/10.1016/j.cemconcomp.2016.10.007

    Article  Google Scholar 

  127. 127.

    Plank, J., Sakai, E., Miao, C.W., Yu, C., Hong, J.X.: Chemical admixtures—Chemistry, applications and their impact on concrete microstructure and durability. Cem. Concr. Res. 78, 81–99 (2015). https://doi.org/10.1016/j.cemconres.2015.05.016

    Article  Google Scholar 

  128. 128.

    Cheung, J., Roberts, L., Liu, J.: Admixtures and sustainability. Cem. Concr. Res. 114, 79–89 (2018). https://doi.org/10.1016/j.cemconres.2017.04.011

    Article  Google Scholar 

  129. 129.

    Liu, J., Yu, C., Shu, X., Ran, Q., Yang, Y.: Recent advance of chemical admixtures in concrete. Cem. Concr. Res. 124, 105834 (2019). https://doi.org/10.1016/j.cemconres.2019.105834

    Article  Google Scholar 

  130. 130.

    Lowke, D., Gehlen, C.: Effect of pore solution composition on zeta potential and superplasticizer adsorption. American Concrete Institute (ACI) Symposium Publication SP-302-19. 253–264 (2019)

  131. 131.

    Ersoy, B., Dikmen, S., Uygunoğlu, T., İçduygu Mehmet, G., Kavas, T., Olgun, A.: Effect of mixing water types on the time-dependent zeta potential of Portland cement paste. Sci. Eng. Compos. Mater. 20(3), 285 (2013). https://doi.org/10.1515/secm-2012-0099

    Article  Google Scholar 

  132. 132.

    Elakneswaran, Y., Nawa, T., Kurumisawa, K.: Zeta potential study of paste blends with slag. Cem. Concr. Compos. 31(1), 72–76 (2009). https://doi.org/10.1016/j.cemconcomp.2008.09.007

    Article  Google Scholar 

  133. 133.

    Kraus, A., Mitkina, T., Dierschke, F., Pulkin, M., Nicoleau, L.: Cationic polymers. US Patent No. 2016/03699024A1 (2016)

  134. 134.

    Kashani, A., Provis, J.L., Qiao, G.G., van Deventer, J.S.J.: The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr. Build. Mater. 65, 583–591 (2014). https://doi.org/10.1016/j.conbuildmat.2014.04.127

    Article  Google Scholar 

  135. 135.

    Khayat, K.H., Meng, W., Vallurupalli, K., Teng, L.: Rheological properties of ultra-high-performance concrete — An overview. Cem. Concr. Res. 124, 105828 (2019). https://doi.org/10.1016/j.cemconres.2019.105828

    Article  Google Scholar 

  136. 136.

    Ng, S., Justness, H.: Influence of plasticizers on the rheology and early heat of hydration of blended cements with high content of fly ash. Cem. Concr. Compos. 65, 41–54 (2016). https://doi.org/10.1016/j.cemconcomp.2015.10.005

    Article  Google Scholar 

  137. 137.

    Kashani, A., SanNicolas, R., Qiao, G.G., van Deventer, J.S.J., Provis, J.L.: Modelling the yield stress of ternary cement–slag–fly ash pastes based on particle size distribution. Powder Technol. 266, 203–209 (2014). https://doi.org/10.1016/j.powtec.2014.06.041

    Article  Google Scholar 

  138. 138.

    Stecher, J., Plank, J.: Novel concrete superplasticizers based on phosphate esters. Cem. Concr. Res. 119, 36–43 (2019). https://doi.org/10.1016/j.cemconres.2019.01.006

    Article  Google Scholar 

  139. 139.

    Akhlaghi, O., Menceloglu, Y.Z., Akbulut, O.: Poly(carboxylate ether)-based superplasticizer achieves workability retention in calcium aluminate cement. Sci. Rep. 7(1), 41743 (2017). https://doi.org/10.1038/srep41743

    Article  Google Scholar 

  140. 140.

    Keulen, A., Yu, Q.L., Zhang, S., Grünewald, S.: Effect of admixture on the pore structure refinement and enhanced performance of alkali-activated fly ash-slag concrete. Constr. Build. Mater. 162, 27–36 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.136

    Article  Google Scholar 

  141. 141.

    Marchon, D., Sulser, U., Eberhardt, A., Flatt, R.J.: Molecular design of comb-shaped polycarboxylate dispersants for environmentally friendly concrete. Soft Matter 9(45), 10719–10728 (2013). https://doi.org/10.1039/C3SM51030A

    Article  Google Scholar 

  142. 142.

    Conte, T., Plank, J.: Impact of molecular structure and composition of polycarboxylate comb polymers on the flow properties of alkali-activated slag. Cem. Concr. Res. 116, 95–101 (2019). https://doi.org/10.1016/j.cemconres.2018.11.014

    Article  Google Scholar 

  143. 143.

    Jang, J.G., Lee, N.K., Lee, H.K.: Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Constr. Build. Mater. 50, 169–176 (2014). https://doi.org/10.1016/j.conbuildmat.2013.09.048

    Article  Google Scholar 

  144. 144.

    Liu, X.F., Peng, J.H., Wei, G.F., Yang, C.H., Huang, L.Q.: Adsorption characteristics of surfactant on slag in alkali activated slag cement system. Appl. Mech. Mater. 174–177, 1072–1078 (2012). https://doi.org/10.4028/www.scientific.net/AMM.174-177.1072

    Article  Google Scholar 

  145. 145.

    Jacquet, A., Geatches, D.L., Clark, S.J., Greenwell, H.C.: Understanding cationic polymer adsorption on mineral surfaces: Kaolinite in cement aggregates. Minerals 8(4), 130 (2018). https://doi.org/10.3390/min8040130

    Article  Google Scholar 

  146. 146.

    Hampel, C., Zimmermann, J., Alshemari, J., Friederich, M.: Plasticizer having cationic side chains without polyether side chains. US Patent No. 9758608B2 (2017)

  147. 147.

    Jiang, L., Kong, X., Lu, Z., Hou, S.: Preparation of amphoteric polycarboxylate superplasticizers and their performances in cementitious system. J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.41348

    Article  Google Scholar 

  148. 148.

    Loesche: Compact cement grinding plant (CCG plant). https://www.youtube.com/watch?v=U5n3UnK3oHY (2019). Accessed 6 Feb 2020

  149. 149.

    Kelsey, C.G., Kelly, J.R.: Super fine crushing—pivotal comminution technology from IMP Technologies Pty. Ltd. In: IMPC 2016: XXVIII International Mineral Processing Congress Proceedings. Canadian Institute of Mining, Metallurgy and Petroleum (CIM), Quebec City, Canada (2016)

  150. 150.

    Van Deventer, J.S.J.: Valorisation of slag in construction: So much more than just technology. In: Proceedings of the 5th Slag Valorisation Symposium. Leuven, Belgium (2017)

  151. 151.

    Lansell, P., Keating, W., Lowe, D.: Systems and methods for processing solid materials using shockwaves produced in a supersonic gaseous vortex. US Patent No. 9724703B2 (2017)

  152. 152.

    Andres, U.: Electrical disintegration of rock. Miner. Process. Extr. Metall. Rev. 14(2), 87–110 (1995). https://doi.org/10.1080/08827509508914118

    Article  Google Scholar 

  153. 153.

    de Knoop, L., Juhani Kuisma, M., Löfgren, J., Lodewijks, K., Thuvander, M., Erhart, P., Dmitriev, A., Olsson, E.: Electric-field-controlled reversible order-disorder switching of a metal tip surface. Phys. Rev. Mater. 2(8), 085006 (2018). https://doi.org/10.1103/PhysRevMaterials.2.085006

    Article  Google Scholar 

  154. 154.

    San Nicolas, R., Cyr, M., Escadeillas, G.: Characteristics and applications of flash metakaolins. Appl. Clay Sci. 83–84, 253–262 (2013). https://doi.org/10.1016/j.clay.2013.08.036

    Article  Google Scholar 

  155. 155.

    Long, S., Yan, C., Dong, J.: Microwave-promoted burning of Portland cement clinker. Cem. Concr. Res. 32(1), 17–21 (2002). https://doi.org/10.1016/S0008-8846(01)00622-6

    Article  Google Scholar 

  156. 156.

    Snellings, R., Mertens, G., Elsen, J.: Supplementary cementitious materials. Rev. Min. Geochem. 74(1), 211–278 (2012). https://doi.org/10.2138/rmg.2012.74.6

    Article  Google Scholar 

  157. 157.

    Salman, M., Dubois, M., Maria, A.D., Van Acker, K., Van Balen, K.: Construction materials from stainless steel slags: Technical aspects, environmental benefits, and economic opportunities. J. Ind. Ecol. 20(4), 854–866 (2016). https://doi.org/10.1111/jiec.12314

    Article  Google Scholar 

  158. 158.

    Onisei, S., Pontikes, Y., Van Gerven, T., Angelopoulos, G.N., Velea, T., Predica, V., Moldovan, P.: Synthesis of inorganic polymers using fly ash and primary lead slag. J. Hazard. Mater. 205–206, 101–110 (2012). https://doi.org/10.1016/j.jhazmat.2011.12.039

    Article  Google Scholar 

  159. 159.

    Donatello, S., Cheeseman, C.R.: Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manage. 33(11), 2328–2340 (2013). https://doi.org/10.1016/j.wasman.2013.05.024

    Article  Google Scholar 

  160. 160.

    Joseph, A.M., Snellings, R., Van den Heede, P., Matthys, S., De Belie, N.: The use of municipal solid waste incineration ash in various building materials: A Belgian point of view. Materials 11(1), 141 (2018). https://doi.org/10.3390/ma11010141

    Article  Google Scholar 

  161. 161.

    Scrivener, K.L.: Options for future of cement. Indian Concr. J. 88(7), 11–21 (2014)

    Google Scholar 

  162. 162.

    Snellings, R.: Solution-controlled dissolution of supplementary cementitious material glasses at pH 13: The effect of solution composition on glass dissolution rates. J. Am. Ceram. Soc. 96(8), 2467–2475 (2013). https://doi.org/10.1111/jace.12480

    Article  Google Scholar 

  163. 163.

    Hanein, T., Galan, I., Glasser, F.P., Skalamprinos, S., Elhoweris, A., Imbabi, M.S., Bannerman, M.N.: Stability of ternesite and the production at scale of ternesite-based clinkers. Cem. Concr. Res. 98, 91–100 (2017). https://doi.org/10.1016/j.cemconres.2017.04.010

    Article  Google Scholar 

  164. 164.

    Yliniemi, J., Walkley, B., Provis, J.L., Kinnunen, P., Illikainen, M.: Nanostructural evolution of alkali-activated mineral wools. Cem. Concr. Compos. 106, 103472 (2020). https://doi.org/10.1016/j.cemconcomp.2019.103472

    Article  Google Scholar 

  165. 165.

    Ke, X., Criado, M., Provis, J.L., Bernal, S.A.: Slag-based cements that resist damage induced by carbon dioxide. ACS Sustain. Chem. Eng. 6(4), 5067–5075 (2018). https://doi.org/10.1021/acssuschemeng.7b04730

    Article  Google Scholar 

  166. 166.

    Bernal, S.A., San Nicolas, R., Myers, R.J., de Gutiérrez, R.M., Puertas, F., van Deventer, J.S.J., Provis, J.L.: MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem. Concr. Res. 57, 33–43 (2014). https://doi.org/10.1016/j.cemconres.2013.12.003

    Article  Google Scholar 

  167. 167.

    Mindess, S.: Resistance of concrete to destructive agencies. In: Hewlett, P.C., Liska, M. (eds.) Lea’s Chemistry of Cement and Concrete. Chapter 6. pp. 251–283. Butterworth-Heinemann/Elsevier (2019)

  168. 168.

    Bernal, S.A., Provis, J.L., Brice, D.G., Kilcullen, A., Duxson, P., van Deventer, J.S.J.: Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: The role of pore solution chemistry. Cem. Concr. Res. 42(10), 1317–1326 (2012). https://doi.org/10.1016/j.cemconres.2012.07.002

    Article  Google Scholar 

  169. 169.

    Vichit-Vadakan, W., Scherer, G.W.: Measuring permeability and stress relaxation of young cement paste by beam bending. Cem. Concr. Res. 33(12), 1925–1932 (2003). https://doi.org/10.1016/s0008-8846(03)00168-6

    Article  Google Scholar 

  170. 170.

    Williams, R.P., Hart, R.D., van Riessen, A.: Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. J. Am. Ceram. Soc. 94(8), 2663–2670 (2011). https://doi.org/10.1111/j.1551-2916.2011.04410.x

    Article  Google Scholar 

  171. 171.

    White, C.E., Provis, J.L., Bloomer, B., Henson, N.J., Page, K.: In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics. Phys. Chem. Chem. Phys. 15(22), 8573–8582 (2013)

    Article  Google Scholar 

  172. 172.

    Gong, K., Cheng, Y., Daemen, L.L., White, C.E.: In situ quasi-elastic neutron scattering study on the water dynamics and reaction mechanisms in alkali-activated slags. Phys. Chem. Chem. Phys. 21(20), 10277–10292 (2019). https://doi.org/10.1039/C9CP00889F

    Article  Google Scholar 

  173. 173.

    Criado, M., Fernández-Jiménez, A., de la Torre, A.G., Aranda, M.A.G., Palomo, A.: An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 37, 671–679 (2007). https://doi.org/10.1016/j.cemconres.2007.01.013

    Article  Google Scholar 

  174. 174.

    Yang, K., White, C.E.: Modeling the formation of alkali aluminosilicate gels at the mesoscale using coarse-grained Monte Carlo. Langmuir 32(44), 11580–11590 (2016). https://doi.org/10.1021/acs.langmuir.6b02592

    Article  Google Scholar 

  175. 175.

    Glasser, F.P., Marchand, J., Samson, E.: Durability of concrete — Degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 38(2), 226–246 (2008). https://doi.org/10.1016/j.cemconres.2007.09.015

    Article  Google Scholar 

  176. 176.

    Lothenbach, B., Scrivener, K., Hooton, R.D.: Supplementary cementitious materials. Cem. Concr. Res. 41(12), 1244–1256 (2011). https://doi.org/10.1016/j.cemconres.2010.12.001

    Article  Google Scholar 

  177. 177.

    Shi, Z., Ferreiro, S., Lothenbach, B., Geiker, M.R., Kunther, W., Kaufmann, J., Herfort, D., Skibsted, J.: Sulfate resistance of calcined clay—limestone—portland cements. Cem. Concr. Res. 116, 238–251 (2019). https://doi.org/10.1016/j.cemconres.2018.11.003

    Article  Google Scholar 

  178. 178.

    Puertas, F., Fernández-Jiménez, A., Blanco-Varela, M.T.: Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem. Concr. Res. 34(1), 139–148 (2004). https://doi.org/10.1016/S0008-8846(03)00254-0

    Article  Google Scholar 

  179. 179.

    Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Pore solution composition and alkali diffusion in inorganic polymer cement. Cem. Concr. Res. 40(9), 1386–1392 (2010). https://doi.org/10.1016/j.cemconres.2010.04.008

    Article  Google Scholar 

  180. 180.

    Nedeljković, M., Ghiassi, B., van der Laan, S., Li, Z., Ye, G.: Effect of curing conditions on the pore solution and carbonation resistance of alkali-activated fly ash and slag pastes. Cem. Concr. Res. 116, 146–158 (2019). https://doi.org/10.1016/j.cemconres.2018.11.011

    Article  Google Scholar 

  181. 181.

    Lothenbach, B., Winnefeld, F., Alder, C., Wieland, E., Lunk, P.: Effect of temperature on the pore solution, microstructure and hydration products of portland cement pastes. Cem. Concr. Res. 37(4), 483–491 (2007). https://doi.org/10.1016/j.cemconres.2006.11.016

    Article  Google Scholar 

  182. 182.

    Han, S.-J., Yoo, M., Kim, D.-W., Wee, J.-H.: Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent. Energy Fuels 25, 3825–3834 (2011). https://doi.org/10.1021/ef200415p

    Article  Google Scholar 

  183. 183.

    Lucile, F., Cézac, P., Contamine, F., Serin, J.-P., Houssin, D., Arpentinier, P.: Solubility of carbon dioxide in water and aqueous solution containing sodium hydroxide at temperatures from (293.15 to 393.15) K and pressure up to 5 MPa: experimental measurements. J. Chem. Eng. Data 57(3), 784–789 (2012). https://doi.org/10.1021/je200991x

    Article  Google Scholar 

  184. 184.

    Ke, X., Bernal, S.A., Provis, J.L.: Layered double hydroxides modify the reaction of sodium silicate-activated slag cements. Green Mater. 7(2), 52–60 (2019). https://doi.org/10.1680/jgrma.18.00024

    Article  Google Scholar 

  185. 185.

    Pan, X., Shi, C., Zhang, J., Jia, L., Chong, L.: Effect of inorganic surface treatment on surface hardness and carbonation of cement-based materials. Cem. Concr. Compos. 90, 218–224 (2018). https://doi.org/10.1016/j.cemconcomp.2018.03.026

    Article  Google Scholar 

  186. 186.

    Li, Q., Yang, Y., Yang, K., Chao, Z., Tang, D., Tian, Y., Wu, F., Basheer, M., Yang, C.: The role of calcium stearate on regulating activation to form stable, uniform and flawless reaction products in alkali-activated slag cement. Cem. Concr. Compos. 103, 242–251 (2019). https://doi.org/10.1016/j.cemconcomp.2019.05.009

    Article  Google Scholar 

  187. 187.

    Balonis, M., Sant, G., Burkan Isgor, O.: Mitigating steel corrosion in reinforced concrete using functional coatings, corrosion inhibitors, and atomistic simulations. Cem. Concr. Compos. 101, 15–23 (2019). https://doi.org/10.1016/j.cemconcomp.2018.08.006

    Article  Google Scholar 

  188. 188.

    Criado, M., Bernal, S.A., Garcia-Triñanes, P., Provis, J.L.: Influence of slag composition on the stability of steel in alkali-activated cementitious materials. J. Mater. Sci. 53(7), 5016–5035 (2018). https://doi.org/10.1007/s10853-017-1919-3

    Article  Google Scholar 

  189. 189.

    Criado, M., Provis, J.L.: Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel. Front. Mater. 5, 34 (2018). https://doi.org/10.3389/fmats.2018.00034

    Article  Google Scholar 

  190. 190.

    Neville, A.: Chloride attack of reinforced concrete: An overview. Mater. Struct. 28(2), 63 (1995). https://doi.org/10.1007/BF02473172

    Article  Google Scholar 

  191. 191.

    Li, K., Li, L.: Crack-altered durability properties and performance of structural concretes. Cem. Concr. Res. 124, 105811 (2019). https://doi.org/10.1016/j.cemconres.2019.105811

    Article  Google Scholar 

  192. 192.

    Walling, S.A., Provis, J.L.: Magnesia-based cements: A journey of 150 years, and cements for the future? Chem. Rev. 116(7), 4170–4204 (2016). https://doi.org/10.1021/acs.chemrev.5b00463

    Article  Google Scholar 

  193. 193.

    Iyengar, S.R., Al-Tabbaa, A.: Developmental study of a low-pH magnesium phosphate cement for environmental applications. Environ. Technol. 28(12), 1387–1401 (2007). https://doi.org/10.1080/09593332808618899

    Article  Google Scholar 

  194. 194.

    Sharkawi, A.E., Rizkala, S., Zia, P.: Corrosion activity of steel bars embedded in magnesium phosphate fiber reinforced cementitious material “PCW Grancrete”. In: American Society of Civil Engineers 6th International Engineering and Construction Conference (IECC’6). Cairo, Egypt (2010)

  195. 195.

    Subramanian, N.: Sustainability of RCC structures using basalt composite rebars. The Masterbuilder (2010).

  196. 196.

    Dhand, V., Mittal, G., Rhee, K.Y., Park, S.-J., Hui, D.: A short review on basalt fiber reinforced polymer composites. Compos. B 73, 166–180 (2015). https://doi.org/10.1016/j.compositesb.2014.12.011

    Article  Google Scholar 

  197. 197.

    Inman, M., Thorhallsson, E.R., Azrague, K.: A mechanical and environmental assessment and comparison of basalt fibre reinforced polymer (BFRP) rebar and steel rebar in concrete beams. Energy Proc. 111, 31–40 (2017). https://doi.org/10.1016/j.egypro.2017.03.005

    Article  Google Scholar 

  198. 198.

    Antonopoulou, S., McNally, C., Byrne, G.: Development of braided basalt FRP rebar for reinforcement of concrete structures. In: 8th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2016). Hong Kong (2016)

  199. 199.

    Ding, Z., Lu, Z.X., Li, Y.: Feasibility of basalt fiber reinforced inorganic adhesive for concrete strengtening. Adv. Mater. Res. 287–290, 1197–1200 (2011). https://doi.org/10.4028/www.scientific.net/AMR.287-290.1197

    Article  Google Scholar 

  200. 200.

    Urbanski, M., Lapko, A., Garbacz, A.: Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures. Proc. Eng. 57, 1183–1191 (2013). https://doi.org/10.1016/j.proeng.2013.04.149

    Article  Google Scholar 

  201. 201.

    Lapko, A., Urbański, M.: Experimental and theoretical analysis of deflections of concrete beams reinforced with basalt rebar. Archives of Civil and Mechanical Engineering 15(1), 223–230 (2015). https://doi.org/10.1016/j.acme.2014.03.008

    Article  Google Scholar 

  202. 202.

    Duic, J., Kenno, S., Das, S.: Performance of concrete beams reinforced with basalt fibre composite rebar. Constr. Build. Mater. 176, 470–481 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.208

    Article  Google Scholar 

  203. 203.

    Elavenil, S., Saravanan, S., Reddy, R.: Investigation of structural members with basalt rebar reinforcement as effective alternative of standard steel rebar. J. Ind. Pollut. Control 33(S3), 1422–1429 (2017)

    Google Scholar 

  204. 204.

    Tomlinson, D., Fam, A.: Performance of concrete beams reinforced with basalt FRP for flexure and shear. J. Compos. Constr. 19(2), 04014036 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000491

    Article  Google Scholar 

  205. 205.

    Bang, J.W., Prabhu, G.G., Jang, Y.I., Kim, Y.Y.: Development of ecoefficient engineered cementitious composites using supplementary cementitious materials as a binder and bottom ash aggregate as fine aggregate. Int. J. Polym. Sci. 681051 (2015). https://doi.org/10.1155/2015/681051

  206. 206.

    Cai, J., Pan, J., Zhou, X.: Flexural behavior of basalt FRP reinforced ECC and concrete beams. Constr. Build. Mater. 142, 423–430 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.087

    Article  Google Scholar 

  207. 207.

    Fan, X., Zhang, M.: Behaviour of inorganic polymer concrete columns reinforced with basalt FRP bars under eccentric compression: An experimental study. Compos. B 104, 44–56 (2016). https://doi.org/10.1016/j.compositesb.2016.08.020

    Article  Google Scholar 

  208. 208.

    Serbescu, A., Guadagnini, M., Pilakoutas, K.: Mechanical characterization of basalt FRP rebars and long-term strength predictive model. J. Compos. Constr. 19(2), 04014037 (2015). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000497

    Article  Google Scholar 

  209. 209.

    John, V.M., Quattrone, M., Abrão, P.C.R.A., Cardoso, F.A.: Rethinking cement standards: Opportunities for a better future. Cem. Concr. Res. 124, 105832 (2019). https://doi.org/10.1016/j.cemconres.2019.105832

    Article  Google Scholar 

  210. 210.

    van Deventer, J.S.J., Provis, J.L., Duxson, P.: Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29, 89–104 (2012). https://doi.org/10.1016/j.mineng.2011.09.009

    Article  Google Scholar 

  211. 211.

    Van Deventer, J.S.J., Brice, D.G., Bernal, S.A., Provis, J.L.: Development, standardization and applications of alkali-activated concretes. In: Struble, L., Hicks, J.K. (eds.) ASTM Symposium on Geopolymer Binder Systems, Special Technical Paper 1566. California, United States (2013)

  212. 212.

    Provis, J.L., van Deventer, J.S.J. (eds.): Alkali-activated Materials. Springer/RILEM, Dordrecht, Netherlands (2014)

    Google Scholar 

  213. 213.

    Van Deventer, J.S.J., Provis, J.L.: Low carbon emission geopolymer concrete: From research into practice. In: 27th Biennial National Conference of the Concrete Institute of Australia in conjunction with the 69th RILEM Week. Melbourne, Australia (2015)

  214. 214.

    San Nicolas, R.V.R., Walkley, B., van Deventer, J.S.J.: Fly ash-based geopolymer chemistry and behavior. In: Robl, T., Oberlink, A., Jones, R. (eds.) Coal Combustion Products (CCP’s): Characteristics, Utilization, Beneficiation and Risk Assessment. Chapter 7. pp. 185–214. Woodhead Publishing, (2017)

  215. 215.

    Alexander, M., Thomas, M.: Service life prediction and performance testing—current developments and practical applications. Cem. Concr. Res. 78, 155–164 (2015). https://doi.org/10.1016/j.cemconres.2015.05.013

    Article  Google Scholar 

  216. 216.

    Beushausen, H., Torrent, R., Alexander, M.G.: Performance-based approaches for concrete durability: State of the art and future research needs. Cem. Concr. Res. 119, 11–20 (2019). https://doi.org/10.1016/j.cemconres.2019.01.003

    Article  Google Scholar 

  217. 217.

    Hooton, D.R.: Future directions for design, specification, testing, and construction of durable concrete structures. Cem. Concr. Res. 124, 105827 (2019). https://doi.org/10.1016/j.cemconres.2019.105827

    Article  Google Scholar 

Download references


RJM acknowledges funding provided by the Engineering and Physical Sciences Research Council of the U.K. (EP/S006079/1). The research leading to this publication benefitted from EPSRC funding under Grant No. EP/R010161/1 and from support from the UKCRIC Coordination Node, EPSRC grant number EP/R017727/1, which funds UKCRIC’s ongoing coordination. CEW acknowledges financial support from Grant Nos. 1362039 and 1553607 and the MRSEC Center (Grant No. DMR-1420541) from the National Science Foundation, USA. Access to the Princeton Institute for Computational Science and Engineering (PICSciE) and the Office of Information Technology’s High Performance Computing Center and Visualization Laboratory at Princeton University is acknowledged. Unpublished pore structure and permeability data were obtained and analysed by Kengran Yang, Anna Blyth and Bridget Zakrzewski (Princeton University).

Author information



Corresponding author

Correspondence to Jannie S. J. van Deventer.

Ethics declarations

Conflict of interest

Jannie S.J. van Deventer declares a conflict of interest through the commercial application of electrically-enhanced supersonic shockwave reactors for the processing of minerals, secondary sources and cementitious materials. RJM and CEW declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Deventer, J.S.J., White, C.E. & Myers, R.J. A Roadmap for Production of Cement and Concrete with Low-CO2 Emissions. Waste Biomass Valor (2020). https://doi.org/10.1007/s12649-020-01180-5

Download citation


  • Alkali-activated material
  • Cementitious materials
  • Commercialisation
  • Durability
  • Standards
  • Thermodynamic modelling