Skip to main content
Log in

Influence of Cinnamon Essential Oil and Monensin on Ruminal Biogas Kinetics of Waste Pomegranate Seeds as a Biofriendly Agriculture Environment

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The objective of present experiment was to compare the effect of cinnamon essential oil with monensin on the environmental biogas production kinetics of pomegranate seeds. Experimental treatments were: pomegranate seeds (control), pomegranate seeds with 12 mg monensin/kg dry matter, pomegranate seeds with 24 mg monensin/kg dry matter, pomegranate seeds with 150 mg cinnamon essential oil/kg dry matter and pomegranate seeds with 250 mg cinnamon essential oil/kg dry matter. The biogas produced by treatments incubation was recorded at 4, 6, 8, 12, 16, 24, 36, 48, 72, 96 and 120 h after incubation. The results showed that biogas production decreased numerically at 120 h after incubation in the treatment containing monensin (at 24 mg/kg dry matter) and cinnamon essential oil (at 150 and 250 mg/kg dry matter) compared to the control treatment. The addition of monensin and cinnamon essential oil had a significant effect (P < 0.05) on increasing partitioning factor and fermentation efficiency compared to control treatment. Concentration of ammonia nitrogen at 120 h of incubation was reduced (P < 0.05) by adding different levels of cinnamon essential oil and monensin at the level of 24 mg, and total volatile fatty acids were significantly reduced in treatments containing cinnamon essential oil. Concentrations of ammonia nitrogen and total volatile fatty acids showed an incremental effect (P < 0.05) with the addition of 12 mg of monensin. In conclusion, cinnamon essential oil and monensin can be used in an environmentally conducive and acceptable way to diminish biogas emissions from ruminants; therewith ameliorate environmental conditions. However, the cinnamon essential oil can be easily used in livestock diets to improve fermentation and reduce biogas production.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADF:

Acid detergent insoluble fiber

BGP:

Biogas production

CEO:

Cinnamon essential oil

CP:

Crude protein

DM:

Dry matter

EE:

Ether extract

GP:

Biogas production

IVGP:

Amount of produced biogas at 24 h

ME:

Metabolizable energy

MM:

Microbial mass

NDF:

Neutral detergent fiber

NEL :

Net energy of lactation

OM:

Organic matter

OMD:

Organic matter digestibility

OMDe:

Undegraded organic matter

PF:

Partitioning factor

PS:

Pomegranate seeds

SCFA:

Short chain fatty acids

VFA:

Volatile fatty acids

References

  1. Du, C., Abdullah, J.J., Greetham, D., Fu, D., Yu, M., Ren, L., Li, S., Lu, D.: Valorization of food waste into biofertilizer and its field application. J. Clean. Prod. 187, 273–284 (2018). https://doi.org/10.1016/j.jclepro.2018.03.211

    Article  Google Scholar 

  2. Palangi, V., Taghizadeh, A., Sadeghzadeh, M.K.: Determine of nutritive value of dried citrus pulp various using in situ and gas production techniques. J. Biodivers. Environ. Sci. 3(6), 8–16 (2013)

    Google Scholar 

  3. Fausto-Castro, L., Rivas-García, P., Gomez-Nafte, J.A., Rico-Martínez, R., Rico-Ramírez, V., Gomez-Gonzalez, R., Cuaron-Ibargüengoytia, J.A., Botello-Alvarez, J.E.: Selection of food waste with low moisture and high protein content from Mexican restaurants as a supplement to swine feed. J. Clean. Prod. 256, 120137 (2020). https://doi.org/10.1016/j.jclepro.2020.120137

    Article  Google Scholar 

  4. Palangi, V., Khoshvaghti, H., Sharafi, Y., Eivazi, P.: Determination of nutritive value of Sallow and Service leaves using nylon bags and gas production techniques. Indian J. Anim. Res. 40, 361–365 (2012)

    Google Scholar 

  5. Salami, S.A., Luciano, G., O'Grady, M.N., Biondi, L., Newbold, C.J., Kerry, J.P., Priolo, A.: Sustainability of feeding plant by-products: A Review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 251, 37–55 (2019). https://doi.org/10.1016/j.anifeedsci.2019.02.006

    Article  Google Scholar 

  6. Palangi, V.: Effects of processing legume forages with organic acids on in vitro gas production, rumen fermantation and methan production. Ataturk Uni. Department of Animal Science. Doctoral thesis, Erzurum, Turkey (2019)

  7. Stevanovic, Z.D., Bošnjak-Neumüller, J., Pajic-Lijakovic, I., Raj, J., Vasiljevic, M.: Essential oils as feed additives—future perspectives. Molecules 23, 1717 (2018). https://doi.org/10.3390/molecules23071717

    Article  Google Scholar 

  8. Simitzis, P.E.: Enrichment of animal diets with essential oils—a great perspective on improving animal performance and quality characteristics of the derived products. Medicines (2017). https://doi.org/10.3390/medicines4020035

    Article  Google Scholar 

  9. Kinley, R.D., Martinez-Fernandez, G., Matthews, M.K., Nys, R., Magnusson, M., Tomkins, N.W.: Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 259, 120836 (2020). https://doi.org/10.1016/j.jclepro.2020.120836

    Article  Google Scholar 

  10. Teixeira, D.A.A., Cappellozza, B.I., Fernandes, J.R., Nascimento, K.S., Bonfim, L.E.L.M., Lopes, C.N., Ehrhardt, J.A.C., Peres, J.R., Harris, S.A., Simas, J.M.C., Richardson, L.F.: Effects of monensin source on in vitro rumen fermentation characteristics and performance of Bos indicus beef bulls offered a high-concentrate diet. Trans. Anim. Sci. 4(1), 84–94 (2020). https://doi.org/10.1093/tas/txz158

    Article  Google Scholar 

  11. Zhou, R., Wu, J., Lang, X., Liu, L., Casper, D.P., Wang, C., Zhang, L., Wei, S.: Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J. Dairy Sci. 103(3), 2303–2314 (2020). https://doi.org/10.3168/jds.2019-16611

    Article  Google Scholar 

  12. Silva, R.B., Pereira, M.N., Araujo, R.C., Silva, W.R., Pereira, R.A.N.: A blend of essential oils improved feed efficiency and affected ruminal and systemic variables of dairy cows. Trans. Anim. Sci. 4(1), 182–193 (2020). https://doi.org/10.1093/tas/txz183

    Article  Google Scholar 

  13. Hundal, J.S., Wadhwa, M., Bakshi, M.P.S.: Effect of herbal feed additives containing saponins on rumen fermentation pattern. Indian J. Anim. Sci. 90(2), 237–243 (2020)

    Google Scholar 

  14. Montes, T., Cabrera, I., Morales, P.: Effects of saponins on rumen fermentation in vivo and performance of animals. Arch. Latinoam. Nutr. 70(3), 493–505 (2020)

    Google Scholar 

  15. Niderkorn, V., Barbier, E., Macheboeuf, D., Torrent, A., Mueller-Harvey, I., Hoste, H.: In vitro rumen fermentation of diets with different types of condensed tannins derived from sainfoin (Onobrychis viciifolia Scop.) pellets and hazelnut (Corylus avellana L.) pericarps. Anim. Feed Sci. Technol. 259, 114357 (2020). https://doi.org/10.1016/j.anifeedsci.2019.114357

    Article  Google Scholar 

  16. Ventura, M.R., Bastianelli, D., Deniz, S., Saavedra, P., Rey, L., Bonnal, L., González-García, E.: Phenolic and tannin compounds in subtropical shrubs (Bituminaria bituminosa, Chamaecytisus proliferus, and Adenocarpus foliosus) and the effects on in vitro digestibility. Tropic. Anim. Health Prod. 51, 1757–1761 (2019). https://doi.org/10.1016/10.1007/s11250-019-01839-9

    Article  Google Scholar 

  17. Mueller-Harvey, I., Bee, G., Dohme-Meier, F., Hoste, H., Karonen, M., Kölliker, R., Lüscher, A., Niderkorn, V., Pellikaan, W.F., Salminen, J.P., Skøt, L., Smith, L.M.J., Thamsborg, S.M., Totterdell, P., Wilkinson, I., Williams, A.R., Azuhnwi, B.N., Baert, N., Brinkhaus, A.G., Copani, G., Desrues, O., Drake, C., Engström, M., Fryganas, C., Girard, M., Huyen, N.T., Kempf, K., Malisch, C., Mora-Ortiz, M., Quijada, J., Ramsay, A., Ropiak, H.M., Waghorn, G.C.: Benefits of condensed tannins in forage legumes fed to ruminants: importance of structure, concentration, and diet composition. Crop Sci. 59, 861–885 (2018). https://doi.org/10.2135/cropsci2017.06.0369

    Article  Google Scholar 

  18. Newbold, C.J., Ramos-Morales, E.: Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host. Animal. 14(S1), s78–s86 (2020). https://doi.org/10.1017/S1751731119003252

    Article  Google Scholar 

  19. Ebrahimi, B., Taghizadeh, A., Mehmannavaz, Y., Palangi, V.: Evaluation of pomegranate pomace using in situ and gas production techniques. J. Environ. Sci. Eng. 9(1), 951 (2012)

    Google Scholar 

  20. Prakash, C.V.S., Prakash, I.: Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel—a review. Int. J. Res. Chem. Environ. 1, 1–18 (2011)

    MathSciNet  Google Scholar 

  21. Zarei, M., Kafilzadeh, F., Shawrang, P.: In vitro gas production and dry matter digestibility of irradiated pomegranate (Punica granatum) seeds. Iranian J. Appl. Anim. Sci. 6(1), 25–34 (2016)

    Google Scholar 

  22. Elghandour, M.M.Y., Kholif, A.E., Salem, A.Z.M., Oca, R.M., Barbabosa, A., Mariezcurrena, M., Olafadehan, O.A.: Addressing sustainable ruminal methane and carbon dioxide emissions of soybean hulls by organic acid salts. J. Clean. Prod. 135, 194–200 (2016). https://doi.org/10.1016/j.jclepro.2016.06.081

    Article  Google Scholar 

  23. Elghandour, M.M.Y., Kholif, A.E., Hernández, J., Mariezcurrena, M.D., López, S., Camacho, L.M., Márquez, O., Salem, A.Z.M.: Influence of the addition of exogenous xylanase with or without preincubation on the in vitro ruminal fermentation of three fibrous feeds. Czech J. Anim. Sci. 61(6), 262–272 (2016)

    Article  Google Scholar 

  24. Vallejo-Hernández, L.H., Elghandour, M.M.Y., Greiner, R., Uchenna, Y.A., Rivas-Cáceres, R.R., Barros-Rodríguez, M., Salem, A.Z.M.: Environmental impact of yeast and exogenous xylanase on mitigating carbon dioxide and enteric methane production in ruminants. J. Clean. Prod. 189, 40–46 (2018). https://doi.org/10.1016/j.jclepro.2018.03.310

    Article  Google Scholar 

  25. Santos, M.C.B., Araújo, A.P.C., Venturelli, B.C., Freitas, J.E., Barletta, R.V., Gandra, J.R., Paiva, P.G., Acedo, T.S., Rennó, F.P.: Effects of increasing monensin doses on performance of mid-lactating Holstein cows. J. Appl. Anim. Res. 47(1), 297–302 (2019). https://doi.org/10.1080/09712119.2019.1629298

    Article  Google Scholar 

  26. Fraser, G.R., Chaves, A.V., Wang, Y., McAllister, T.A., Beauchemin, K.A., Benchaar, C.: Assessment of the effects of cinnamon leaf oil on rumen microbial fermentation using two continuous culture systems. J. Dairy Sci. 90(5), 2315–2328 (2007). https://doi.org/10.3168/jds.2006-688

    Article  Google Scholar 

  27. Salem, A.Z., Kholif, A.E., Elghandour, M.M., Hernandez, S.R., Domínguez-Vara, I.A., Mellado, M.: Effect of increasing levels of seven tree species extracts added to a high concentrate diet on in vitro rumen gas output. Anim. Sci. J. 85, 853–860 (2014). https://doi.org/10.1111/asj.12218

    Article  Google Scholar 

  28. Okara, E.P., Izah, A.M.: Dose-response effects of anise essential oil on rumen fermentation and metabolism of n-3 polyunsaturated fatty acids in vitro. Asian J. Anim. Vet. Adv. 15, 25–31 (2020). https://doi.org/10.3923/ajava.2020.25.31

    Article  Google Scholar 

  29. Kholif, A.E., Gouda, G.A., Morsy, T.A., Salem, A.Z.M., Lopez, S., Kholif, A.M.: Moringa oleifera leaf meal as a protein source in lactating goat's diets: feed intake, digestibility, ruminal fermentation, milk yield and composition, and its fatty acids profile. Small Rum. Res. 129, 129–137 (2015). https://doi.org/10.1016/j.smallrumres.2015.05.007

    Article  Google Scholar 

  30. Elghandour, M.M.Y., Vázquez, J.C., Salem, A.Z.M., Kholif, A.E., Cipriano, M.M., Camacho, L.M., Márquez, O.: In vitro gas and methane production of two mixed rations influenced by three different cultures of Saccharomyces cerevisiae. J. Appl. Anim. Res. 45, 389–395 (2017). https://doi.org/10.1080/09712119.2016.1204304

    Article  Google Scholar 

  31. Kholif, A.E., Elghandour, M.M.Y., Rodríguez, G.B., Olafadehan, O.A., Salem, A.Z.M.: Anaerobic ensiling of raw agricultural waste with a fibrolytic enzyme cocktail as a cleaner and sustainable biological product. J. Clean. Prod. 142, 2649–2655 (2017). https://doi.org/10.1016/j.jclepro.2016.11.012

    Article  Google Scholar 

  32. Hernandez, A., Kholif, A.E., Lugo-Coyote, R., Elghandour, M.M.Y., Cipriano, M., Rodríguez, G.B., Odongo, N.E., Salem, A.Z.M.: The effect of garlic oil, xylanase enzyme and yeast on biomethane and carbon dioxide production from 60-d old Holstein dairy calves fed a high concentrate diet. J. Clean. Prod. 142, 2384–2392 (2017). https://doi.org/10.1016/j.jclepro.2016.11.036

    Article  Google Scholar 

  33. Pedraza-Hernández, J., Elghandour, M.M.Y., Khusro, A., Camacho-Diaz, L.M., Vallejo, L.H., Barbabosa-Pliego, A., Salem, A.Z.M.: Mitigation of ruminal biogases production from goats using Moringa oleifera extract and live yeast culture for a cleaner agriculture environment. J. Clean. Prod. 234, 779–786 (2019). https://doi.org/10.1016/j.jclepro.2019.06.126

    Article  Google Scholar 

  34. Embaby, M.G., Günal, M., AbuGhazaleh, A.: Effect of rumen culture adaptation to Origanum vulgare L. essential oil on rumen methane and fermentation. Am. J. Anim. Vet. Sci. 14(3), 190–196 (2019)

    Article  Google Scholar 

  35. AOAC: Official methods of analysis of AOAC international, 18th edn. AOAC, Arlington (2005)

    Google Scholar 

  36. Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in ration to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991). https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  37. Jahani-Azizabadi, H., Mesgaran, M., Vakili, A., Rezayazdi, K., Hashemi, M.: Effect of various medicinal plant essential oils obtained from semi-arid climate on rumen fermentation characteristics of a high forage diet using in vitro batch culture. J. Afr. Microbiol. Res. 5(27), 4812–4819 (2011). https://doi.org/10.5897/AJMR11.575

    Article  Google Scholar 

  38. Fedorah, P.M., Hrudey, S.E.: A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ. Sci. Technol. Lett. 4(10), 425–432 (1983). https://doi.org/10.1080/09593338309384228

    Article  Google Scholar 

  39. McDougall, E.I.: Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 43(1), 99–109 (1948)

    Article  Google Scholar 

  40. Ørskov, E.R., McDonald, I.: The estimation of protein degrability in the rumen from incubation measurements weighted according to rate of passge. J. Agric. Sci. 92(2), 499–503 (1979). https://doi.org/10.1017/S0021859600063048

    Article  Google Scholar 

  41. Palangi, V., Macit, M.: In situ crude protein and dry matter ruminal degradability of heat-treated barley. Revue Méd. Vét. 170, 123–128 (2019)

    Google Scholar 

  42. Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D., Schneider, W.: The estimation of the digestibility and metabolisable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Food Sci. 93(1), 217–222 (1979). https://doi.org/10.1017/S0021859600086305

    Article  Google Scholar 

  43. Makkar, H.: In vitro screening of feed resources for efficiency of microbial protein synthesis in vitro screening of plant resources for extra-nutritional attributes in ruminants. Nucl. Relat. Methodol. 107, 144 (2010). https://doi.org/10.1007/978-90-481-3297-3_7

    Article  Google Scholar 

  44. Vercoe, P.E., Makkar, H.P.S., Schlink, A.C.: In Vitro Screening of Plant Resources for Extra-nutritional Attributes in Ruminants: Nuclear and Related Methodologies. Springer, Berlin (2010)

    Book  Google Scholar 

  45. Markham, R.: A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem. J. 36(10–12), 790–791 (1942). https://doi.org/10.1042/bj0360790

    Article  Google Scholar 

  46. SAS: Institute Inc.: SAS/CONNECT® 9.4 user’s guide, 4th edn. SAS Institute Inc., Cary (2018)

    Google Scholar 

  47. Khoddami, A., Man, Y., Roberts, T.: Physico-chemical properties and fatty acid profile of seed oils from pomegranate (Punica granatum L.) extracted by cold pressing. Eur. J. Lipid Sci. Technol. 116(5), 553–562 (2014). https://doi.org/10.1002/ejlt.201300416

    Article  Google Scholar 

  48. Ghiasi, S., Valizadeh, R., Naserian, A.: Effect of feeding oxidized soybean oil against antioxidant role of pomegranate seed on physiology and metabolism of Periparturient Saanen Goats. Iranian J. Anim. Sci. Res. 8(1), 1–17 (2016)

    Google Scholar 

  49. Jahani-Azizabadi, H., Danesh Mesgaran, M., Vakili, A., Rezayazdi, K.: Effect of some plant essential oils on in vitro ruminal methane production and on fermentation characteristics of a mid-forage diet. J. Agric. Sci. Tech. 16(20), 1543–1554 (2014)

    Google Scholar 

  50. Maleki, E., Meng, G., Jahromi, M., Jorfi, R., Khoddami, A., Ebrahimi, M.: Pomegranate seed oil rich in conjugated linolenic acids reduces in vitro methane production. S. Afr. J. Anim. Sci. 46(3), 325–335 (2016)

    Article  Google Scholar 

  51. Bakhshizadeh, S., Taghizadeh, A., Jan-Mohammadi, H., Alijani, S.: Determination of chemical composition and degradability properties of grape pulp and pomegranate seeds using nylon bag and gas production methods. J. Anim. Sci. Res. 23(3), 1–11 (2013)

    Google Scholar 

  52. Besharti, M., Taghizadeh, A., Moghadam, G.A., Jan-Mohammadi, H.: The effect of adding monosaccharide and vitamin E on the corrosive degradability properties of whole grain cotton using nylon bag method. J. Anim. Sci. Res. 23(2), 143–153 (2013)

    Google Scholar 

  53. Callaway, T., Martin, S.: Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J. Anim. Sci. 74(8), 1982–1989 (1996). https://doi.org/10.2527/1996.7481982x

    Article  Google Scholar 

  54. Agarwal, N., Shekhar, C., Kumar, R., Chaudhary, L., Kamra, D.: Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. J. Anim. Feed Sci. Technol. 148(2–4), 321–327 (2009)

    Article  Google Scholar 

  55. Taghavi-Nezhad, M., Alipour, D., Goudarzi, M., Zamani, P., Khodakaramian, G.: Dose response to carvone rich essential oils of spearmint (Mentha spicata L.): in vitro ruminal fermentation kinetics and digestibility. J. Agric. Sci. Technol. 13, 1013–1020 (2011)

    Google Scholar 

  56. Adegbeye, M.J., Elghandour, M.M., Faniyi, T.O., Perez, N.R., Barbabosa-Pilego, A., Zaragoza-Bastida, A., Salem, A.Z.: Antimicrobial and antihelminthic impacts of black cumin, pawpaw and mustard seeds in livestock production and health. Agrofor. Syst. (2018). https://doi.org/10.1007/s10457-018-0337-0

    Article  Google Scholar 

  57. Adegbeye, M.J., Elghandour, M.M.Y., Monroy, J.C., Abegunde, T.O., Salem, A.Z.M., Barbabosa-Pliego, A., Faniyi, T.O.: Potential influence of Yucca extract as feed additive on greenhouse gases emission for a cleaner livestock and aquaculture farming—a review. J. Clean. Prod. 239, 118074 (2019). https://doi.org/10.1016/j.jclepro.2019.118074

    Article  Google Scholar 

  58. Chizzola, R., Hochsteiner, W., Hajek, S.: GC analysis of essential oils in the rumen fluid after incubation of Thuja orientalis twigs in the Rusitec system. Res. Vet. Sci. 76, 77–82 (2004). https://doi.org/10.1016/j.rvsc.2003.07.001

    Article  Google Scholar 

  59. Klop, G., Schuppen, S.V.L., Pellikaan, W.F., Hendriks, W.H., Bannink, A.: Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo. Anim. Feed Sci. Technol. 11, 591–599 (2017). https://doi.org/10.1017/S1751731116002019

    Article  Google Scholar 

  60. Mbiriri, D.T., Cho, S., Mamvura, C.I., Choi, N.J.: Assessment of rumen microbial adaptation to garlic oil, carvacrol and thymol using the consecutive batch culture system. J. Vet. Sci. Anim. Hus. 3, 401–401 (2015)

    Google Scholar 

  61. Günal, M., Pinski, B., AbuGhazaleh, A.A.: Evaluating the effects of essential oils on methane production and fermentation under in vitro conditions. Italian J. Anim. Sci. 16(3), 500–506 (2017). https://doi.org/10.1080/1828051X.2017.1291283

    Article  Google Scholar 

  62. Narvaez, N., Wang, Y., McAllister, T.: Effects of extracts of Humulus lupulus (hops) and Yucca schidigera applied alone or in combination with monensin on rumen fermentation and microbial populations in vitro. J. Sci. Food Agric. 93(10), 2517–2522 (2013). https://doi.org/10.1002/jsfa.6068

    Article  Google Scholar 

  63. Shen, J., Liu, Z., Yu, Z., Zhu, W.: Monensin and nisin affect rumen fermentation and microbiota differently in vitro. Front. Microbiol. 8, 1111 (2017). https://doi.org/10.3389/fmicb.2017.01111

    Article  Google Scholar 

  64. Shingfield, K., Ahvenjärvi, S., Toivonen, V., Vanhatalo, A., Huhtanen, P., Griinari, J.: Effect of incremental levels of sunflower-seed oil in the diet on ruminal lipid metabolism in lactating cows. Br. J. Nut. 99(5), 971–983 (2008). https://doi.org/10.1017/S0007114507853323

    Article  Google Scholar 

  65. Vazquez-Anon, M., Andrews, J., Websterz, T., Jenkins, T.: Effects of feeding oxidized fat supplemented with antioxidant AGRADO on rumen nutrient digestibility and protein synthesis. J. Anim. Sci. 84, 406–406 (2006)

    Google Scholar 

  66. Brioukhanov, A., Netrusov, A.: Catalase and superoxide dismutase: distribution, properties, and physiological role in cells of strict anaerobes. J. Biochem. 69(9), 949–962 (2004). https://doi.org/10.1023/B:BIRY.0000043537.04115.d9

    Article  Google Scholar 

  67. Scandalios, J.: Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38(7), 995–1014 (2005). https://doi.org/10.1590/S0100-879X2005000700003

    Article  Google Scholar 

  68. Vázquez-Añón, M., Jenkins, T.: Effects of feeding oxidized fat with or without dietary antioxidants on nutrient digestibility, microbial nitrogen, and fatty acid metabolism. J. Dairy Sci. 90(9), 4361–4367 (2007). https://doi.org/10.3168/jds.2006-858

    Article  Google Scholar 

  69. Busquet, M., Calsamiglia, S., Ferret, A., Kamel, C.: Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 89(2), 761–771 (2006). https://doi.org/10.3168/jds.S0022-0302(06)72137-3

    Article  Google Scholar 

  70. Cardozo, P., Calsamiglia, S., Ferret, A., Kamel, C.: Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci. 83(11), 2572–2579 (2005). https://doi.org/10.2527/2005.83112572x

    Article  Google Scholar 

  71. Vakili, A., Khorrami, B., Mesgaran, M., Parand, E.: The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian Australas. J. Anim. Sci. 26(7), 935 (2013). https://doi.org/10.5713/ajas.2012.12636

    Article  Google Scholar 

  72. Busquet, M., Calsamiglia, S., Ferret, A., Cardozo, P., Kamel, C.: Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 88(7), 2508–2516 (2005). https://doi.org/10.3168/jds.S0022-0302(05)72928-3

    Article  Google Scholar 

  73. Benchaar, C., Petit, H., Berthiaume, R., Ouellet, D., Chiquette, J., Chouinard, P.: Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production and milk composition in dairy cows fed alfalfa silage or corn silage. J. Dairy Sci. 90(2), 886–897 (2007). https://doi.org/10.3168/jds.S0022-0302(07)71572-2

    Article  Google Scholar 

  74. Yang, W., Benchaar, C., Ametaj, B., Beauchemin, K.: Dose response to eugenol supplementation in growing beef cattle: ruminal fermentation and intestinal digestion. J. Anim. Feed Sci. Technol. 158(1–2), 57–64 (2010). https://doi.org/10.1016/j.anifeedsci.2010.03.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelfattah Z. M. Salem.

Ethics declarations

Conflict of interest

The authors declare that there to be no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besharati, M., Palangi, V., Moaddab, M. et al. Influence of Cinnamon Essential Oil and Monensin on Ruminal Biogas Kinetics of Waste Pomegranate Seeds as a Biofriendly Agriculture Environment. Waste Biomass Valor 12, 2333–2342 (2021). https://doi.org/10.1007/s12649-020-01167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01167-2

Keyword

Navigation