Skip to main content

Advertisement

Log in

Lipid Fraction from Industrial Crustacean Waste and Its Potential as a Supplement for the Feed Industry: A Case Study in Argentine Patagonia

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In central Patagonia, the most important crustaceans caught are the Argentine red shrimp (ARS) (Pleoticus muelleri) and the southern king crab (SKC) (Lithodes santolla). Their industrial processing generates large amounts of waste, which cause environmental pollution and ecological imbalances. The recovery of valuable compounds from this waste could bring economic benefits to the region. Comparative dry-basis proximal analysis of shells of ARS and SKC showed similar values of chitin (19 and 20%, respectively), slight but significant differences in proteins and ashes (18 and 48% for SKC and 26 and 55% for ARS), and 8 times higher content of lipids in ARS (4%) than in SKC (0.5%) shells. Nowadays, the waste generated by the processing of ARS (18000 t/year) is almost 180 times higher than that of SKC (100 t/year) and comprises not only shells but also heads (S + H). Nevertheless, taking into account that the amount of waste of SKC could increase in the future, the information about its chemical composition becomes relevant and is thus also reported in this work. The analysis of S + H of ARS showed the highest lipid content (11%), and the wet basis analysis of its fatty acids and carotenoids at different catch times showed a constant high level of the omega-3 polyunsaturated fatty acids (n-3 PUFAs) eicosapentaenoic and docosahexaenoic (5.0 g kg−1) and statistically significant variation in the carotenoid content, which can reach up to 158.8 mg kg−1. The results suggest potentials for recovering valuable n-3-PUFAs and carotenoids from ARS waste.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. De la Garza, J., Moriondo Danovaro, P., Fernández, M., Ravalli, C., Souto, V., Waessle, J.: An overview of the Argentine Red Shrimp (Pleoticus Muelleri, Decapoda, Solenoceridae) fishery in Argentina: biology, fishing, management and ecological interactions. Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar del Plata (2017)

    Google Scholar 

  2. Sistemas de la Subsecretaría de Pesca y Acuicultura (SSPyA): Archivos de desembarques de capturas marítimas totales. Ministerio de Agricultura, Ganadería y Pesca, Presidencia de la Nación: https://www.magyp.gob.ar/sitio/areas/pesca_maritima/desembarques/lectura.php?imp=1&tabla=especie_mes_2018. Accessed 20 June 2020

  3. Lladser, N.L., Becerra Vargas, A.A., Rost, E., Cretton, M., Mazzuca Sobczuk, T., Mazzuca, M.: Propuesta de des-primarización en el procesamiento del langostino del Golfo San Jorge. Memorias del COINI. Universidad Tecnológica Nacional, Ciudad Autónoma de Buenos Aires (2015)

    Google Scholar 

  4. Varisco, M., Colombo, J., Vinuesa, J.: Deadliest catch, Terra Australis Edition. Fisheries (2018). https://doi.org/10.1002/fsh.10016

    Article  Google Scholar 

  5. Varisco, M., Colombo, J., DiSalvatore, P., Balzi, P., Bovcon, N., Lovrich, G., Vinuesa, J.: Fisheries-related variations in the fecundity of the southern king crab in Patagonia. Fish. Res. (2019). https://doi.org/10.1016/j.fishres.2019.05.001

    Article  Google Scholar 

  6. Gil, M.N., Giarratano, E., Barros, V., Bortolus, A., Codignotto, J.O., Schenke, R.D., Góngora, M.E., Lovrich, G., Monti, A.J., Pascual, M., Rivas, A.L., Tagliorette, A.: Southern Argentina: the Patagonian Continental Shelf. In: Sheppard, C. (ed.) World seas: an environmental evaluation| volume I: Europe, the Americas and West Africa, pp. 783–811. Elsevier, London (2019)

    Google Scholar 

  7. Sachindra, N.M., Bhaskar, N., Mahendrakar, N.: Carotenoids in different body components of Indian shrimps. J. Sci. Food Agr. (2005). https://doi.org/10.1002/jsfa.1977

    Article  Google Scholar 

  8. Yan, N., Chen, X.: Sustainability: don't waste seafood waste. Nature News (2015). https://doi.org/10.1038/524155a

    Article  Google Scholar 

  9. Dima, J.B., Sequeiros, C., Zaritzky, N.: Chitosan from marine crustaceans: production, characterization and applications. In: Shalaby, E.A. (ed.) Biological Activities and Application of Marine Polysaccharides. InTech, Rijeka (2017)

    Google Scholar 

  10. Rodriguez, Y.E., Pereira, N.A., Haran, N.S., Mallo, J.C., Fernández-Giménez, A.V.: A new approach to fishery waste revalorization to enhance Nile tilapia (Oreochromis niloticus) digestion process. Aquac. Nutr. (2017). https://doi.org/10.1111/anu.12510

    Article  Google Scholar 

  11. Rahman, M., Koh, K.: Nutritional quality and in vitro digestibility of shrimp meal made of heads and shells of black tiger (Penaeus monodon), white leg (Litopenaeus vannamei) and argentine red (Pleoticus muelleri) Shrimps. J. Poult. Sci (2014). https://doi.org/10.2141/jpsa.0140002

    Article  Google Scholar 

  12. Tocher, D.R., Glencross, B.D.: Lipids and fatty acids. In: Lee, C.-S., Lin, C., Gatlin, D.M., Webster, C.D. (eds.) Dietary Nutrients, Additives, and Fish Health, pp. 47–94. Wiley Blackwell, New Jersey (2015)

    Chapter  Google Scholar 

  13. Guil-Guerrero, J.L., Venegas-Venegas, E., Rincón-Cervera, M.Á., Suárez, M.D.: Fatty acid profiles of livers from selected marine fish species. J. Food Compos. Anal. (2011). https://doi.org/10.1016/j.jfca.2010.07.011

    Article  Google Scholar 

  14. Jeckel, W.H., Aizpun de Moreno, J.E., Moreno, V.J.: Seasonal variations in the biochemical composition and lipids of muscle and carapace in the shrimp Pleoticus muelleri Bate. Comp. Biochem. Phys. B (1991). https://doi.org/10.1016/0305-0491(91)90176-E

    Article  Google Scholar 

  15. Jeckel, W.H., Aizpun de Moreno, J.E., Moreno, V.J.: Changes in biochemical composition and lipids of the digestive gland in females of the shrimp Pleoticus muelleri (Bate) during the molting cycle. Comp. Biochem. Phys. B (1990). https://doi.org/10.1016/0305-0491(90)90050-4

    Article  Google Scholar 

  16. Routray, W., Dave, D., Cheema, S.K., Ramakrishnan, V.V., Pohling, J.: Biorefinery approach and environment-friendly extraction for sustainable production of astaxanthin from marine wastes. Crit. Rev. Biotechnol. (2019). https://doi.org/10.1080/07388551.2019.1573798

    Article  Google Scholar 

  17. Gómez-Estaca, J., Calvo, M.M., Álvarez-Acero, I., Montero, P., Gómez-Guillén, M.C.: Characterization and storage stability of astaxanthin esters, fatty acid profile and ∝-tocopherol of lipid extract from shrimp (L. vannamei) waste with potential applications as food ingredient. Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2016.08.016

    Article  Google Scholar 

  18. Nguyen, K.D.: Astaxanthin: a comparative case of synthetic vs. natural production. Chemical and Biomolecular Engineering Publications and Other Works. https://trace.tennessee.edu/utk_chembiopubs/94 (2017). Accesed 22 June 2020.

  19. Wingaard, J., Iorio, M.I., Firpo, C.L.: pesquería de la centolla (Lithodes santolla) en la Argentina. In: Boschi, E.E. (ed.) El Mar Argentino y sus recursos pesqueros: tomo 6, los crustáceos de interés pesquero y otras especies relevantes en los ecosistemas marinos, pp. 229–250. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata (2016)

    Google Scholar 

  20. Official Methods of Analysis: Association of Official Analytical Chemists, 15th edn. AOAC, Rockville (1990)

    Google Scholar 

  21. Bligh, E.G., Dyer, W.J.: A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. (1959). https://doi.org/10.1139/y59-099

    Article  Google Scholar 

  22. Fargani, H.E., Lakhmiri, R., Albourine, A., Cherkaoui, O., Safi, M.: Valorization of shrimp co-products “Pandalus borealis”: Chitosan production and its use in adsorption of industrial dyes. JMES 7, 1334–1346 (2016)

    Google Scholar 

  23. Rødde, R.H., Einbu, A., Vårum, K.M.: A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr. Polym. (2008). https://doi.org/10.1016/j.carbpol.2007.06.006

    Article  Google Scholar 

  24. Lepage, G., Roy, C.C.: Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 27, 114–120 (1986)

    Article  Google Scholar 

  25. Schreiner, M.: Principles for the analysis of omega-3 fatty acids. In: Teale, M.C. (ed.) Omega Fatty Acid Research, p. 17. Nova, New York p (2006)

    Google Scholar 

  26. Britton, G., Liaaen-Jensen, S., Pfander. H.: Carotenoids Volume 1A: Isolation and Analysis Birkhäuser, Basel (1995)

  27. Minyuk, G.S., Solovchenko, A.E.; Express Analysis of Microalgal Secondary Carotenoids by TLC and UV-Vis Spectroscopy. In: Barreiro, C., Barredo, J.C. (eds) Microbial Carotenoids pp. 73–95. Humana Press, New York (2018).

  28. Sotelano, M.P., Lovrich, G., di Salvator, P., Florentín, O., Giamportone, A., Tapella, F.: Suspended mesh-bags enclosures for Southern King Crab Lithodes santolla (Molina) larvae and juvenile culture in the sea. Aquaculture (2018). https://doi.org/10.1016/j.aquaculture.2018.06.030

    Article  Google Scholar 

  29. Sindhu, S., Sherief, P.M.: Extraction, characterization, antioxidant and anti-inflammatory properties of carotenoids from the shell waste of Arabian red shrimp Aristeus alcocki, Ramadan 1938. Open Conf. Proc. J. (2011). https://doi.org/10.2174/2210289201102010095

    Article  Google Scholar 

  30. Sánchez-Camargo, A.P., Meireles, M.Â.A., Lopes, B.L., Cabral, F.A.: Proximate composition and extraction of carotenoids and lipids from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis). J. Food Eng. (2011). https://doi.org/10.1016/j.jfoodeng.2010.08.008

    Article  Google Scholar 

  31. Lage-Yusty, M.A.L., Martínez, M.V., Pérez, S.Á., Hernández, J.L.: Chemical composition of snow crab shells (Chionoecetes opilio). CyTA J. Food (2011). https://doi.org/10.1080/19476337.2011

    Article  Google Scholar 

  32. Royes, J.A.B., Chapman, F.: Preparing your own fish feeds. Fisheries and Aquatic Sciences, UF/IFAS Extension. https://edis.ifas.ufl.edu/pdffiles/FA/FA09700.pdf (2003) Accessed 20 June 2020.

  33. Venugopal, V., Gopakumar, K.: Shellfish: nutritive value, health benefits, and consumer safety. Compr. Rev. Food Sci. Food Saf. (2017). https://doi.org/10.1111/1541-4337.12312

    Article  Google Scholar 

  34. Ibrahim, H.M., Salama, M.F., El-Banna, H.A.: Shrimp's waste: chemical composition, nutritional value and utilization. Food Nahrung (1999). https://doi.org/10.1002/(SICI)1521-3803(19991201)43:6%3C418:AID-FOOD418%3E3.0.CO;2-6

    Article  Google Scholar 

  35. Abdou, E.S., Nagy, K.S., Elsabee, M.Z.: Extraction and characterization of chitin and chitosan from local sources. Biores. Technol. (2008). https://doi.org/10.1016/j.biortech.2007.01.051

    Article  Google Scholar 

  36. Dima, J.B., Sequeiros, C., Zaritzky, N.E.: Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes. Chemosphere (2015). https://doi.org/10.1016/j.chemosphere.2015.06.030

    Article  Google Scholar 

  37. Shahidi, F., Synowiecki, J.: Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing waste. J. Agr. Food Chem. (1991). https://doi.org/10.1021/jf00008a032

    Article  Google Scholar 

  38. Heu, M.S., Kim, J.S., Shahidi, F.: Components and nutritional quality of shrimp processing by-products. Food Chem. (2003). https://doi.org/10.1016/S0308-8146(02)00519-8

    Article  Google Scholar 

  39. Trung, T.S., Phuong, P.T.D.: Bioactive compounds from by-products of shrimp processing industry in Vietnam. J. Food Drug Anal. 20, 194–197 (2012)

    Google Scholar 

  40. Choubert, G.: Carotenoids and pigmentation. In: Guillaume, J., Kaushik, S., Bergot, P., Metailler, R. (eds.) Nutrition and Feeding of Fish and Crustaceans, pp. 183–196. Springer Science & Business Media, Chichester (2001)

    Google Scholar 

  41. Sachindra, N.M., Bhaskar, N., Mahendrakar, N.: Carotenoids in crabs from marine and fresh waters of India. LWT Food Sci. Technol. (2005). https://doi.org/10.1016/j.lwt.2004.06.003

    Article  Google Scholar 

  42. Ambati, R.R., Phang, S.M., Ravi, S., Aswathanarayana, R.G.: Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Marine Drugs (2014). https://doi.org/10.3390/md12010128

    Article  Google Scholar 

  43. Radzali, S.A., Baharin, B.S., Othman, R., Markom, M., Rahman, R.A.: Co-solvent selection for supercritical fluid extraction of astaxanthin and other carotenoids from Penaeus monodon waste. J. Oleo Sci. (2014). https://doi.org/10.5650/jos.ess13184

    Article  Google Scholar 

  44. Sachindra, N.M., Bhaskar, N., Mahendrakar, N.S.: Recovery of carotenoids from shrimp waste in organic solvents. J. Waste Manage (2006). https://doi.org/10.1016/j.wasman.2005.07.002

    Article  Google Scholar 

  45. Ogawa, M., Maia, E.L., Fernandes, A.C., Nunes, M.L., Oliveira, M.E.B.D., Freitas, S.T.: Residuos del procesamiento de camarones de cultivo: una fuente de pigmentos carotenoides. Food Sci. Technol. (2007). https://doi.org/10.1590/S0101-20612007000200022

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Agency of Science and Scientific Promotion (Grant Nos. ANPCyT PICT 1414/ 2014; ANPCYT PICT 00845), and National Council for Science and Technology (CONICET PIO 15320150100010, and CONICET PIP 0635). We thank Enrique Rost from the Faculty of Engineering of the Universidad Nacional de la Patagonia San Juan Bosco for his support with the gas chromatograph, as well as Alicia Bain and Juan Carlos Otulich from “B/P Bagual” for their valuable information related with fish fleets that operate in Central Patagonia. G.M. and M.M. are career investigators from CONICET; and M.C. is a fellow from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mazzuca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cretton, M., Malanga, G., Mazzuca Sobczuk, T. et al. Lipid Fraction from Industrial Crustacean Waste and Its Potential as a Supplement for the Feed Industry: A Case Study in Argentine Patagonia. Waste Biomass Valor 12, 2311–2319 (2021). https://doi.org/10.1007/s12649-020-01162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01162-7

Keywords

Navigation