Skip to main content
Log in

Characterization and Reuse Investigation on Scrapped V2O5–WO3/TiO2 Catalysts Operated in Various Industrial Flue Gases for NH3-SCR Reactions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The three scrapped industrial V2O5–WO3/TiO2 catalysts, which had operated in three coal-fired power plants with various flue gas conditions in China, were collected and characterized by XRF, XRD, SEM, and XPS to analyze their deactivation mechanisms, with the complexities of various industrial flue gases from coal combustion considered. Then one scrapped industrial catalyst was selected as the carrier to prepare a new catalyst by adding Mn, Ce, and Cr species, for SCR reactions in flue gas with as well as without SO2 at much wider temperature range. Results showed that the content of TiO2 did not change and the structure kept still, further illustrating that the scrapped catalysts could be utilized as the carrier in the new catalyst manufacturing process. The SO2 in flue gas indeed increased the V4+/V5+ ratio on the catalyst surface, moreover, the alkaline earth metal oxides such as BaO and CaO contributed to more sulfates depositing on the catalyst surface, increased the ratios of S6+/S4+ and Oα/Oβ. For the new Mn–Ce–Cr catalyst carried on the scrapped industrial catalyst, it showed high SCR activities at a wider temperature range of 170 to 370 °C but low resistance for SO2 poisoning, indicating that it could be further developed and utilized for SCR process of boilers burning natural gas or biomass.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen, Q.L., Guo, T., Wang, Q.S., Pan, W.G., Wang, W.H., Yang, N.Z., Lu, C.Z., Wang, S.X.: The catalytic performance of Mn/TiWOx catalyst for selective catalytic reduction of NOx with NH3. Fuel 181, 852–858 (2016). https://doi.org/10.1016/j.fuel.2016.05.045

    Article  Google Scholar 

  2. Skalska, K., Miller, J.S., Ledakowicz, S.: Trends in NOx abatement: a review. Sci. Total Environ. 408, 3976–3989 (2010). https://doi.org/10.1016/j.scitotenv.2010.06.001

    Article  Google Scholar 

  3. Choi, I.H., Kim, H.R., Moon, G., Jyothi, R.K., Lee, J.Y.: Spent V2O5–WO3/TiO2 catalyst processing for valuable metals by soda roasting-water leaching. Hydrometallurgy 175, 292–299 (2018). https://doi.org/10.1016/j.hydromet.2017.12.010

    Article  Google Scholar 

  4. Shang, X.S., Hu, G.R., He, C., Zhao, J.P., Zhang, F.W., Xu, Y., Zhang, Y.F., Li, J.R., Chen, J.S.: Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5–WO3/TiO2) used in coal-fired power plant. J. Ind. Eng. Chem. 18, 513–519 (2012). https://doi.org/10.1016/j.jiec.2011.11.070

    Article  Google Scholar 

  5. Putluru, S.S.R., Schill, L., Godiksen, A., Poreddy, R., Mossin, S., Jensen, A.D., Fehrmann, R.: Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B 183, 282–290 (2016). https://doi.org/10.1016/j.apcatb.2015.10.044

    Article  Google Scholar 

  6. Granger, P., Parvulescu, V.I.: Catalytic NOx abatement systems for mobile sources: from three-way to lean burn after-treatment technologies. Chem. Rev. 111, 3155–3207 (2011). https://doi.org/10.1021/cr100168g

    Article  Google Scholar 

  7. Arfaoui, J., Ghorbel, A., Petitto, C., Delahay, G.: Novel V2O5–CeO2–TiO2–SO42− nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH3 in excess O2. Appl. Catal. B 224, 264–275 (2018). https://doi.org/10.1016/j.apcatb.2017.10.059

    Article  Google Scholar 

  8. Olsen, B.K., Kügler, F., Castellino, F., Jensen, A.D.: Poisoning of vanadia based SCR catalysts by potassium: influence of catalyst composition and potassium mobility. Catal. Sci. Technol. 6, 2249–2260 (2016). https://doi.org/10.1039/c5cy01409c

    Article  Google Scholar 

  9. Li, X., Li, X.S., Chen, J.J., Li, J.H., Hao, J.M.: An efficient novel regeneration method for Ca-poisoning V2O5–WO3/TiO2 catalyst. Catal Commun. 87, 45–48 (2016). https://doi.org/10.1016/j.catcom.2016.06.017

    Article  Google Scholar 

  10. Li, C.F., Duan, Y.F., Tang, H.J., Zhu, C., Li, Y.N., Zheng, Y.W., Liu, M.: Study on the Hg emission and migration characteristics in coal-fired power plant of China with an ammonia desulfurization process. Fuel 211, 621–628 (2018). https://doi.org/10.1016/j.fuel.2017.09.083

    Article  Google Scholar 

  11. Wang, X.Y., Zhang, K., Zhao, W.T., Zhang, Y.Y., Lan, Z.X., Zhang, T.H., Xiao, Y.H., Zhang, Y.F., Chang, H.Z., Jiang, L.L.: Effect of ceria precursor on the physicochemical and catalytic properties of Mn–W/CeO2 nanocatalysts for NH3 SCR at low temperature. Ind. Eng. Chem. Res. 56, 14980–14994 (2017). https://doi.org/10.1021/acs.iecr.7b03466

    Article  Google Scholar 

  12. Shahidehpour, M., Fu, Y., Wiedman, T.: Impact of natural gas infrastructure on electric power systems. Proc. IEEE. 93, 1042–1056 (2005). https://doi.org/10.1109/JPROC.2005.847253

    Article  Google Scholar 

  13. Pandiyan, K., Singh, A., Singh, S., Saxena, A.K., Nain, L.: Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renew. Energy 132, 723–741 (2019). https://doi.org/10.1016/j.renene.2018.08.049

    Article  Google Scholar 

  14. Romero, A., Chacartegui, R., Becerra, J.A., Carvalho, M., Millar, D.L.: Analysis of the start-up and variable load operation of a combined cycle power plant for off-grid mines. Int. J. Glob. Warm. 13, 330–335 (2017). https://doi.org/10.1504/IJGW.2017.10007769

    Article  Google Scholar 

  15. Zeng, Q., Fang, J., Li, J.H., Chen, Z.: Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. Appl. Energy. 184, 1483–1492 (2016). https://doi.org/10.1016/j.apenergy.2016.05.060

    Article  Google Scholar 

  16. Zhang, G.D., Han, W.L., Zhao, H.J., Zong, L.Y., Tang, Z.C.: Solvothermal synthesis of well-designed ceria-tin-titanium catalysts with enhanced catalytic performance for wide temperature NH3–SCR reaction. Appl. Catal. B 226, 117–126 (2018). https://doi.org/10.1016/j.apcatb.2017.12.030

    Article  Google Scholar 

  17. Zhang, D.J., Ma, Z.R., Wang, B.D., Sun, Q., Xu, W.Q., Zhu, T.: Effects of MOx (M = Mn, Cu, Sb, La) on the V-Mo-Ce/Ti selective catalytic reduction catalysts. J. Rare Earths. 38, 157–166 (2020). https://doi.org/10.1016/j.jre.2019.02.016

    Article  Google Scholar 

  18. Zhang, C.G., Chen, T.H., Liu, H.B., Chen, D., Xu, B., Qing, C.S.: Low temperature SCR reaction over nano-structured Fe–Mn oxides: characterization, performance, and kinetic study. Appl. Surf. Sci. 457, 1116–1125 (2018). https://doi.org/10.1016/j.apsusc.2018.07.019

    Article  Google Scholar 

  19. He, S.L., Li, Q., Zhang, Q., Zhan, Z., Wang, L.: High efficiency of Ce-modified MnOx/TiO2–ZrO2-based low-temperature selective catalytic reduction denitration catalysts. J. Environ. Eng. 145, 04019087 (2019). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001594

    Article  Google Scholar 

  20. Sun, P., Guo, R.T., Liu, S.M., Wang, S.X., Pan, W.G., Li, M.Y.: The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu. Appl. Catal. A 531, 129–138 (2017). https://doi.org/10.1016/j.apcata.2016.10.027

    Article  Google Scholar 

  21. Zhu, M.H., Lai, J.K., Wachs, I.E.: Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts. Appl. Catal. B 224, 836–840 (2018). https://doi.org/10.1016/j.apcatb.2017.11.029

    Article  Google Scholar 

  22. Song, W.J., Song, G.L., Qi, X.B., Yang, S.B., Lu, Q.G., Nowak, W.: Speciation and distribution of sodium during Zhundong coal gasification in a circulating fluidized bed. Energy Fuel. 31, 1889–1895 (2017)

    Article  Google Scholar 

  23. Han, G.H., Yang, S.Z., Peng, W.J., Huang, Y.F., Wu, H.Y., Chai, W.C., Liu, J.T.: Enhanced recycling and utilization of mullite from coal fly ash with a flotation and metallurgy process. J. Clean. Prod. 178, 804–813 (2018). https://doi.org/10.1016/j.jclepro.2018.01.073

    Article  Google Scholar 

  24. Deng, L., Liu, X., Cao, P.Q., Zhao, Y.G., Du, Y.B., Wang, C.A., Che, D.F.: A study on deactivation of V2O5–WO3–TiO2 SCR catalyst by alkali metals during entrained-flow combustion. J. Energy. Inst. 90, 743–751 (2017). https://doi.org/10.1016/j.joei.2016.07.003

    Article  Google Scholar 

  25. Wang, H.Q., Cao, S., Fang, Z., Yu, F.X., Liu, Y., Weng, X.L., Wu, Z.B.: CeO2 doped anatase TiO2 with exposed (001) high energy facets and its performance in selective catalytic reduction of NO by NH3. Appl. Surf. Sci. 330, 245–252 (2015). https://doi.org/10.1016/j.apsusc.2014.12.163

    Article  Google Scholar 

  26. Deng, S.C., Zhuang, K., Xu, B.L., Ding, Y.H., Yu, L., Fan, Y.N.: Promotional effect of iron oxide on the catalytic properties of Fe–MnOx/TiO2 (anatase) catalysts for the SCR reaction at low temperatures. Catal. Sci. Technol. 6, 1772–1778 (2016). https://doi.org/10.1039/c5cy01217a

    Article  Google Scholar 

  27. Kwon, D.W., Park, K.H., Hong, S.C.: The influence on SCR activity of the atomic structure of V2O5/TiO2 catalysts prepared by a mechanochemical method. Appl. Catal. A 451, 227–235 (2013). https://doi.org/10.1016/j.apcata.2012.09.050

    Article  Google Scholar 

  28. Youn, S., Song, I., Lee, H., Cho, S.J., Kim, D.H.: Effect of pore structure of TiO2 on the SO2 poisoning over V2O5/TiO2 catalysts for selective catalytic reduction of NOx with NH3. Catal. Today. 303, 19–24 (2018). https://doi.org/10.1016/j.cattod.2017.08.015

    Article  Google Scholar 

  29. Xu, T.F., Wu, X.D., Liu, X.S., Cao, L., Lin, Q.W., Weng, D.: Effect of barium sulfate modification on the SO2 tolerance of V2O5/TiO2 catalyst for NH3-SCR reaction. J. Environ. Sci. 57, 110–117 (2017). https://doi.org/10.1016/j.jes.2016.12.001

    Article  Google Scholar 

  30. Boningari, T., Koirala, R., Smirniotis, P.G.: Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis: Influence of various supports. Appl. Catal. B 140, 289–298 (2013). https://doi.org/10.1016/j.apcatb.2013.04.033

    Article  Google Scholar 

  31. Dunn, J.P., Stenger, H.G., Wachs, I.E.: Oxidation of sulfur dioxide over supported vanadia catalysts: molecular structure–reactivity relationships and reaction kinetics. Catal. Today. 51, 301–318 (1999). https://doi.org/10.1016/S0920-5861(99)00052-8

    Article  Google Scholar 

  32. Dunn, J.P., Koppula, P.R., Stenger, H.G., Wachs, I.E.: Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl. Catal. B 19, 103–117 (1998). https://doi.org/10.1016/S0926-3373(98)00060-5

    Article  Google Scholar 

  33. Liu, S.X., Chen, X.Y.: A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. J. Hazard. Mater. 152, 48–55 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.062

    Article  Google Scholar 

  34. Pang, D.D., Qiu, L., Zhu, R.S., Ouyang, F.: Silica supported SO42–/TiO2 for photocatalytic decomposition of acrylonitrile under simulant solar light irradiation. Chem. Eng. J. 270, 590–596 (2015)

    Article  Google Scholar 

  35. Zhang, S.L., Li, H.Y., Zhong, Q.: Promotional effect of F-doped V2O5–WO3/TiO2 catalyst for NH3-SCR of NO at low-temperature. Appl. Catal. A 435, 156–162 (2012). https://doi.org/10.1016/j.apcata.2012.05.049

    Article  Google Scholar 

  36. Jiang, L.J., Liu, Q.C., Zhao, Q., Ren, S., Kong, M., Yao, L., Meng, F.: Promotional effect of Ce on the SCR of NO with NH3 at low temperature over MnOx supported by nitric acid-modified activated carbon. Res. Chem. Intermediat. 44, 1729–1744 (2018). https://doi.org/10.1007/s1116

    Article  Google Scholar 

  37. Zhang, S.L., Zhong, Q., Zhao, W., Li, Y.T.: Surface characterization studies on F-doped V2O5/TiO2 catalyst for NO reduction with NH3 at low-temperature. Chem. Eng. J. 253, 207–216 (2014). https://doi.org/10.1016/j.cej.2014.04.045

    Article  Google Scholar 

  38. Ye, D., Qu, R.Y., Zheng, C.H., Cen, K.F., Gao, X.: Mechanistic investigation of enhanced reactivity of NH4HSO4 and NO on Nb- and Sb-doped VW/Ti SCR catalysts. Appl. Catal. A 549, 310–319 (2018). https://doi.org/10.1016/j.apcata.2017.10.011

    Article  Google Scholar 

  39. Li, X., Li, X.S., Yang, R.T., Mo, J.S., Li, J.H., Hao, J.M.: The poisoning effects of calcium on V2O5–WO3/TiO2 catalyst for the SCR reaction: comparison of different forms of calcium. Mol. Catal. 434, 16–24 (2017). https://doi.org/10.1016/j.mcat.2017.01.010

    Article  Google Scholar 

  40. Zheng, Y.J., Jensen, A.D., Johnsson, J.E.: Deactivation of V2O5–WO3–TiO2 SCR catalyst at a biomass-fired combined heat and power plant. Appl. Catal. B 60, 253–264 (2005). https://doi.org/10.1016/j.apcatb.2005.03.010

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the financial support from National Natural Science Foundation of China (51106133, 21237003, 50806041), Science and Technology Support Program of Jiangsu Province (BE2014682), Yangzhou City Focus on Research and Development Project (YZ2016261), Science and Technology Innovation Incubation Program of Yangzhou University (2016CXJ037, 2017CXJ048), National Spark Program (2015GA690279) and Shanghai Science and Technology Development (15dz1200703, 15110501000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Zhang, Z., Wang, M. et al. Characterization and Reuse Investigation on Scrapped V2O5–WO3/TiO2 Catalysts Operated in Various Industrial Flue Gases for NH3-SCR Reactions. Waste Biomass Valor 12, 2597–2608 (2021). https://doi.org/10.1007/s12649-020-01158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01158-3

Keywords

Navigation