Skip to main content
Log in

Thermal Hydrolysis of Municipal sludge: Finding the Temperature Sweet Spot: A Review

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The increasing demand for a Thermal Hydrolysis Process (THP) to pretreat municipal sludge upstream Anaerobic Digestion (AD) opens the opportunity to further develop and optimise this technology. The optimal THP temperature remains unclear due to the production of refractory compounds at high temperature. A compilation of literature data was conducted to investigate the existence of a temperature sweet spot for the THP applied to municipal sludge. All related reports (n = 43) were included. The THP temperature range impact was assessed in the range of 100 °C–200 °C on four AD and dewatering performance indicators (CH4 production, Volatile Solid Reduction (VSR), Dewaterability (DW) and filtrate quality). Other parameters potentially affecting the performance indicators were also considered. These parameters include the type of sewage sludge and operational conditions related to THP and AD. The impact of all parameters on performance indicators was evaluated with a Kruskal–Wallis statistical test. For THP temperature optimisation, a pairwise comparison, using a Wilcoxon test, was made. A temperature optimum in the [140–160] °C range was proposed. It seemed to minimize the production of refractory compounds, while maximising AD and dewatering performances. It is noteworthy that above 160 °C, the concentration in refractory compounds and soluble COD increases sharply, thus leading to a potential deterioration of WWTP effluent quality.

Graphic Abstract

Optimal THP temperature range for an optimal outcome on both sludge and wastewater treatment lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

BMP:

Biochemical methane potential

CH4 :

Methane

DW:

Dewatering

COD:

Chemical oxygen demand

DON:

Dissolved organic nitrogen

DW:

Dewatering

HRT:

Hydraulic retention time

in:

Introduced

N-NH4 :

Ammonium

PI:

Performance indicators

TAN:

Total ammonia nitrogen

TH:

Thermal hydrolysis

THP:

Thermal hydrolysis process

TS:

Total Solids

VS in:

Volatile solids inlet

VSR:

Volatile Solids Reduction

sCOD:

Soluble Chemical Oxygen Demand

rDON:

Refractory Dissolved Organic Nitrogen

TS:

Total solids

UVA:

Ultraviolet Absorbance

WWTP:

WasteWater Treatment Plant

References

  1. Gherghel, A., Teodosiu, C., De Gisi, S.: A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 228, 244–263 (2019). https://doi.org/10.1016/j.jclepro.2019.04.240

    Article  Google Scholar 

  2. Appels, L., Baeyens, J., Degrève, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755–781 (2008). https://doi.org/10.1016/j.pecs.2008.06.002

    Article  Google Scholar 

  3. Carrère, H., Dumas, C., Battimelli, A., Batstone, D.J., Delgenès, J.P., Steyer, J.P., Ferrer, I.: Pretreatment methods to improve sludge anaerobic degradability: a review. J. Hazard. Mater. 183, 1–15 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.129

    Article  Google Scholar 

  4. Anjum, M., Al-Makishah, N.H., Barakat, M.A.: Wastewater sludge stabilization using pre-treatment methods. Process. Saf. Environ. Prot. 102, 615–632 (2016). https://doi.org/10.1016/j.psep.2016.05.022

    Article  Google Scholar 

  5. Gonzalez, A., Hendriks, A.T.W.M., van Lier, J.B., de Kreuk, M.: Pre-treatments to enhance the biodegradability of waste activated sludge: elucidating the rate limiting step. Biotechnol. Adv. 36, 1434–1469 (2018). https://doi.org/10.1016/j.biotechadv.2018.06.001

    Article  Google Scholar 

  6. Zhen, G., Lu, X., Kato, H., Zhao, Y., Li, Y.Y.: Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 69, 559–577 (2017). https://doi.org/10.1016/j.rser.2016.11.187

    Article  Google Scholar 

  7. Nazari, L., Yuan, Z., Santoro, D., Sarathy, S., Ho, D., Batstone, D., Xu, C.C., Ray, M.B.: Low-temperature thermal pre-treatment of municipal wastewater sludge: process optimization and effects on solubilization and anaerobic degradation. Water Res. 113, 111–123 (2017). https://doi.org/10.1016/j.watres.2016.11.055

    Article  Google Scholar 

  8. Ferrer, I., Ponsá, S., Vázquez, F., Font, X.: Increasing biogas production by thermal (70 °C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 42, 186–192 (2008). https://doi.org/10.1016/j.bej.2008.06.020

    Article  Google Scholar 

  9. Xue, Y., Liu, H., Chen, S., Dichtl, N., Dai, X., Li, N.: Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chem. Eng. J. 264, 174–180 (2015). https://doi.org/10.1016/j.cej.2014.11.005

    Article  Google Scholar 

  10. Nielsen, H.B., Thygesen, A., Thomsen, A.B., Schmidt, J.E.: Anaerobic digestion of waste activated sludge—comparison of thermal pretreatments with thermal inter-stage treatments. J Chem Technol Biotechnol (2011). https://doi.org/10.1002/jctb.2509

    Article  Google Scholar 

  11. Battimelli, A., Millet, C., Delgenès, J.P., Moletta, R.: Anaerobic digestion of waste activated sludge combined with ozone post-treatment and recycling. Water Sci. Technol. (2003). https://doi.org/10.2166/wst.2003.0222

    Article  Google Scholar 

  12. Ge, H., Jensen, P.D., Batstone, D.J.: Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Res. 45, 1597–1606 (2011). https://doi.org/10.1016/j.watres.2010.11.042

    Article  Google Scholar 

  13. Kor-Bicakci, G., Eskicioglu, C.: Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renew. Sustain. Energy Rev. 110, 423–443 (2019). https://doi.org/10.1016/j.rser.2019.05.002

    Article  Google Scholar 

  14. Barber, W.P.F.: Thermal hydrolysis for sewage treatment: a critical review. Water Res. 104, 53–71 (2016). https://doi.org/10.1016/j.watres.2016.07.069

    Article  Google Scholar 

  15. Cano, R., Pérez-Elvira, S.I., Fdz-Polanco, F.: Energy feasibility study of sludge pretreatments: a review. Appl. Energy. 149, 176–185 (2015). https://doi.org/10.1016/j.apenergy.2015.03.132

    Article  Google Scholar 

  16. Chauzy, J., Cretenot, D., Bausseron, A., Deleris, S.: Anaerobic digestion enhanced by thermal hydrolysis: first reference Biothelys(R) at Saumur, France. Water Pract. Technol. 3, 2–9 (2008). https://doi.org/10.2166/WPT.2008004

    Article  Google Scholar 

  17. Abu-Orf, M., Goss, T.: Comparing thermal hydrolysis processes (CAMBITM and EXELYSTM) for solids pretreatmet prior to anaerobic digestion. Proc. Water Environ. Fed. 2012, 1024–1036 (2012). https://doi.org/10.2175/193864712811693272

    Article  Google Scholar 

  18. Williams, T.O., Burrowes, P.: Thermal hydrolysis offerings and performances. In: European Biosolids and Organic Resources Conference, Leeds (2016)

  19. Luning, J., Hol, L., Van Dijk, A., Man, D.: Full scale experiences with TurboTec® continuous thermal hydrolysis at WWTP Venlo (NL) and Apeldoorn (NL) The TurboTec approach. In: 19th European Biosolids & Organic Resources Conference & Exhibition (2014)

  20. Geraats, B.: LYSOTHERM® SLUDGE HYDROLYSIS Five year experience with a novel approach for operational savings. In: 19th European Biosolids & Organic Resources Conference & Exhibition LYSOTHERM® (2014)

  21. Bougrier, C., Delgenès, J.P., Carrère, H.: Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem. Eng. J. 139, 236–244 (2008). https://doi.org/10.1016/j.cej.2007.07.099

    Article  Google Scholar 

  22. Carrère, H., Bougrier, C., Castets, D., Delgenès, J.P.: Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment. J. Environ. Sci. Health Part A Toxic/Hazard Subst. Environ. Eng. 43, 1551–1555 (2008). https://doi.org/10.1080/10934520802293735

    Article  Google Scholar 

  23. Haug, R.T., Stuckey, D.C., Gossett, J.M., McCarty, P.L.: Effect of thermal pretreatment on digestibility and dewaterability of organic sludges. J. Water Pollut. Control Fed. 50, 73–85 (1978)

    Google Scholar 

  24. Li, Y.-Y., Noike, T.: Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. Water Sci. Technol. 26, 857–866 (1992). https://doi.org/10.2166/wst.1992.0466

    Article  Google Scholar 

  25. Pinnekamp, J.: Effects of thermal pretreatment of sewage sludge on anaerobic digestion. Water Sci. Technol. 21, 1542–1543 (1989). https://doi.org/10.2166/wst.1989.0214

    Article  Google Scholar 

  26. Pilli, S., Yan, S., Tyagi, R.D., Surampalli, R.Y.: Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Crit. Rev. Environ. Sci. Technol. 45, 669–702 (2015). https://doi.org/10.1080/10643389.2013.876527

    Article  Google Scholar 

  27. Panter, K., THP Consultant Cambi, Fountain, P., Shana, A.: Sludge process specialists, Thames Water UK: the Effects of thermal hydrolysis, hydraulic retention time and ammonia concentration on digestion rates and dewatering across digestion sites in Thames Water UK. In: WEF/IWA Residuals and Biosolids Conference 2019 (2019)

  28. Choi, J.M., Han, S.K., Lee, C.Y.: Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment. Bioresour. Technol. 259, 207–213 (2018). https://doi.org/10.1016/j.biortech.2018.02.123

    Article  Google Scholar 

  29. Dwyer, J., Starrenburg, D., Tait, S., Barr, K., Batstone, D.J., Lant, P.: Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Res. 42, 4699–4709 (2008). https://doi.org/10.1016/j.watres.2008.08.019

    Article  Google Scholar 

  30. Zhang, D., Feng, Y., Huang, H., Khunjar, W., Wang, Z.: Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge. Environ. Int. 138, 105629 (2020). https://doi.org/10.1016/j.envint.2020.105629

    Article  Google Scholar 

  31. Bougrier, C.: Optimisation du procédé de méthanisation par mise en place d’un co-traitement physico-chimique: Application au gisement de biogaz représenté par les boues d’épuration des eaux usées (2005)

  32. Wilson, C.A., Tanneru, C.T., Banjade, S., Murthy, S.N., Novak, J.T.: Anaerobic digestion of raw and thermally hydrolyzed wastewater solids under various operational conditions. Water Environ. Res. 83, 815–825 (2011). https://doi.org/10.2175/106143011x12928814444934

    Article  Google Scholar 

  33. Toutian, V., Barjenbruch, M., Unger, T., Loderer, C., Remy, C.: Effect of temperature on biogas yield increase and formation of refractory COD during thermal hydrolysis of waste activated sludge. Water Res. (2020). https://doi.org/10.1016/j.watres.2019.115383

    Article  Google Scholar 

  34. Higgins, M.J., Beightol, S., Mandahar, U., Suzuki, R., Xiao, S., Lu, H.W., Le, T., Mah, J., Pathak, B., DeClippeleir, H., Novak, J.T., Al-Omari, A., Murthy, S.N.: Pretreatment of a primary and secondary sludge blend at different thermal hydrolysis temperatures: Impacts on anaerobic digestion, dewatering and filtrate characteristics. Water Res. 122, 557–569 (2017). https://doi.org/10.1016/j.watres.2017.06.016

    Article  Google Scholar 

  35. Lu, D., Sun, F., Zhou, Y.: Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment. Bioresour. Technol. 266, 60–67 (2018). https://doi.org/10.1016/j.biortech.2018.06.059

    Article  Google Scholar 

  36. Zhang, Q., De Clippeleir, H., Su, C., Al-Omari, A., Wett, B., Vlaeminck, S.E., Murthy, S.: Deammonification for digester supernatant pretreated with thermal hydrolysis: overcoming inhibition through process optimization. Appl. Microbiol. Biotechnol. 100, 5595–5606 (2016). https://doi.org/10.1007/s00253-016-7368-0

    Article  Google Scholar 

  37. Neyens, E., Baeyens, J.: A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater. 98, 51–67 (2003). https://doi.org/10.1016/S0304-3894(02)00320-5

    Article  Google Scholar 

  38. Zhang, J., Li, N., Dai, X., Tao, W., Jenkinson, I.R., Li, Z.: Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: new insights through structure evolution. Water Res. 131, 177–185 (2018). https://doi.org/10.1016/j.watres.2017.12.042

    Article  Google Scholar 

  39. Wett, B., Takács, I., Batstone, D., Wilson, C., Murthy, S.: Anaerobic model for high-solids or high-temperature digestion—additional pathway of acetate oxidation. Water Sci. Technol. 69, 1634–1640 (2014). https://doi.org/10.2166/wst.2014.047

    Article  Google Scholar 

  40. Metcalf & Eddy: Inc: Wastewater Energy: Treatment and Reuse. Metcalf & Eddy, New York (2003)

    Google Scholar 

  41. Armstrong, D.L., Rice, C.P., Ramirez, M., Torrents, A.: Influence of thermal hydrolysis-anaerobic digestion treatment of wastewater solids on concentrations of triclosan, triclocarban, and their transformation products in biosolids. Chemosphere 171, 609–616 (2017). https://doi.org/10.1016/j.chemosphere.2016.12.122

    Article  Google Scholar 

  42. Wang, M., Li, R., Zhao, Q.: Distribution and removal of antibiotic resistance genes during anaerobic sludge digestion with alkaline, thermal hydrolysis and ultrasonic pretreatments. Front. Environ. Sci. Eng. 13, 1–10 (2019). https://doi.org/10.1007/s11783-019-1127-2

    Article  Google Scholar 

  43. Donoso-Bravo, A., Pérez-Elvira, S., Aymerich, E., Fdz-Polanco, F.: Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability of sewage sludge. Bioresour. Technol. 102, 660–666 (2011). https://doi.org/10.1016/j.biortech.2010.08.035

    Article  Google Scholar 

  44. Mottet, A., Steyer, J.P., Déléris, S., Vedrenne, F., Chauzy, J., Carrère, H.: Kinetics of thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge. Biochem. Eng. J. 46, 169–175 (2009). https://doi.org/10.1016/j.bej.2009.05.003

    Article  Google Scholar 

  45. Sapkaite, I., Barrado, E., Fdz-Polanco, F., Pérez-Elvira, S.I.: Optimization of a thermal hydrolysis process for sludge pre-treatment. J. Environ. Manage. 192, 25–30 (2017). https://doi.org/10.1016/j.jenvman.2017.01.043

    Article  Google Scholar 

  46. Abelleira-Pereira, J.M., Pérez-Elvira, S.I., Sánchez-Oneto, J., de la Cruz, R., Portela, J.R., Nebot, E.: Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment. Water Res. 71, 330–340 (2015). https://doi.org/10.1016/j.watres.2014.12.027

    Article  Google Scholar 

  47. Ngwenya, Z., Beightol, S., NgoneOo, T., Vega, J., Pathak, B., Al-Omari, A., Zhu, K., Wadhawan, T., Murthy, S.N., Higgins, M.J.: A stoichiometric a roach to control digester chemistry and ammonia inhibition in anaerobic digestion with thermal hydrolysis pretreatment model development. In: WEF Residuals & Biosolids 2015. Water & Environment Federation, Washington D.C. (2015)

  48. Jeong, S.Y., Chang, S.W., Ngo, H.H., Guo, W., Nghiem, L.D., Banu, J.R., Jeon, B.H., Nguyen, D.D.: Influence of thermal hydrolysis pretreatment on physicochemical properties and anaerobic biodegradability of waste activated sludge with different solids content. Waste Manag. 85, 214–221 (2019). https://doi.org/10.1016/j.wasman.2018.12.026

    Article  Google Scholar 

  49. Ennouri, H., Miladi, B., Diaz, S.Z., Güelfo, L.A.F., Solera, R., Hamdi, M., Bouallagui, H.: Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge. Bioresour. Technol. 214, 184–191 (2016). https://doi.org/10.1016/j.biortech.2016.04.076

    Article  Google Scholar 

  50. Batstone, D., Lovett, R., Mieog, J., Mbamba, C.K., Yap, S.D., Pagliaccia, P.: Sludge treatment options analysis : Integrated analysis of thermal hydrolysis and recuperative thickening. In: OZwater’18. Australia’s International Water Conference & Exhibition (2018)

  51. Chen, S., Li, N., Dong, B., Zhao, W., Dai, L., Dai, X.: New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: organic matter degradation and methanogenic pathways. J. Hazard. Mater. 342, 1–9 (2018). https://doi.org/10.1016/j.jhazmat.2017.08.012

    Article  Google Scholar 

  52. Batstone, D.J., Balthes, C., Barr, K.: Model assisted startup of anaerobic digesters fed with thermally hydrolysed activated sludge. Water Sci. Technol. 62, 1661–1666 (2010). https://doi.org/10.2166/wst.2010.487

    Article  Google Scholar 

  53. Han, Y., Zhuo, Y., Peng, D., Yao, Q., Li, H., Qu, Q.: Influence of thermal hydrolysis pretreatment on organic transformation characteristics of high solid anaerobic digestion. Bioresour. Technol. 244, 836–843 (2017). https://doi.org/10.1016/j.biortech.2017.07.166

    Article  Google Scholar 

  54. Liu, X., Wang, W., Gao, X., Zhou, Y., Shen, R.: Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manag. 32, 249–255 (2012). https://doi.org/10.1016/j.wasman.2011.09.027

    Article  Google Scholar 

  55. Mills, N., Pearce, P., Farrow, J., Thorpe, R.B., Kirkby, N.F.: Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manag. 34, 185–195 (2014). https://doi.org/10.1016/j.wasman.2013.08.024

    Article  Google Scholar 

  56. Valo, A., Carrère, H., Delgenès, J.P.: Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. J. Chem. Technol. Biotechnol. 79, 1197–1203 (2004). https://doi.org/10.1002/jctb.1106

    Article  Google Scholar 

  57. Graja, S., Chauzy, J., Fernandes, P., Patria, L., Cretenot, D.: Reduction of sludge production from WWTP using thermal pretreatment and enhanced anaerobic methanisation. Water Sci. Technol. 52, 267–273 (2005). https://doi.org/10.2166/wst.2005.0527

    Article  Google Scholar 

  58. Pérez-Elvira, S.I., Fdz-Polanco, M., Fdz-Polanco, F.: Enhancement of the conventional anaerobic digestion of sludge: comparison of four different strategies. Water Sci. Technol. 64, 375–383 (2011). https://doi.org/10.2166/wst.2011.593

    Article  Google Scholar 

  59. Perez-Elvira, S.I., Sapkaite, I., Fdz-Polanco, F.: Evaluation of thermal steam-explosion key operation factors to optimize biogas production from biological sludge. Water Sci. Technol. 72, 937–945 (2015). https://doi.org/10.2166/wst.2015.294

    Article  Google Scholar 

  60. Phothilangka, P., Schoen, M.A., Huber, M., Luchetta, P., Winkler, T., Wett, B.: Prediction of thermal hydrolysis pretreatment on anaerobic digestion of waste activated sludge. Water Sci. Technol. 58, 1467–1473 (2008). https://doi.org/10.2166/wst.2008.726

    Article  Google Scholar 

  61. Goldhardt, J., Knoerle, U., CaDavid, G.: Continuous thermal hydrolysis without steam or chemicals. In: WEF/IWA Residuals and Biosolids Conference 2019, pp. 484–499 (2019)

  62. Camacho, P., Ewert, W., Kopp, J., Panter, K., Perez-Elvira, S.I., Piat, E.: Combined experiences of thermal hydrolysis and anaerobic digestion—latest thinking on thermal hydrolysis of secondary sludge only for optimum dewatering and digestion. In: WEFTEC 2008, pp. 1964–1978 (2008). https://doi.org/10.2175/193864708788733972

  63. Oosterhuis, M., Ringoot, D., Hendriks, A., Roeleveld, P.: Thermal hydrolysis of waste activated sludge at Hengelo Wastewater Treatment Plant, The Netherlands. Water Sci. Technol. 70, 1–7 (2014). https://doi.org/10.2166/wst.2014.107

    Article  Google Scholar 

  64. Phothilangka, P., Schoen, M.A., Wett, B.: Benefits and drawbacks of thermal pre-hydrolysis for operational performance of wastewater treatment plants. Water Sci. Technol. 58, 1547–1553 (2008). https://doi.org/10.2166/wst.2008.500

    Article  Google Scholar 

  65. Barjenbrunch, M., Kopplow, O.: Enzymatic, mechanical and thermal pre-treatment of surplus sludge. Adv. Environ. Res. 7, 715–720 (2003)

    Article  Google Scholar 

  66. Lu, H.-W., Xiao, S., Le, T., Al-Omari, A., Higgins, M., Boardman, G., Novak, J., Murthy, S.: Evaluation of solubilization characteristics of thermal hydrolysis process. In: WEFTEC 2014 (2014)

  67. Fjorside, C.: Full scale experience of retrofitting thermal hydrolysis to an existing anaerobic digester for the digestion of waste activated sludge. In: Residals and Biosolids Management Conference, Covington, KY (2002)

  68. Kepp, U., Machenbach, I., Weisz, N., Solheim, O.E.: Enhanced stabilisation of sewage sludge through thermal hydrolysis—three years of experience with full scale plant. Water Sci. Technol. 42, 89–96 (2000). https://doi.org/10.2166/wst.2000.0178

    Article  Google Scholar 

  69. Strong, P.J., McDonald, B., Gapes, D.J.: Combined thermochemical and fermentative destruction of municipal biosolids: a comparison between thermal hydrolysis and wet oxidative pre-treatment. Bioresour. Technol. 102, 5520–5527 (2011). https://doi.org/10.1016/j.biortech.2010.12.027

    Article  Google Scholar 

  70. Ahuja, N.: Impact of operating conditions on thermal hydrolysis pre-treated digestion return liquor. Proc. Water Environ. Fed. 2015(10), 76–89 (2015)

    Article  Google Scholar 

  71. Bishnoi, P.: Effect of Thermal Hydrolysis Pre-treatment on Anaerobic Digestion of Sludge. Virginia Tech, Blacksburg (2012)

    Google Scholar 

  72. Fdz-Polanco, F., Velazquez, R., Perez-Elvira, S.I., Casas, C., del Barrio, D., Cantero, F.J., Fdz-Polanco, M., Rodriguez, P., Panizo, L., Serrat, J., Rouge, P.: Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants. Water Sci. Technol. 57, 1221–1226 (2008). https://doi.org/10.2166/wst.2008.072

    Article  Google Scholar 

  73. Perez-Elvira, S.I., Fdz-Polanco, M., Fdz-Polanco, F.: Increasing the performance of anaerobic digestion: pilot scale experimental study for thermal hydrolysis of mixed sludge. Front. Environ. Sci. Eng. China 4, 135–141 (2010). https://doi.org/10.1007/s11783-010-0024-5

    Article  Google Scholar 

  74. Pérez-Elvira, S.I., Fdz-Polanco, F.: Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study. Water Sci. Technol. 65, 1839–1846 (2012). https://doi.org/10.2166/wst.2012.863

    Article  Google Scholar 

  75. Pérez-Elvira, S., Fdz-Polanco, F.: Improving anaerobic digestion by physico-chemical pretreatment. In: International Workshop on Anaerobic Digestion, pp. 1–9 (2009)

  76. Prochnow, T.: Elaboration of an operation manual for the thermal sewage sludge disintegration plant in the WWTP Grevesmühlen and bench and pilot scale investigations supporting the start-up (2015)***

  77. Wilson, C.A., Novak, J.T.: Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 43, 4489–4498 (2009). https://doi.org/10.1016/j.watres.2009.07.022

    Article  Google Scholar 

  78. Dohányos, M., Zábranská, J., Kutil, J., Jeníĉek, P.: Improvement of anaerobic digestion of sludge. Water Sci. Technol. 49, 89–96 (2004). https://doi.org/10.2166/wst.2004.0616

    Article  Google Scholar 

  79. Switzenbaum, M.S., Farrell, J.B., Pincince, A.B.: Relationship Between the Van Kleeck and mass-balance calculation of volatile solids loss. Water Environ. Res. 75, 377–380 (2003). https://doi.org/10.2175/106143003x141187

    Article  Google Scholar 

  80. Stuckey, D.C., McCarty, P.L.: The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge. Water Res. 18, 1343–1353 (1984). https://doi.org/10.1016/0043-1354(84)90002-2

    Article  Google Scholar 

  81. Neyens, E., Baeyens, J., Dewil, R., De Heyder, B.: Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J. Hazard. Mater. 106, 83–92 (2004). https://doi.org/10.1016/j.jhazmat.2003.11.014

    Article  Google Scholar 

  82. Girault, R., Tosoni, J., Reverdy, A.-L., Marion, R., Baudez, J.: Déshydratation mécanique des boues d’épuration - Etat des lieux des filières en France métropolitaine. Rapport du projet ONEMA (2014)

  83. Higgins, M., Murthy, S.N., Schafer, P., Cooper, A., Kasirga, E., Lee, K., Machisko, J., Fountain, P., Kelleher, K.: Dewatering characteristics of Cambi thermal hydrolysis biosolids: centrifuges vs. BFPs. In: WEFTEC 2011 (2011)

  84. Fisher, R.A., Swanwick, S.J.: High temperature treatment of sewage sludge. Water Pollut. 71(3), 255–370 (1971)

    Google Scholar 

  85. Higgins, M.J., Beightol, S., Mandahar, U., Xiao, S., Lu, H.W., Le, T., Mah, J., Patha, B., Novak, J., Al-Omari, A., Murthy, S.N.: Effect of thermal hydrolysis temperature on anaerobic digestion, dewatering and filtrate characteristics. In: 87th Annual Water Environment Federation Technical Exhibition and Conference (WEFTEC 2014), pp. 2027–2037 (2014)

  86. Nielsen, P.H., Jahn, A.: Extraction of EPS. In: Microbial Extracellular Polymeric Substances, pp. 49–72. Springer, Berlin (1999)

  87. Flemming, H.-C.: EPS—then and now. Microorganisms 4(4), 41 (2016). https://doi.org/10.3390/microorganisms4040041

    Article  Google Scholar 

  88. Keiding, K., Wybrandt, L., Nielsen, P.H.: Remember the water—a comment on EPS colligative properties. Water Sci. Technol. 43, 17–23 (2001). https://doi.org/10.2166/wst.2001.0330

    Article  Google Scholar 

  89. Hasan, M., Zhang, Q., Riffat, R., Al-Omari, A., Murthy, S., Higgins, M.J., Clippeleir, H.D.: Mechanistically understanding the dewatering fundamentals: impact of biological systems and thermal hydrolysis on cake total solids and polymer demand. Proc. Water Environ. Fed. 2017, 997–1001 (2017). https://doi.org/10.2175/193864717821495537

    Article  Google Scholar 

  90. Tian, Y., Zheng, L., Sun, D.-Z.: Functions and behaviors of activated sludge extracellular polymeric substances (EPS): a promising environmental interest. J. Environ. Sci. (China) 18, 420–427 (2006)

    Google Scholar 

  91. Figdore, B., Bowden, G., Bodniewicz, B., Bailey, W., Derminassian, R., Kharkar, S., Murthy, S.: Impact of thermal hydrolysis solids pretreatment on sidestream treatment process selection at the DC water blue plains AWTP. Proc. Water Environ. Fed. 10000, 10000 (2010). https://doi.org/10.2175/193864710798193950

    Article  Google Scholar 

  92. Suárez-Iglesias, O., Urrea, J.L., Oulego, P., Collado, S., Díaz, M.: Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review. Sci. Total Environ. 584–585, 921–934 (2017). https://doi.org/10.1016/j.scitotenv.2017.01.140

    Article  Google Scholar 

  93. Zhang, Q., Vlaeminck, S.E., Debarbadillo, C., Su, C., Al-omari, A., Wett, B., Pümpel, T., Shaw, A.: Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and / or diffusional activity loss for nitritation and anammox. Water Res. 143, 270–281 (2020). https://doi.org/10.1016/j.watres.2018.06.037

    Article  Google Scholar 

  94. Gu, Z., Li, Y., Yang, Y., Xia, S., Hermanowicz, S.W., Alvarez-Cohen, L.: Inhibition of anammox by sludge thermal hydrolysis and metagenomic insights. Bioresour. Technol. 270, 46–54 (2018). https://doi.org/10.1016/j.biortech.2018.08.132

    Article  Google Scholar 

  95. Constantine, T.A.: North American experience with Centrate treatment technologies for ammonia and nitrogen removal. In: WEFTEC 2006. Water Environment Federation (2006)

  96. Khunjar, W.O., van Horne, M., Pace, G., Bilyk, K., Sveum, K.: Strategies for treating biodegradable and recalcitrant nutrient fractions generated from THP processes. In: WEF/IWA Residuals Biosolids Conference 2019, pp. 343–344 (2019)

  97. Wilson, C.A., Novak, J., Takacs, I., Wett, B., Murthy, S.: The kinetics of process dependent ammonia inhibition of methanogenesis from acetic acid. Water Res. 46, 6247–6256 (2012). https://doi.org/10.1016/j.watres.2012.08.028

    Article  Google Scholar 

  98. Chauzy, J., Graja, S., Gerardin, F., Cŕetenot, D., Patria, L., Fernandes, P.: Minimisation of excess sludge production in a WWTP by coupling thermal hydrolysis and rapid anaerobic digestion. Water Sci. Technol. 52, 255–263 (2005). https://doi.org/10.2166/wst.2005.0701

    Article  Google Scholar 

  99. Nursten, H.: The Chemistry of Nonenzymic Browning. The Maillard Reaction. Royal Society of Chemistry, Cambridge (2005)

    Google Scholar 

  100. Dignac, M.F., Ginestet, P., Rybacki, D., Bruchet, A., Urbain, V., Scribe, P.: Fate of wastewater organic pollution during activated sludge treatment: nature of residual organic matter. Water Res. 34, 4185–4194 (2000). https://doi.org/10.1016/S0043-1354(00)00195-0

    Article  Google Scholar 

  101. Wilson, C.A., Novak, J.T., Boardman, G.D., Chen, J.-S., Higgins, M.J., Murthy, S.N.: Mechanisms of Methanogenic Inhibition in Advanced Anaerobic Digestion. Thesis for: Doctor of Philosophy in Civil Engineering (2009)

  102. Aboulfoth, A.M., El Gohary, E.H., El Monayeri, O.D.: Effect of thermal pretreatment on the solubilization of organic matters in a mixture of primary and waste activated sludge. J. Urban Environ. Eng. 9, 82–88 (2015). https://doi.org/10.4090/juee.2015.v9n1.082088

    Article  Google Scholar 

  103. Climent, M., Ferrer, I., Baeza, M.D.M., Artola, A., Vázquez, F., Font, X.: Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem. Eng. J. 133, 335–342 (2007). https://doi.org/10.1016/j.cej.2007.02.020

    Article  Google Scholar 

  104. Kim, J., Park, C., Kim, T.-H., Lee, M., Kim, S., Kim, S.-W., Lee, J.: Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95, 271–275 (2003). https://doi.org/10.1016/S1389-1723(03)80028-2

    Article  Google Scholar 

  105. Müller, J.A.: Prospects and problems of sludge pre-treatment processes. Water Sci. Technol. 44, 121–128 (2001). https://doi.org/10.2166/wst.2001.0598

    Article  Google Scholar 

  106. Penaud, V., Delgenes, J.P., Moletta, R.: Influence of thermochemical pretreatment conditions on solubilization and anaerobic biodegradability of a microbial biomass. Environ. Technol. (U.K.) 21, 87–96 (2000). https://doi.org/10.1080/09593332108618141

    Article  Google Scholar 

  107. Figdore, B., Wett, B., Hell, M., Murthy, S.: Deammonification of Dewatering Sidestream from Thermal Hydrolysis-Mesophilic Anaerobic Digestion Process. Proc. Water Environ. Fed. 2011, 1037–1052 (2011). https://doi.org/10.2175/193864711802867289

    Article  Google Scholar 

  108. Dwyer, J., Kavanagh, L., Lant, P.: The degradation of dissolved organic nitrogen associated with melanoidin using a UV/H2O2 AOP. Chemosphere 71, 1745–1753 (2008). https://doi.org/10.1016/j.chemosphere.2007.11.027

    Article  Google Scholar 

  109. Wang, L., Chang, Y., Liu, Q.: Fate and distribution of nutrients and heavy metals during hydrothermal carbonization of sewage sludge with implication to land application. J. Clean. Prod. 225, 972–983 (2019). https://doi.org/10.1016/j.jclepro.2019.03.347

    Article  Google Scholar 

  110. Penaud, V., Delgenès, J.-P., Moletta, R.: Characterization of Soluble Molecules from Thermochemically Pretreated Sludge. J. Environ. Eng. 126, 397–402 (2000). https://doi.org/10.1061/(ASCE)0733-9372(2000)126:5(397)

    Article  Google Scholar 

  111. Chandra, R., Naresh, R., Rai, V.: Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation. Bioresour. Technol. 99, 4648–4660 (2008). https://doi.org/10.1016/j.biortech.2007.09.057

    Article  Google Scholar 

  112. Lemaire, R., Veuillet, F., Bausseron, A., Chastrusse, S., Monnier, R., Christensson, M., Zhao, H., Thomson, C., Ochoa, J.: ANITATM Mox deammonification process for COD-rich and THP reject water. In: 87th Annual Water Environment Federation Technical Exhibition and Conference (WEFTEC 2015), vol. 3, pp. 3266–3279 (2015). https://doi.org/10.2175/193864715819539849

  113. Han, X., Wang, F., Zhou, B., Chen, H., Yuan, R., Liu, S., Zhou, X., Gao, L., Lu, Y., Zhang, R.: Phosphorus complexation of sewage sludge during thermal hydrolysis with different reaction temperature and reaction time by P K-edge XANES and 31P NMR. Sci. Total Environ. 688, 1–9 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.017

    Article  Google Scholar 

  114. Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., Olaniyan, O.: Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum 44(1), 1–12 (2020). https://doi.org/10.1111/1477-8947.12187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Carrère.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devos, P., Haddad, M. & Carrère, H. Thermal Hydrolysis of Municipal sludge: Finding the Temperature Sweet Spot: A Review. Waste Biomass Valor 12, 2187–2205 (2021). https://doi.org/10.1007/s12649-020-01130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01130-1

Keywords

Navigation