Skip to main content

Advertisement

Log in

Crop Residues as Potential Sustainable Precursors for Developing Silica Materials: A Review

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Prospecting for sustainable resources will be feasible to generate silica materials extensively used for various commercial applications. Accumulated amorphous silica, called phytolith, is found in the crop residues removed during the harvesting process. Hence, it will be beneficial to understand the potential for various kinds of crop residues used as silica production resource regarding their global generation, yield of generation, and enhancement using silicon fertilizer. Of the many crop residues discussed in this study, sugarcane leaves are the most useful potential silica source. Various synthesis methods are continuously developed with the expectation to achieve tunable silica particle properties with high processing efficiency. The applications for silica particles derived from crop residues vary depending on their unique characteristics related to textural and morphological properties. Silica materials developed from crop residues present several challenges involving silica depletion in croplands, segregation of valuable components from crop residues, and the high utilization of high energy and chemical reagents. Utilizing industrial wastes containing silica can be promoted as Si fertilizer to heal silica depletion in croplands. An integrated approach can be conducted applying low energy with fewer chemical methods to recover energy, lignocellulosic materials, carbonaceous materials, and siliceous material from crop residues, simultaneously.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets supporting the conclusions of this article are included within the article.

References

  1. Josephson, A.L., Ricker-Gilbert, J., Florax, R.J.G.M.: How does population density influence agricultural intensification and productivity? Evidence from Ethiopia. Food Policy 48, 142–152 (2014). https://doi.org/10.1016/j.foodpol.2014.03.004

    Article  Google Scholar 

  2. Kim, S., Dale, B.E.: Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26(4), 361–375 (2004). https://doi.org/10.1016/j.biombioe.2003.08.002

    Article  Google Scholar 

  3. Garcia, R., Pizarro, C., Lavin, A.G., Bueno, J.L.: Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103(1), 249–258 (2012). https://doi.org/10.1016/j.biortech.2011.10.004

    Article  Google Scholar 

  4. Lim, J.S., Abdul Manan, Z., Wan Alwi, S.R., Hashim, H.: A review on utilisation of biomass from rice industry as a source of renewable energy. Renew Sustain Energy Rev 16(5), 3084–3094 (2012). https://doi.org/10.1016/j.rser.2012.02.051

    Article  Google Scholar 

  5. Mythili, R., Venkatachalam, P., Subramanian, P., Uma, D.: Characterization of bioresidues for biooil production through pyrolysis. Bioresour Technol 138, 71–78 (2013). https://doi.org/10.1016/j.biortech.2013.03.161

    Article  Google Scholar 

  6. Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L.: Copyrolysis of peanut shells and cassava starch mixtures: effect of the components proportion. J Anal Appl Pyrol 113, 508–517 (2015). https://doi.org/10.1016/j.jaap.2015.03.017

    Article  Google Scholar 

  7. Zhang, H., Ding, X., Chen, X., Ma, Y., Wang, Z., Zhao, X.: A new method of utilizing rice husk: consecutively preparing D-xylose, organosolv lignin, ethanol and amorphous superfine silica. J Hazard Mater 291, 65–73 (2015). https://doi.org/10.1016/j.jhazmat.2015.03.003

    Article  Google Scholar 

  8. Anukam, A., Mamphweli, S., Reddy, P., Meyer, E., Okoh, O.: Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: a comprehensive review. Renew Sustain Energy Rev 66, 775–801 (2016). https://doi.org/10.1016/j.rser.2016.08.046

    Article  Google Scholar 

  9. Thakkar, M., Makwana, J.P., Mohanty, P., Shah, M., Singh, V.: In bed catalytic tar reduction in the autothermal fluidized bed gasification of rice husk: extraction of silica, energy and cost analysis. Ind Crops Prod 87, 324–332 (2016). https://doi.org/10.1016/j.indcrop.2016.04.031

    Article  Google Scholar 

  10. Aqsha, A., Tijani, M.M., Moghtaderi, B., Mahinpey, N.: Catalytic pyrolysis of straw biomasses (wheat, flax, oat and barley) and the comparison of their product yields. J Anal Appl Pyrol 125, 201–208 (2017). https://doi.org/10.1016/j.jaap.2017.03.022

    Article  Google Scholar 

  11. Bharath, M., Raghavan, V., Prasad, B.V.S.S.S., Chakravarthy, S.R.: Co-gasification of Indian rice husk and Indian coal with high-ash in bubbling fluidized bed gasification reactor. Appl Therm Eng 137, 608–615 (2018). https://doi.org/10.1016/j.applthermaleng.2018.04.035

    Article  Google Scholar 

  12. Charusiri, W., Vitidsant, T.: Biofuel production via the pyrolysis of sugarcane (Saccharum officinarum L.) leaves: characterization of the optimal conditions. Sustain Chem Pharm 10, 71–78 (2018). https://doi.org/10.1016/j.scp.2018.09.005

    Article  Google Scholar 

  13. George, J., Arun, P., Muraleedharan, C.: Experimental investigation on co-gasification of coffee husk and sawdust in a bubbling fluidised bed gasifier. J Energy Inst (2018). https://doi.org/10.1016/j.joei.2018.10.014

    Article  Google Scholar 

  14. Perea-Moreno, M.-A., Manzano-Agugliaro, F., Hernandez-Escobedo, Q., Perea-Moreno, A.-J.: Peanut shell for energy: properties and its potential to respect the environment. Sustainability (2018). https://doi.org/10.3390/su10093254

    Article  Google Scholar 

  15. Rajasekhar Reddy, B., Vinu, R.: Microwave-assisted co-pyrolysis of high ash Indian coal and rice husk: product characterization and evidence of interactions. Fuel Process Technol 178, 41–52 (2018). https://doi.org/10.1016/j.fuproc.2018.04.018

    Article  Google Scholar 

  16. Appiah-Nkansah, N.B., Li, J., Rooney, W., Wang, D.: A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renew Energy 143, 1121–1132 (2019). https://doi.org/10.1016/j.renene.2019.05.066

    Article  Google Scholar 

  17. Cao, C., Zhang, Y., Li, L., Wei, W., Wang, G., Bian, C.: Supercritical water gasification of black liquor with wheat straw as the supplementary energy resource. Int J Hydrogen Energy 44(30), 15737–15745 (2019). https://doi.org/10.1016/j.ijhydene.2018.10.006

    Article  Google Scholar 

  18. Galina, N.R., Romero Luna, C.M., Arce, G.L.A.F., Ávila, I.: Comparative study on combustion and oxy-fuel combustion environments using mixtures of coal with sugarcane bagasse and biomass sorghum bagasse by the thermogravimetric analysis. J Energy Inst 92(3), 741–754 (2019). https://doi.org/10.1016/j.joei.2018.02.008

    Article  Google Scholar 

  19. Hu, J., Li, D., Lee, D.J., Zhang, Q., Wang, W., Zhao, S., Zhang, Z., He, C.: Integrated gasification and catalytic reforming syngas production from corn straw with mitigated greenhouse gas emission potential. Bioresour Technol 280, 371–377 (2019). https://doi.org/10.1016/j.biortech.2019.02.064

    Article  Google Scholar 

  20. Ngoc Lan Thao, N.T., Chiang, K.-Y., Wan, H.-P., Hung, W.-C., Liu, C.-F.: Enhanced trace pollutants removal efficiency and hydrogen production in rice straw gasification using hot gas cleaning system. Int J Hydrog Energy 44(6), 3363–3372 (2019). https://doi.org/10.1016/j.ijhydene.2018.07.133

    Article  Google Scholar 

  21. Raheem, A., Zhao, M., Dastyar, W., Channa, A.Q., Ji, G., Zhang, Y.: Parametric gasification process of sugarcane bagasse for syngas production. Int J Hydrog Energy 44(31), 16234–16247 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.127

    Article  Google Scholar 

  22. Ram, M., Mondal, M.K.: Investigation on fuel gas production from pulp and paper waste water impregnated coconut husk in fluidized bed gasifier via humidified air and CO2 gasification. Energy 178, 522–529 (2019). https://doi.org/10.1016/j.energy.2019.04.165

    Article  Google Scholar 

  23. Shi, X., Zhang, K., Cheng, Q., Song, G., Fan, G., Li, J.: Promoting hydrogen-rich syngas production through catalytic cracking of rape straw using Ni-Fe/PAC-γAl2O3 catalyst. Renew Energy 140, 32–38 (2019). https://doi.org/10.1016/j.renene.2019.03.060

    Article  Google Scholar 

  24. Susastriawan AAP, Saptoadi H, Purnomo (2019) Comparison of the gasification performance in the downdraft fixed-bed gasifier fed by different feedstocks: rice husk, sawdust, and their mixture. Sustain Energy Technol Assess 34:27–34. https://doi.org/10.1016/j.seta.2019.04.008

  25. Wang, H., Wu, D., Zhou, J.: Gasified rice husk based RHAC/NiCo2S4 composite for high performance asymmetric supercapacitor. J Alloys Compd (2019). https://doi.org/10.1016/j.jallcom.2019.152073

    Article  Google Scholar 

  26. Xu, S., Uzoejinwa, B.B., Wang, S., Hu, Y., Qian, L., Liu, L., Li, B., He, Z., Wang, Q., Abomohra, A.E.-F., Li, C., Zhang, B.: Study on co-pyrolysis synergistic mechanism of seaweed and rice husk by investigation of the characteristics of char/coke. Renew Energy 132, 527–542 (2019). https://doi.org/10.1016/j.renene.2018.08.025

    Article  Google Scholar 

  27. Xue, X., Liu, Y., Wu, L., Pan, X., Liang, J., Sun, Y.: Catalytic fast pyrolysis of maize straw with a core-shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons. Bioresour Technol 289, 121691 (2019). https://doi.org/10.1016/j.biortech.2019.121691

    Article  Google Scholar 

  28. Zhao, S., Zhang, Y., Su, Y.: Experimental investigation of rice straw oxidative pyrolysis process in a hot-rod reactor. J Anal Appl Pyrol (2019). https://doi.org/10.1016/j.jaap.2019.104646

    Article  Google Scholar 

  29. Su, Y., Liu, L., Zhang, S., Xu, D., Du, H., Cheng, Y., Wang, Z., Xiong, Y.: A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide. Bioresour Technol 295, 122243 (2020). https://doi.org/10.1016/j.biortech.2019.122243

    Article  Google Scholar 

  30. Liu, Y., Guo, Y., Gao, W., Wang, Z., Ma, Y., Wang, Z.: Simultaneous preparation of silica and activated carbon from rice husk ash. J Clean Prod 32, 204–209 (2012). https://doi.org/10.1016/j.jclepro.2012.03.021

    Article  Google Scholar 

  31. Loredo-Cancino, M., Soto-Regalado, E., Cerino-Cordova, F.J., Garcia-Reyes, R.B., Garcia-Leon, A.M., Garza-Gonzalez, M.T.: Determining optimal conditions to produce activated carbon from barley husks using single or dual optimization. J Environ Manage 125, 117–125 (2013). https://doi.org/10.1016/j.jenvman.2013.03.028

    Article  Google Scholar 

  32. Islam, M.A., Ahmed, M.J., Khanday, W.A., Asif, M., Hameed, B.H.: Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J Environ Manage 203(Pt 1), 237–244 (2017). https://doi.org/10.1016/j.jenvman.2017.07.029

    Article  Google Scholar 

  33. Plaza-Recobert, M., Trautwein, G., Pérez-Cadenas, M., Alcañiz-Monge, J.: Preparation of binderless activated carbon monoliths from cocoa bean husk. Microporous Mesoporous Mater 243, 28–38 (2017). https://doi.org/10.1016/j.micromeso.2017.02.015

    Article  Google Scholar 

  34. Roy, S., Das, P., Sengupta, S.: Treatability study using novel activated carbon prepared from rice husk: column study, optimization using response surface methodology and mathematical modeling. Process Saf Environ Prot 105, 184–193 (2017). https://doi.org/10.1016/j.psep.2016.11.007

    Article  Google Scholar 

  35. Pallarés, J., González-Cencerrado, A., Arauzo, I.: Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenerg 115, 64–73 (2018). https://doi.org/10.1016/j.biombioe.2018.04.015

    Article  Google Scholar 

  36. Talat, M., Mohan, S., Dixit, V., Singh, D.K., Hasan, S.H., Srivastava, O.N.: Effective removal of fluoride from water by coconut husk activated carbon in fixed bed column: experimental and breakthrough curves analysis. Groundw Sustain Dev 7, 48–55 (2018). https://doi.org/10.1016/j.gsd.2018.03.001

    Article  Google Scholar 

  37. Ayinla, R.T., Dennis, J.O., Zaid, H.M., Sanusi, Y.K., Usman, F., Adebayo, L.L.: A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. J Clean Prod 229, 1427–1442 (2019). https://doi.org/10.1016/j.jclepro.2019.04.116

    Article  Google Scholar 

  38. Charola, S., Patel, H., Chandna, S., Maiti, S.: Optimization to prepare porous carbon from mustard husk using response surface methodology adopted with central composite design. J Clean Prod 223, 969–979 (2019). https://doi.org/10.1016/j.jclepro.2019.03.169

    Article  Google Scholar 

  39. Du, Q., Cheng, T., Liu, Y., Li, N., Wang, X.: The use of natural hierarchical porous carbon from Artemia cyst shells alleviates power decay in activated carbon air-cathode. Electrochim Acta 315, 41–47 (2019). https://doi.org/10.1016/j.electacta.2019.05.098

    Article  Google Scholar 

  40. Garg, D., Kumar, S., Sharma, K., Majumder, C.B.: Application of waste peanut shells to form activated carbon and its utilization for the removal of Acid Yellow 36 from wastewater. Groundw Sustain Dev 8, 512–519 (2019). https://doi.org/10.1016/j.gsd.2019.01.010

    Article  Google Scholar 

  41. Li, M., Xiao, R.: Preparation of a dual pore structure activated carbon from rice husk char as an adsorbent for CO2 capture. Fuel Process Technol 186, 35–39 (2019). https://doi.org/10.1016/j.fuproc.2018.12.015

    Article  Google Scholar 

  42. Liu, D., Zhang, W., Huang, W.: Effect of removing silica in rice husk for the preparation of activated carbon for supercapacitor applications. Chin Chem Lett 30(6), 1315–1319 (2019). https://doi.org/10.1016/j.cclet.2019.02.031

    Article  Google Scholar 

  43. Mishra, S., Yadav, S.S., Rawat, S., Singh, J., Koduru, J.R.: Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: Interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties. J Environ Manage 246, 362–373 (2019). https://doi.org/10.1016/j.jenvman.2019.06.013

    Article  Google Scholar 

  44. Saravanan, K.R.A., Prabu, N., Sasidharan, M., Maduraiveeran, G.: Nitrogen-self doped activated carbon nanosheets derived from peanut shells for enhanced hydrogen evolution reaction. Appl Surf Sci 489, 725–733 (2019). https://doi.org/10.1016/j.apsusc.2019.06.040

    Article  Google Scholar 

  45. Shamsudin, I.K., Abdullah, A., Idris, I., Gobi, S., Othman, M.R.: Hydrogen purification from binary syngas by PSA with pressure equalization using microporous palm kernel shell activated carbon. Fuel 253, 722–730 (2019). https://doi.org/10.1016/j.fuel.2019.05.029

    Article  Google Scholar 

  46. Zhang, H., Zhao, X., Ding, X., Lei, H., Chen, X., An, D., Li, Y., Wang, Z.: A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk. Bioresour Technol 101(4), 1263–1267 (2010). https://doi.org/10.1016/j.biortech.2009.09.045

    Article  Google Scholar 

  47. Krishania, M., Kumar, V., Sangwan, R.S.: Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresour Technol Rep 1, 89–93 (2018). https://doi.org/10.1016/j.biteb.2018.01.001

    Article  Google Scholar 

  48. Shahira Syed Putra, S., Noraini Jimat, D., Mohd Fazli, W., Sulaiman, S., Jamal, P., Ahmad Nor, Y.: Surface functionalisation of microfibrillated cellulose (MFC) of cocoa pod husk with Ƴ-methacryloxypropyltrimethoxysilane (MPS). Mater Today Proc 5(10), 22000–22009 (2018). https://doi.org/10.1016/j.matpr.2018.07.061

    Article  Google Scholar 

  49. Udomkun, P., Innawong, B., Jumrusjumroendee, N.: Cellulose acetate and adsorbents supported on cellulose fiber extracted from waxy corn husks for improving shelf life of frying oil. LWT 97, 45–52 (2018). https://doi.org/10.1016/j.lwt.2018.06.035

    Article  Google Scholar 

  50. Wang, Z., Qiao, X., Sun, K.: Rice straw cellulose nanofibrils reinforced poly(vinyl alcohol) composite films. Carbohydr Polym 197, 442–450 (2018). https://doi.org/10.1016/j.carbpol.2018.06.025

    Article  Google Scholar 

  51. Zhao, J., Dong, Z., Li, J., Chen, L., Bai, Y., Jia, Y., Shao, T.: Ensiling as pretreatment of rice straw: the effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour Technol 266, 158–165 (2018). https://doi.org/10.1016/j.biortech.2018.06.058

    Article  Google Scholar 

  52. Andrade Alves, J.A., Lisboa Dos Santos, M.D., Morais, C.C., Ramirez Ascheri, J.L., Signini, R., Dos Santos, D.M., Cavalcante Bastos, S.M., Ramirez Ascheri, D.P.: Sorghum straw: pulping and bleaching process optimization and synthesis of cellulose acetate. Int J Biol Macromol 135, 877–886 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.014

    Article  Google Scholar 

  53. Barana, D., Orlandi, M., Salanti, A., Castellani, L., Hanel, T., Zoia, L.: Simultaneous synthesis of cellulose nanocrystals and a lignin-silica biofiller from rice husk: application for elastomeric compounds. Ind Crops Prod (2019). https://doi.org/10.1016/j.indcrop.2019.111822

    Article  Google Scholar 

  54. Collazo-Bigliardi, S., Ortega-Toro, R., Chiralt, A.: Improving properties of thermoplastic starch films by incorporating active extracts and cellulose fibres isolated from rice or coffee husk. Food Packag Shelf Life (2019). https://doi.org/10.1016/j.fpsl.2019.100383

    Article  Google Scholar 

  55. de Oliveira, J.P., Bruni, G.P., El Halal, S.L.M., Bertoldi, F.C., Dias, A.R.G., Zavareze, E.D.R.: Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. Int J Biol Macromol 124, 175–184 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.205

    Article  Google Scholar 

  56. Dhar, P., Pratto, B., Gonçalves Cruz, A.J., Bankar, S.: Valorization of sugarcane straw to produce highly conductive bacterial cellulose/graphene nanocomposite films through in situ fermentation: kinetic analysis and property evaluation. J Clean Prod (2019). https://doi.org/10.1016/j.jclepro.2019.117859

    Article  Google Scholar 

  57. Barbosa, S.L., Lima, P.C., dos Santos, W.T.P., Klein, S.I., Clososki, G.C., Caires, F.J.: Oxygenated biofuels: synthesis of fatty acid solketal esters with a mixture of sulfonated silica and (Bu4N)(BF4) catalyst. Catal Commun 120, 76–79 (2019). https://doi.org/10.1016/j.catcom.2018.12.005

    Article  Google Scholar 

  58. Fernandes, A.E., Jonas, A.M.: Design and engineering of multifunctional silica-supported cooperative catalysts. Catal Today 334, 173–186 (2019). https://doi.org/10.1016/j.cattod.2018.11.040

    Article  Google Scholar 

  59. Gong, N., Wang, X., Zhang, Y., Zhao, Z.: Mesoporous silica nanosphere with open-mouth stellate pore architecture as a promising carrier for highly active solid acid catalysts. Mater Chem Phys (2019). https://doi.org/10.1016/j.matchemphys.2019.121821

    Article  Google Scholar 

  60. Wang, J., Guo, Z., Zhao, J., Yang, Q., Dai, Y., Yang, Y., Wang, C.: Preparation of silica as catalyst supports with controlled surface property using continuous flow reactor. Appl Catal A (2019). https://doi.org/10.1016/j.apcata.2019.117212

    Article  Google Scholar 

  61. Al Soubaihi, R.M., Saoud, K.M., Ye, F., Zar Myint, M.T., Saeed, S., Dutta, J.: Synthesis of hierarchically porous silica aerogel supported Palladium catalyst for low-temperature CO oxidation under ignition/extinction conditions. Microporous Mesoporous Mater (2020). https://doi.org/10.1016/j.micromeso.2019.109758

    Article  Google Scholar 

  62. Vahanian, E., Yavrian, A., Gilbert, R., Galstian, T.: Enhancement of the electrical response in high concentrating photovoltaic systems by antireflective coatings based on silica nanoparticles. Sol Energy 137, 273–280 (2016). https://doi.org/10.1016/j.solener.2016.08.022

    Article  Google Scholar 

  63. Dong, Q., Huang, C., Duan, G., Zhang, F., Yang, D.A.: Facile synthesis and electrical performance of silica-coated copper powder for copper electronic pastes on low temperature co-fired ceramic. Mater Lett 186, 263–266 (2017). https://doi.org/10.1016/j.matlet.2016.09.116

    Article  Google Scholar 

  64. Guo, S., Yuan, B., Zhao, H., Hua, D., Shen, Y., Sun, C., Chen, T., Sun, W., Wu, J., Zheng, B., Zhang, W., Li, S., Huo, F.: Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode. Nano Energy 58, 673–679 (2019). https://doi.org/10.1016/j.nanoen.2019.02.004

    Article  Google Scholar 

  65. Jang, H.S., Kwon, S.H., Lee, J.H., Choi, H.J.: Facile fabrication of core-shell typed silica/poly(diphenylamine) composite microparticles and their electro-response. Polymer (2019). https://doi.org/10.1016/j.polymer.2019.121851

    Article  Google Scholar 

  66. Shen, C., Wang, H., Zhang, T., Zeng, Y.: Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites. J Mater Sci Technol 35(1), 36–43 (2019). https://doi.org/10.1016/j.jmst.2018.09.016

    Article  Google Scholar 

  67. Nayana, A.M., Rakesh, P.: Strength and durability study on cement mortar with ceramic waste and micro-silica. Mater Today Procs 5(11), 24780–24791 (2018). https://doi.org/10.1016/j.matpr.2018.10.276

    Article  Google Scholar 

  68. Xu, Z., Zhong, J., Su, X., Xu, Q., Liu, B.: Experimental study on mechanical properties of silica-based ceramic core for directional solidification of single crystal superalloy. Ceram Int 44(1), 394–401 (2018). https://doi.org/10.1016/j.ceramint.2017.09.189

    Article  Google Scholar 

  69. Bae, C.-J., Kim, D., Halloran, J.W.: Mechanical and kinetic studies on the refractory fused silica of integrally cored ceramic mold fabricated by additive manufacturing. J Eur Ceram Soc 39(2–3), 618–623 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.09.013

    Article  Google Scholar 

  70. Xu, X., Niu, S., Wang, X., Li, X., Li, H., Su, X., Luo, S.: Fabrication and casting simulation of composite ceramic cores with silica nanopowders. Ceram Int 45(15), 19283–19288 (2019). https://doi.org/10.1016/j.ceramint.2019.06.178

    Article  Google Scholar 

  71. Yang, Z., Zhao, Z., Yu, J., Ren, Z.: Preparation of silica ceramic cores by the preceramic pyrolysis technology using silicone resin as precursor and binder. Mater Chem Phys 223, 676–682 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.039

    Article  Google Scholar 

  72. Golafshani, E.M., Behnood, A.: Estimating the optimal mix design of silica fume concrete using biogeography-based programming. Cem Concr. Compos 96, 95–105 (2019). https://doi.org/10.1016/j.cemconcomp.2018.11.005

    Article  Google Scholar 

  73. Mehta, A., Ashish, D.K.: Silica fume and waste glass in cement concrete production: a review. J Build Eng (2019). https://doi.org/10.1016/j.jobe.2019.100888

    Article  Google Scholar 

  74. Mora, E., González, G., Romero, P., Castellón, E.: Control of water absorption in concrete materials by modification with hybrid hydrophobic silica particles. Constr Build Mater 221, 210–218 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.086

    Article  Google Scholar 

  75. Sasanipour, H., Aslani, F., Taherinezhad, J.: Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates. Constr Build Mater (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.324

    Article  Google Scholar 

  76. Zareei, S.A., Ameri, F., Bahrami, N., Shoaei, P., Moosaei, H.R., Salemi, N.: Performance of sustainable high strength concrete with basic oxygen steel-making (BOS) slag and nano-silica. J Build Eng (2019). https://doi.org/10.1016/j.jobe.2019.100791

    Article  Google Scholar 

  77. D'Orazio, G., Fanali, C., Gentili, A., Tagliaro, F., Fanali, S.: Nano-liquid chromatography for enantiomers separation of baclofen by using vancomycin silica stationary phase. J Chromatogr A (2019). https://doi.org/10.1016/j.chroma.2019.07.012

    Article  Google Scholar 

  78. Hu, Y., Cai, T., Zhang, H., Chen, J., Li, Z., Zhao, L., Li, Z., Qiu, H.: Two copolymer-grafted silica stationary phases prepared by surface thiol-ene click reaction in deep eutectic solvents for hydrophilic interaction chromatography. J Chromatogr A (2019). https://doi.org/10.1016/j.chroma.2019.460446

    Article  Google Scholar 

  79. Sun, M., Ruiz Barbero, S., Johannsen, M., Smirnova, I., Gurikov, P.: Retention characteristics of silica materials in carbon dioxide/methanol mixtures studied by inverse supercritical fluid chromatography. J Chromatogr A 1588, 127–136 (2019). https://doi.org/10.1016/j.chroma.2018.12.053

    Article  Google Scholar 

  80. Wang, Y., Bu, H., Wang, L., Wang, L., Guo, Y., Liang, X., Wang, S.: High efficiency and simple preparation of polyacrylamide coated silica stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A (2019). https://doi.org/10.1016/j.chroma.2019.07.011

    Article  Google Scholar 

  81. Zhang, S.-Q., Li, J., Li, L., Yuan, X., Xu, L., Shi, Z.: Fast separation of water-soluble vitamins by hydrophilic interaction liquid chromatography based on submicrometer flow-through silica microspheres. Food Chem (2019). https://doi.org/10.1016/j.foodchem.2019.125531

    Article  Google Scholar 

  82. Conradi, M., Kocijan, A., Zorko, M., Verpoest, I.: Damage resistance and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings. Prog Org Coat 80, 20–26 (2015). https://doi.org/10.1016/j.porgcoat.2014.11.011

    Article  Google Scholar 

  83. Ghanbari, A., Attar, M.M.: A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate. J Ind Eng Chem 23, 145–153 (2015). https://doi.org/10.1016/j.jiec.2014.08.008

    Article  Google Scholar 

  84. Falcón, J.M., Otubo, L.M., Aoki, I.V.: Highly ordered mesoporous silica loaded with dodecylamine for smart anticorrosion coatings. Surf Coat Technol 303, 319–329 (2016). https://doi.org/10.1016/j.surfcoat.2015.11.029

    Article  Google Scholar 

  85. Shi, S., Zhang, Z., Yu, L.: Hydrophobic polyaniline/modified SiO2 coatings for anticorrosion protection. Synth Met 233, 94–100 (2017). https://doi.org/10.1016/j.synthmet.2017.10.002

    Article  Google Scholar 

  86. Fang, G., Jia, P., Liang, T., Tan, Q., Hong, Y., Liu, W., Xiong, J.: Diaphragm-free fiber-optic Fabry-Perot interferometer based on tapered hollow silica tube. Opt Commun 371, 201–205 (2016). https://doi.org/10.1016/j.optcom.2016.03.026

    Article  Google Scholar 

  87. Islam, S., Bakhtiar, H., Aziz, M.S.B.A., Duralim, M.B., Riaz, S., Naseem, S., Abdullha, M.B., Osman, S.S.: CR incorporation in mesoporous silica matrix for fiber optic pH sensing. Sensors Actuators A 280, 429–436 (2018). https://doi.org/10.1016/j.sna.2018.08.016

    Article  Google Scholar 

  88. Islam, S., Bakhtiar, H., Duralim, M.B., Binti Sapingi, H.H.J., Riaz, S., Naseem, S., Musa, N.B., Lau, P.S., Bin Abdullah, M.: Influence of organic pH dyes on the structural and optical characteristics of silica nanostructured matrix for fiber optic sensing. Sensors Actuators A 282, 28–38 (2018). https://doi.org/10.1016/j.sna.2018.09.013

    Article  Google Scholar 

  89. Islam, S., Bakhtiar, H., Naseem, S., Abd Aziz, M.S.B., Bidin, N., Riaz, S., Ali, J.: Surface functionality and optical properties impact of phenol red dye on mesoporous silica matrix for fiber optic pH sensing. Sensors Actuators A 276, 267–277 (2018). https://doi.org/10.1016/j.sna.2018.04.027

    Article  Google Scholar 

  90. Islam, S., Bakhtiar, H., Haider, Z., Riaz, S., Naseem, S., Chaudhary, K., Suan, L.P., Usman, S.S., Aziz, M.S.B.A.: BPB dye confined growth of surfactant-assisted mesostructured silica matrix fiber optic sensing tracers. J Saudi Chem Soc 23(4), 427–438 (2019). https://doi.org/10.1016/j.jscs.2018.07.005

    Article  Google Scholar 

  91. Velmurugan, P., Shim, J., Lee, K.-J., Cho, M., Lim, S.-S., Seo, S.-K., Cho, K.-M., Bang, K.-S., Oh, B.-T.: Extraction, characterization, and catalytic potential of amorphous silica from corn cobs by sol-gel method. J Ind Eng Chem 29, 298–303 (2015). https://doi.org/10.1016/j.jiec.2015.04.009

    Article  Google Scholar 

  92. Anuar, M.F., Fen, Y.W., Zaid, M.H.M., Matori, K.A., Khaidir, R.E.M.: Synthesis and structural properties of coconut husk as potential silica source. Results Phys 11, 1–4 (2018). https://doi.org/10.1016/j.rinp.2018.08.018

    Article  Google Scholar 

  93. Theis, M., Skrifvars, B.-J., Hupa, M., Tran, H.: Fouling tendency of ash resulting from burning mixtures of biofuels. Part 1: deposition rates. Fuel 85(7–8), 1125–1130 (2006). https://doi.org/10.1016/j.fuel.2005.10.010

    Article  Google Scholar 

  94. Chen, H., Wang, F., Zhang, C., Shi, Y., Jin, G., Yuan, S.: Preparation of nano-silica materials: the concept from wheat straw. J Non-Cryst Solids 356(50–51), 2781–2785 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.09.051

    Article  Google Scholar 

  95. Wattanasiriwech, S., Wattanasiriwech, D., Svasti, J.: Production of amorphous silica nanoparticles from rice straw with microbial hydrolysis pretreatment. J Non-Cryst Solids 356(25–27), 1228–1232 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.04.032

    Article  Google Scholar 

  96. Amurugam, A., Ponnusami, V.: Modified SBA-15 synthesized using sugarcane leaf ash for nickel adsorption. Indian J. Chem. Technol. 20, 101–105 (2013)

    Google Scholar 

  97. Azizi, S.N., Dehnavi, A.R., Joorabdoozha, A.: Synthesis and characterization of LTA nanozeolite using barley husk silica: mercury removal from standard and real solutions. Mater Res Bull 48(5), 1753–1759 (2013). https://doi.org/10.1016/j.materresbull.2012.12.068

    Article  Google Scholar 

  98. Guo, M., Bi, J.: Pyrolysis characteristics of corn stalk with heat solid carrier. BioResource 10(3), 3839–3851 (2015). https://doi.org/10.15376/biores.10.3.3839-3851

    Article  Google Scholar 

  99. Mupa, M., Hungwe, C.B., Witzleben, S., Mahamadi, C., Muchanyereyi, N.: Extraction of silica gel from Sorghum bicolour (L.) moench bagasse ash. Afr J Pure Appl Chem 9(2), 12–17 (2015). https://doi.org/10.5897/ajpac2015.0603

    Article  Google Scholar 

  100. Ndububa, E., Yahubu, N.: Effect of Guinea corn husk ash as partial replacement for cement in concrete. IOSR J Mech Civ Eng 12(2), 40–45 (2015). https://doi.org/10.9790/1684-12214045

    Article  Google Scholar 

  101. Salazar-Carreño, D., García-Cáceres, R.G., Ortiz-Rodríguez, O.O.: Laboratory processing of Colombian rice husk for obtaining amorphous silica as concrete supplementary cementing material. Constr Build Mater 96, 65–75 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.178

    Article  Google Scholar 

  102. Bakar, R.A., Yahya, R., Gan, S.N.: Production of high purity amorphous silica from rice husk. Procedia Chem 19, 189–195 (2016). https://doi.org/10.1016/j.proche.2016.03.092

    Article  Google Scholar 

  103. Norsuraya, S., Fazlena, H., Norhasyimi, R.: Sugarcane bagasse as a renewable source of silica to synthesize Santa Barbara Amorphous-15 (SBA-15). Procedia Eng 148, 839–846 (2016). https://doi.org/10.1016/j.proeng.2016.06.627

    Article  Google Scholar 

  104. Sobrosa, F.Z., Stochero, N.P., Marangon, E., Tier, M.D.: Development of refractory ceramics from residual silica derived from rice husk ash. Ceram Int 43(9), 7142–7146 (2017). https://doi.org/10.1016/j.ceramint.2017.02.147

    Article  Google Scholar 

  105. Stochero, N.P., Marangon, E., Nunes, A.S., Tier, M.D.: Development of refractory ceramics from residual silica derived from rice husk ash and steel fibres. Ceram Int 43(16), 13875–13880 (2017). https://doi.org/10.1016/j.ceramint.2017.07.111

    Article  Google Scholar 

  106. Bageru, A.B., Srivastava, V.C.: Biosilica preparation from abundantly available African biomass Teff (Eragrostis tef) straw ash by sol-gel method and its characterization. Biomass Convers Biorefinery 8(4), 971–978 (2018). https://doi.org/10.1007/s13399-018-0335-5

    Article  Google Scholar 

  107. Hubadillah, S.K., Othman, M.H.D., Ismail, A.F., Rahman, M.A., Jaafar, J., Iwamoto, Y., Honda, S., Dzahir, M.I.H.M., Yusop, M.Z.M.: Fabrication of low cost, green silica based ceramic hollow fibre membrane prepared from waste rice husk for water filtration application. Ceram Int 44(9), 10498–10509 (2018). https://doi.org/10.1016/j.ceramint.2018.03.067

    Article  Google Scholar 

  108. Salakhum, S., Yutthalekha, T., Chareonpanich, M., Limtrakul, J., Wattanakit, C.: Synthesis of hierarchical faujasite nanosheets from corn cob ash-derived nanosilica as efficient catalysts for hydrogenation of lignin-derived alkylphenols. Microporous Mesoporous Mater 258, 141–150 (2018). https://doi.org/10.1016/j.micromeso.2017.09.009

    Article  Google Scholar 

  109. Amin, M., Murtaza, T., Shahzada, K., Khan, K., Adil, M.: Pozzolanic potential and mechanical performance of wheat straw ash incorporated sustainable concrete. Sustainability (2019). https://doi.org/10.3390/su11020519

    Article  Google Scholar 

  110. Azat, S., Korobeinyk, A.V., Moustakas, K., Inglezakis, V.J.: Sustainable production of pure silica from rice husk waste in Kazakhstan. J Clean Prod 217, 352–359 (2019). https://doi.org/10.1016/j.jclepro.2019.01.142

    Article  Google Scholar 

  111. Makul, N., Agrawal, D.K.: Microwave (2.45GHz)-assisted rapid sintering of SiO2-rich rice husk ash. Mater Lett 64(3), 367–370 (2010). https://doi.org/10.1016/j.matlet.2009.11.018

    Article  Google Scholar 

  112. Salavati-Niasari, M., Javidi, J.: Sonochemical synthesis of silica and silica sulfuric acid nanoparticles from rice husk ash: a new and recyclable catalyst for the acetylation of alcohols and phenols under heterogeneous conditions. Comb Chem High Throughput Screen 15(9), 705–712 (2012)

    Article  Google Scholar 

  113. Pijarn, N., Galajak, P.: New insight technique for synthesis of silica gel from rice husk ash by using microwave radiation. Adv Mater Res 1025–1026, 574–579 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1025-1026.574

    Article  Google Scholar 

  114. San, N.O., Kurşungöz, C., Tümtaş, Y., Yaşa, Ö., Ortaç, B., Tekinay, T.: Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology 17, 29–35 (2014). https://doi.org/10.1016/j.partic.2013.11.003

    Article  Google Scholar 

  115. Sankar, S., Kaur, N., Lee, S., Kim, D.Y.: Rapid sonochemical synthesis of spherical silica nanoparticles derived from brown rice husk. Ceram Int 44(7), 8720–8724 (2018). https://doi.org/10.1016/j.ceramint.2018.02.090

    Article  Google Scholar 

  116. Affandi, S., Setyawan, H., Winardi, S., Purwanto, A., Balgis, R.: A facile method for production of high-purity silica xerogels from bagasse ash. Adv Powder Technol 20(5), 468–472 (2009). https://doi.org/10.1016/j.apt.2009.03.008

    Article  Google Scholar 

  117. Zulkifli, N.S.C., Ab Rahman, I., Mohamad, D., Husein, A.: A green sol–gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceram Int 39(4), 4559–4567 (2013). https://doi.org/10.1016/j.ceramint.2012.11.052

    Article  Google Scholar 

  118. Alshatwi, A.A., Athinarayanan, J., Periasamy, V.S.: Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications. Mater Sci Eng C Mater Biol Appl 47, 8–16 (2015). https://doi.org/10.1016/j.msec.2014.11.005

    Article  Google Scholar 

  119. Athinarayanan, J., Periasamy, V.S., Alhazmi, M., Alatiah, K.A., Alshatwi, A.A.: Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int 41(1), 275–281 (2015). https://doi.org/10.1016/j.ceramint.2014.08.069

    Article  Google Scholar 

  120. Kumar Rajanna, S., Vinjamur, M., Mukhopadhyay, M.: Mechanism for formation of hollow and granular silica aerogel microspheres from rice husk ash for drug delivery. J Non-Cryst Solids 429, 226–231 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.09.015

    Article  Google Scholar 

  121. Shim, J., Velmurugan, P., Oh, B.-T.: Extraction and physical characterization of amorphous silica made from corn cob ash at variable pH conditions via sol gel processing. J Ind Eng Chem 30, 249–253 (2015). https://doi.org/10.1016/j.jiec.2015.05.029

    Article  Google Scholar 

  122. Zulfiqar, U., Subhani, T., Wilayat Husain, S.: Towards tunable size of silica particles from rice husk. J. Non-Cryst Solids 429, 61–69 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.08.037

    Article  Google Scholar 

  123. Gad, H.M.H., Hamed, M.M., Abo Eldahab, H.M.M., Moustafa, M.E., El-Reefy, S.A.: Radiation-induced grafting copolymerization of resin onto the surface of silica extracted from rice husk ash for adsorption of gadolinium. J Mol Liq 231, 45–55 (2017). https://doi.org/10.1016/j.molliq.2017.01.088

    Article  Google Scholar 

  124. Sinyoung, S., Kunchariyakun, K., Asavapisit, S., MacKenzie, K.J.D.: Synthesis of belite cement from nano-silica extracted from two rice husk ashes. J Environ Manage 190, 53–60 (2017). https://doi.org/10.1016/j.jenvman.2016.12.016

    Article  Google Scholar 

  125. Feng, Q., Chen, K., Ma, D., Lin, H., Liu, Z., Qin, S., Luo, Y.: Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying. Colloids Surf A 539, 399–406 (2018). https://doi.org/10.1016/j.colsurfa.2017.12.025

    Article  Google Scholar 

  126. Guzel Kaya, G., Yilmaz, E., Deveci, H.: Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: enhanced thermal and acoustic insulation performance. Composites B 150, 1–6 (2018). https://doi.org/10.1016/j.compositesb.2018.05.039

    Article  Google Scholar 

  127. Kauldhar, B.S., Yadav, S.K.: Turning waste to wealth: a direct process for recovery of nano-silica and lignin from paddy straw agro-waste. J Clean Prod 194, 158–166 (2018). https://doi.org/10.1016/j.jclepro.2018.05.136

    Article  Google Scholar 

  128. Miguez, J.P., Gama, R.S., Bolina, I.C.A., de Melo, C.C., Cordeiro, M.R., Hirata, D.B., Mendes, A.A.: Enzymatic synthesis optimization of a cosmetic ester catalyzed by a homemade biocatalyst prepared via physical adsorption of lipase on amino-functionalized rice husk silica. Chem Eng Res Des 139, 296–308 (2018). https://doi.org/10.1016/j.cherd.2018.09.037

    Article  Google Scholar 

  129. Periasamy, V.S., Athinarayanan, J., Alshatwi, A.A.: Extraction and biocompatibility analysis of silica phytoliths from sorghum husk for three-dimensional cell culture. Process Biochem. 70, 153–159 (2018). https://doi.org/10.1016/j.procbio.2018.04.017

    Article  Google Scholar 

  130. Santana Costa, J.A., Paranhos, C.M.: Systematic evaluation of amorphous silica production from rice husk ashes. J Clean Prod 192, 688–697 (2018). https://doi.org/10.1016/j.jclepro.2018.05.028

    Article  Google Scholar 

  131. Song, S., Cho, H.-B., Kim, H.T.: Surfactant-free synthesis of high surface area silica nanoparticles derived from rice husks by employing the Taguchi approach. J Ind Eng Chem 61, 281–287 (2018). https://doi.org/10.1016/j.jiec.2017.12.025

    Article  Google Scholar 

  132. Abbas, N., Khalid, H.R., Ban, G., Kim, H.T., Lee, H.K.: Silica aerogel derived from rice husk: an aggregate replacer for lightweight and thermally insulating cement-based composites. Constr Build Mater 195, 312–322 (2019). https://doi.org/10.1016/j.conbuildmat.2018.10.227

    Article  Google Scholar 

  133. de Cordoba, M.C.F., Matos, J., Montaña, R., Poon, P.S., Lanfredi, S., Praxedes, F.R., Hernández-Garrido, J.C., Calvino, J.J., Rodríguez-Aguado, E., Rodríguez-Castellón, E., Ania, C.O.: Sunlight photoactivity of rice husks-derived biogenic silica. Catal Today 328, 125–135 (2019). https://doi.org/10.1016/j.cattod.2018.12.008

    Article  Google Scholar 

  134. Nassar, M.Y., Ahmed, I.S., Raya, M.A.: A facile and tunable approach for synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions. J Mol Liq 282, 251–263 (2019). https://doi.org/10.1016/j.molliq.2019.03.017

    Article  Google Scholar 

  135. Prabha, S., Durgalakshmi, D., Aruna, P., Ganesan, S.: Influence of the parameters in the preparation of silica nanoparticles from biomass and chemical silica precursors towards bioimaging application. Vacuum 160, 181–188 (2019). https://doi.org/10.1016/j.vacuum.2018.11.030

    Article  Google Scholar 

  136. Vu, A.-T., Xuan, T.N., Lee, C.-H.: Preparation of mesoporous Fe2O3·SiO2 composite from rice husk as an efficient heterogeneous Fenton-like catalyst for degradation of organic dyes. J Water Process Eng 28, 169–180 (2019). https://doi.org/10.1016/j.jwpe.2019.01.019

    Article  Google Scholar 

  137. Estevez, M., Vargas, S., Castaño, V.M., Rodriguez, R.: Silica nano-particles produced by worms through a bio-digestion process of rice husk. J. Non-Cryst Solids 355(14–15), 844–850 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.04.011

    Article  Google Scholar 

  138. Torres, M.G., Muñoz, S.V., Martínez, A.R., Hernández, V.S., Saucedo, A.V., Cervantes, E.R., Talavera, R.R., Rivera, M., del Pilar Carreón Castro, M.: Morphology-controlled silicon oxide particles produced by red wiggler worms. Powder Technol 310, 205–212 (2017). https://doi.org/10.1016/j.powtec.2017.01.011

    Article  Google Scholar 

  139. Carmona, V.B., Oliveira, R.M., Silva, W.T.L., Mattoso, L.H.C., Marconcini, J.M.: Nanosilica from rice husk: extraction and characterization. Ind Crops Prod 43, 291–296 (2013). https://doi.org/10.1016/j.indcrop.2012.06.050

    Article  Google Scholar 

  140. Hindryawati, N., Maniam, G.P., Karim, M.R., Chong, K.F.: Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst. Eng Sci Technol 17(2), 95–103 (2014). https://doi.org/10.1016/j.jestch.2014.04.002

    Article  Google Scholar 

  141. Faé Gomes, G.M., Philipssen, C., Bard, E.K., Zen, L.D., de Souza, G.: Rice husk bubbling fluidized bed combustion for amorphous silica synthesis. J Environ Chem Eng 4(2), 2278–2290 (2016). https://doi.org/10.1016/j.jece.2016.03.049

    Article  Google Scholar 

  142. Sembiring, S., Simanjuntak, W., Situmeang, R., Riyanto, A., Sebayang, K.: Preparation of refractory cordierite using amorphous rice husk silica for thermal insulation purposes. Ceram Int 42(7), 8431–8437 (2016). https://doi.org/10.1016/j.ceramint.2016.02.062

    Article  Google Scholar 

  143. Ghime, D., Ghosh, P.: Heterogeneous Fenton degradation of oxalic acid by using silica supported iron catalysts prepared from raw rice husk. J Water Process Eng 19, 156–163 (2017). https://doi.org/10.1016/j.jwpe.2017.07.025

    Article  Google Scholar 

  144. Junaidi, M.U.M., Azaman, S.A.H., Ahmad, N.N.R., Leo, C.P., Lim, G.W., Chan, D.J.C., Yee, H.M.: Superhydrophobic coating of silica with photoluminescence properties synthesized from rice husk ash. Prog Org Coat 111, 29–37 (2017). https://doi.org/10.1016/j.porgcoat.2017.05.009

    Article  Google Scholar 

  145. Pattnayak, A., Madhu, N., Panda, A.S., Sahoo, M.K., Mohanta, K.: A Comparative study on mechanical properties of Al-SiO2 composites fabricated using rice husk silica in crystalline and amorphous form as reinforcement. Mater Today Proc 5(2), 8184–8192 (2018). https://doi.org/10.1016/j.matpr.2017.11.507

    Article  Google Scholar 

  146. Sembiring, S., Simanjuntak, W., Situmeang, R., Riyanto, A., Karo-Karo, P.: Effect of alumina addition on the phase transformation and crystallisation properties of refractory cordierite prepared from amorphous rice husk silica. J Asian Ceram Soc 5(2), 186–192 (2018). https://doi.org/10.1016/j.jascer.2017.04.005

    Article  Google Scholar 

  147. Davarpanah, J., Sayahi, M.H., Ghahremani, M., Karkhoei, S.: Synthesis and characterization of nano acid catalyst derived from rice husk silica and its application for the synthesis of 3,4-dihydropyrimidinones/thiones compounds. J Mol Struct 1181, 546–555 (2019). https://doi.org/10.1016/j.molstruc.2018.12.113

    Article  Google Scholar 

  148. Gu, S., Zhou, J., Yu, C., Luo, Z., Wang, Q., Shi, Z.: A novel two-staged thermal synthesis method of generating nanosilica from rice husk via pre-pyrolysis combined with calcination. Ind Crops Prod 65, 1–6 (2015). https://doi.org/10.1016/j.indcrop.2014.11.045

    Article  Google Scholar 

  149. Vaibhav, V., Vijayalakshmi, U., Roopan, S.M.: Agricultural waste as a source for the production of silica nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 139, 515–520 (2015). https://doi.org/10.1016/j.saa.2014.12.083

    Article  Google Scholar 

  150. Mor, S., Manchanda, C.K., Kansal, S.K., Ravindra, K.: Nanosilica extraction from processed agricultural residue using green technology. J Clean Prod 143, 1284–1290 (2017). https://doi.org/10.1016/j.jclepro.2016.11.142

    Article  Google Scholar 

  151. Akhayere, E., Kavaz, D., Vaseashta, A.: Synthesizing nano silica nanoparticles from barley grain waste: effect of temperature on mechanical properties. Pol J Environ Stud 28(4), 2513–2521 (2019). https://doi.org/10.15244/pjoes/91078

    Article  Google Scholar 

  152. Kwon, S.H., Park, I.H., Vu, C.M., Choi, H.J.: Fabrication and electro-responsive electrorheological characteristics of rice husk-based nanosilica suspension. J Taiwan Inst Chem Eng 95, 432–437 (2019). https://doi.org/10.1016/j.jtice.2018.08.018

    Article  Google Scholar 

  153. Tadjarodi, A., Haghverdi, M., Mohammadi, V.: Preparation and characterization of nano-porous silica aerogel from rice husk ash by drying at atmospheric pressure. Mater Res Bull 47(9), 2584–2589 (2012). https://doi.org/10.1016/j.materresbull.2012.04.143

    Article  Google Scholar 

  154. Jullaphan, O., Witoon, T., Chareonpanich, M.: Synthesis of mixed-phase uniformly infiltrated SBA-3-like in SBA-15 bimodal mesoporous silica from rice husk ash. Mater Lett 63(15), 1303–1306 (2009). https://doi.org/10.1016/j.matlet.2009.03.001

    Article  Google Scholar 

  155. Bhagiyalakshmi, M., Yun, L.J., Anuradha, R., Jang, H.T.: Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. J Hazard Mater 175(1–3), 928–938 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.097

    Article  Google Scholar 

  156. Rahman, N.A., Widhiana, I., Juliastuti, S.R., Setyawan, H.: Synthesis of mesoporous silica with controlled pore structure from bagasse ash as a silica source. Colloids Surf A 476, 1–7 (2015). https://doi.org/10.1016/j.colsurfa.2015.03.018

    Article  Google Scholar 

  157. Lin, L., Zhai, S.R., Xiao, Z.Y., Liu, N., Song, Y., Zhai, B., An, Q.D.: Cooperative effect of polyethylene glycol and lignin on SiO2 microsphere production from rice husks. Bioresour Technol 125, 172–174 (2012). https://doi.org/10.1016/j.biortech.2012.08.119

    Article  Google Scholar 

  158. Cui, J., Sun, H., Luo, Z., Sun, J., Wen, Z.: Preparation of low surface area SiO2 microsphere from wheat husk ash with a facile precipitation process. Mater Lett 156, 42–45 (2015). https://doi.org/10.1016/j.matlet.2015.04.134

    Article  Google Scholar 

  159. Shahnani, M., Mohebbi, M., Mehdi, A., Ghassempour, A., Aboul-Enein, H.Y.: Silica microspheres from rice husk: a good opportunity for chromatography stationary phase. Ind Crops Prod 121, 236–240 (2018). https://doi.org/10.1016/j.indcrop.2018.05.023

    Article  Google Scholar 

  160. Yan, G., Nikolic, M., Ye, M., Xiao, Z., Liang, Y.: Silicon acquisition and accumulation in plant and its significance for agriculture. J Integr Agric 17(10), 2138–2150 (2018). https://doi.org/10.1016/s2095-3119(18)62037-4

    Article  Google Scholar 

  161. Ma, J.F., Yamaji, N.: A cooperative system of silicon transport in plants. Trends Plant Sci 20(7), 435–442 (2015). https://doi.org/10.1016/j.tplants.2015.04.007

    Article  Google Scholar 

  162. Shakoor, S., Bhat, M., Mir, S.: Phytoliths in plants: a review. Res Rev J Bot Sci 3(3), 10–24 (2014)

    Google Scholar 

  163. Luyckx, M., Hausman, J.F., Lutts, S., Guerriero, G.: Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8, 411 (2017). https://doi.org/10.3389/fpls.2017.00411

    Article  Google Scholar 

  164. Khan, A., Khan, A.L., Muneer, S., Kim, Y.H., Al-Rawahi, A., Al-Harrasi, A.: Silicon and Salinity: Crosstalk in Crop-Mediated Stress Tolerance Mechanisms. Front Plant Sci 10, 1429 (2019). https://doi.org/10.3389/fpls.2019.01429

    Article  Google Scholar 

  165. Singh, S., Ram, L.C., Masto, R.E., Verma, S.K.: A comparative evaluation of minerals and trace elements in the ashes from lignite, coal refuse, and biomass fired power plants. Int J Coal Geol 87(2), 112–120 (2011). https://doi.org/10.1016/j.coal.2011.05.006

    Article  Google Scholar 

  166. Abedi, A., Dalai, A.K.: Study on the quality of oat hull fuel pellets using bio-additives. Biomass Bioenerg 106, 166–175 (2017). https://doi.org/10.1016/j.biombioe.2017.08.024

    Article  Google Scholar 

  167. Nayak, D., Dash, N., Ray, N., Rath, S.S.: Utilization of waste coconut shells in the reduction roasting of overburden from iron ore mines. Powder Technol 353, 450–458 (2019). https://doi.org/10.1016/j.powtec.2019.05.053

    Article  Google Scholar 

  168. Werther, J., Saenger, M., Hartge, E.-U., Ogada, T., Otara, S.: Combustion of agricultural residues. Prog Energy Combust Sci 26, 1–27 (2000). https://doi.org/10.1016/S0360-1285(99)00005-2

    Article  Google Scholar 

  169. Tortosa Masiá, A.A., Buhre, B.J.P., Gupta, R.P., Wall, T.F.: Characterising ash of biomass and waste. Fuel Process Technol 88(11–12), 1071–1081 (2007). https://doi.org/10.1016/j.fuproc.2007.06.011

    Article  Google Scholar 

  170. Singh, S., Ram, L.C., Sarkar, A.K.: The mineralogical characteristics of the ashes derived from the combustion of lignite, coal washery rejects, and mustard stalk. Energy Sources Part A Recov Util Environ Effects 35(21), 2072–2085 (2013). https://doi.org/10.1080/15567036.2010.533331

    Article  Google Scholar 

  171. Rizvi, T., Xing, P., Pourkashanian, M., Darvell, L.I., Jones, J.M., Nimmo, W.: Prediction of biomass ash fusion behaviour by the use of detailed characterisation methods coupled with thermodynamic analysis. Fuel 141, 275–284 (2015). https://doi.org/10.1016/j.fuel.2014.10.021

    Article  Google Scholar 

  172. Terzioğlu, P., Yücel, S., Öztürk, M.: Synthesis of zeolite NaA from a new biosilica source. Waste Biomass Valoriz 7(5), 1271–1277 (2016). https://doi.org/10.1007/s12649-016-9518-0

    Article  Google Scholar 

  173. Pandey, A., Kumar, B.: Effects of rice straw ash and micro silica on mechanical properties of pavement quality concrete. J Build Eng (2019). https://doi.org/10.1016/j.jobe.2019.100889

    Article  Google Scholar 

  174. Miranda, M.T., Sepulveda, F.J., Arranz, J.I., Montero, I., Rojas, C.V.: Analysis of pelletizing from corn cob waste. J Environ Manage 228, 303–311 (2018). https://doi.org/10.1016/j.jenvman.2018.08.105

    Article  Google Scholar 

  175. Zhang, Y., Ghaly, A., Li, B.: Physical properties of corn residues. Am J Biochem Biotechnol 8(2), 44–53 (2012). https://doi.org/10.3844/ajbb.2012.44.53

    Article  Google Scholar 

  176. Maiti, S., Purakayastha, S., Ghosh, B.: Thermal characterization of mustard straw and stalk in nitrogen at different heating rates. Fuel 86(10–11), 1513–1518 (2007). https://doi.org/10.1016/j.fuel.2006.11.016

    Article  Google Scholar 

  177. Thomson, R., Mustafa, A., McKinnon, J., Maenz, D., Rossnagel, B.: Genotypic differences in chemical composition and ruminal degradability of oat hulls. Can J Anim Sci 80(2), 377–379 (2000). https://doi.org/10.4141/a4199-4132

    Article  Google Scholar 

  178. Ai, B., Sheng, Z., Zheng, L., Shang, W.: Collectable amounts of straw resources and their distribution in China. In: International Conference on Advances in Energy, Environment and Chemical Engineering (AEECE-2015) 2015. Advances in Engineering Research, pp. 441–444. Atlantis Press, Paris (2015)

  179. Chandraju, S., Venkatesh, R., Chidan Kumar, C.: Estimation of sugars by acid hydrolysis of sorghum husk by standard methods. J Chem Pharm Res 5(12), 1272–1275 (2013)

    Google Scholar 

  180. Kumar, M., Sabbarwal, S., Mishra, P.K., Upadhyay, S.N.: Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies. Bioresour Technol 279, 262–270 (2019). https://doi.org/10.1016/j.biortech.2019.01.137

    Article  Google Scholar 

  181. Bledzki, A.K., Mamun, A.A., Volk, J.: Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Composites A Appl Sci Manuf 41(4), 480–488 (2010). https://doi.org/10.1016/j.compositesa.2009.12.004

    Article  Google Scholar 

  182. Azócar, L., Hermosilla, N., Gay, A., Rocha, S., Díaz, J., Jara, P.: Brown pellet production using wheat straw from southern cities in Chile. Fuel 237, 823–832 (2019). https://doi.org/10.1016/j.fuel.2018.09.039

    Article  Google Scholar 

  183. Snehal, S., Lohani, P.: Silica nanoparticles: its green synthesis and importance in agriculture. J Pharmacogn Phytochem 7(5), 3383–3393 (2018)

    Google Scholar 

  184. Sun, X., Liu, Q., Tang, T., Chen, X., Luo, X.: Silicon fertilizer application promotes phytolith accumulation in rice plants. Front Plant Sci 10, 425 (2019). https://doi.org/10.3389/fpls.2019.00425

    Article  Google Scholar 

  185. Umeda, J., Kondoh, K.: High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal. Ind Crops Prod 32(3), 539–544 (2010). https://doi.org/10.1016/j.indcrop.2010.07.002

    Article  Google Scholar 

  186. Rao, B.G., Mukherjee. D., Reddy, B.M.: Novel approaches for preparation of nanoparticles. In: Nanostructures for Novel Therapy, pp. 1–36. Elsevier, Amsterdam (2017)

  187. Zhong, H., Mirkovic, T.S.: GD: Nanocrystal synthesis. Comp Nanosci Technol (2011). https://doi.org/10.1016/b978-0-12-374396-1.00051-9

    Article  Google Scholar 

  188. Kajihara, K.: Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses. J Asian Ceram Soc 1(2), 121–133 (2018). https://doi.org/10.1016/j.jascer.2013.04.002

    Article  Google Scholar 

  189. Le, V.H., Ha Thuc, C., Ha Thuc, H.: Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett (2013). https://doi.org/10.1186/1556-276X-8-58

    Article  Google Scholar 

  190. Rawat, R., Tiwari, A., Vendamani, V.S., Pathak, A.P., Rao, S.V., Tripathi, A.: Synthesis of Si/SiO2 nanoparticles using nanosecond laser ablation of silicate-rich garnet in water. Opt Mater 75, 350–356 (2018). https://doi.org/10.1016/j.optmat.2017.10.045

    Article  Google Scholar 

  191. Williams, F., Anum, I., Isa, R., Aliyu, M.: Properties of sorghum husk ash blended cement laterized concrete. Int J Res Manag Sci Technol 2(2), 73–79 (2014)

    Google Scholar 

  192. Fernandes, I.J., Sánchez, F.A.L., Jurado, J.R., Kieling, A.G., Rocha, T.L.A.C., Moraes, C.A.M., Sousa, V.C.: Physical, chemical and electric characterization of thermally treated rice husk ash and its potential application as ceramic raw material. Adv Powder Technol. 28(4), 1228–1236 (2017). https://doi.org/10.1016/j.apt.2017.02.009

    Article  Google Scholar 

  193. Andreola, F., Martín, M.I., Ferrari, A.M., Lancellotti, I., Bondioli, F., Rincón, J.M., Romero, M., Barbieri, L.: Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor. Ceram Int 39(5), 5427–5435 (2013). https://doi.org/10.1016/j.ceramint.2012.12.050

    Article  Google Scholar 

  194. Hossain, S.K.S., Mathur, L., Singh, P., Majhi, M.R.: Preparation of forsterite refractory using highly abundant amorphous rice husk silica for thermal insulation. J Asian Ceram Soc 5(2), 82–87 (2018). https://doi.org/10.1016/j.jascer.2017.01.001

    Article  Google Scholar 

  195. Hasan, R., Chong, C.C., Bukhari, S.N., Jusoh, R., Setiabudi, H.D.: Effective removal of Pb(II) by low-cost fibrous silica KCC-1 synthesized from silica-rich rice husk ash. J Ind Eng Chem 75, 262–270 (2019). https://doi.org/10.1016/j.jiec.2019.03.034

    Article  Google Scholar 

  196. Haynes, R.J.: The nature of biogenic Si and its potential role in Si supply in agricultural soils. Agric Ecosyst Environ 245, 100–111 (2017). https://doi.org/10.1016/j.agee.2017.04.021

    Article  Google Scholar 

  197. Song, Z., Müller, K., Wang, H.: Biogeochemical silicon cycle and carbon sequestration in agricultural ecosystems. Earth Sci Rev 139, 268–278 (2014). https://doi.org/10.1016/j.earscirev.2014.09.009

    Article  Google Scholar 

  198. Haynes, R.J., Belyaeva, O.N., Kingston, G.: Evaluation of industrial wastes as sources of fertilizer silicon using chemical extractions and plant uptake. J Plant Nutr Soil Sci 176(2), 238–248 (2013). https://doi.org/10.1002/jpln.201200372

    Article  Google Scholar 

  199. Zou, J., Dai, Y., Pan, K., Jiang, B., Tian, C., Tian, G., Zhou, W., Wang, L., Wang, X., Fu, H.: Recovery of silicon from sewage sludge for production of high-purity nano-SiO(2). Chemosphere 90(8), 2332–2339 (2013). https://doi.org/10.1016/j.chemosphere.2012.10.087

    Article  Google Scholar 

  200. Ding, H., Li, J., Gao, Y., Zhao, D., Shi, D., Mao, G., Liu, S., Tan, X.: Preparation of silica nanoparticles from waste silicon sludge. Powder Technol 284, 231–236 (2015). https://doi.org/10.1016/j.powtec.2015.06.063

    Article  Google Scholar 

  201. Han, Y., Zhou, L., Liang, Y., Li, Z., Zhu, Y.: Fabrication and properties of silica/mullite porous ceramic by foam-gelcasting process using silicon kerf waste as raw material. Mater Chem Phys (2020). https://doi.org/10.1016/j.matchemphys.2019.122248

    Article  Google Scholar 

  202. Elineema, G., Kim, J.K., Hilonga, A., Shao, G.N., Kim, Y.-N., Quang, D.V., Sarawade, P.B., Kim, H.T.: Quantitative recovery of high purity nanoporous silica from waste products of the phosphate fertilizer industry. J Ind Eng Chem 19(1), 63–67 (2013). https://doi.org/10.1016/j.jiec.2012.07.001

    Article  Google Scholar 

  203. An, D., Guo, Y., Zhu, Y., Wang, Z.: A green route to preparation of silica powders with rice husk ash and waste gas. Chem Eng J 162(2), 509–514 (2010). https://doi.org/10.1016/j.cej.2010.05.052

    Article  Google Scholar 

  204. Ahn, J., Chung, W.-J., Pinnau, I., Song, J., Du, N., Robertson, G.P., Guiver, M.D.: Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). J Membr Sci 346(2), 280–287 (2010). https://doi.org/10.1016/j.memsci.2009.09.047

    Article  Google Scholar 

  205. Wahab, M.F.A., Ismail, A.F., Shilton, S.J.: Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers. Sep Purif Technol 86, 41–48 (2012). https://doi.org/10.1016/j.seppur.2011.10.018

    Article  Google Scholar 

  206. Ogbole, E.O., Lou, J., Ilias, S., Desmane, V.: Influence of surface-treated SiO2 on the transport behavior of O2 and N2 through polydimethylsiloxane nanocomposite membrane. Sep Purif Technol 175, 358–364 (2017). https://doi.org/10.1016/j.seppur.2016.11.065

    Article  Google Scholar 

  207. Aghaei, Z., Naji, L., Hadadi Asl, V., Khanbabaei, G., Dezhagah, F.: The influence of fumed silica content and particle size in poly (amide 6-b-ethylene oxide) mixed matrix membranes for gas separation. Sep Purif Technol 199, 47–56 (2018). https://doi.org/10.1016/j.seppur.2018.01.035

    Article  Google Scholar 

  208. Isanejad, M., Mohammadi, T.: Effect of amine modification on morphology and performance of poly (ether-block-amide)/fumed silica nanocomposite membranes for CO2/CH4 separation. Mater Chem Phys 205, 303–314 (2018). https://doi.org/10.1016/j.matchemphys.2017.11.018

    Article  Google Scholar 

  209. Wu, H., Li, X., Li, Y., Wang, S., Guo, R., Jiang, Z., Wu, C., Xin, Q., Lu, X.: Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. J Membr Sci 465, 78–90 (2014). https://doi.org/10.1016/j.memsci.2014.04.023

    Article  Google Scholar 

  210. Zhuang, G.-L., Tseng, H.-H., Wey, M.-Y.: Preparation of PPO-silica mixed matrix membranes by in-situ sol–gel method for H2/CO2 separation. Int J Hydrog Energy 39(30), 17178–17190 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.050

    Article  Google Scholar 

  211. Xin, Q., Zhang, Y., Shi, Y., Ye, H., Lin, L., Ding, X., Zhang, Y., Wu, H., Jiang, Z.: Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. J Membr Sci 514, 73–85 (2016). https://doi.org/10.1016/j.memsci.2016.04.046

    Article  Google Scholar 

  212. Tseng, H.-H., Chuang, H.-W., Zhuang, G.-L., Lai, W.-H., Wey, M.-Y.: Structure-controlled mesoporous SBA-15-derived mixed matrix membranes for H2 purification and CO2 capture. Int J Hydrog Energy 42(16), 11379–11391 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.026

    Article  Google Scholar 

  213. Suzuki, T., Yamada, Y.: Effect of thermal treatment on gas transport properties of hyperbranched polyimide–silica hybrid membranes. J Membr Sci. 417–418, 193–200 (2012). https://doi.org/10.1016/j.memsci.2012.06.035

    Article  Google Scholar 

  214. Zornoza, B., Téllez, C., Coronas, J.: Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. J Membr Sci 368(1–2), 100–109 (2011). https://doi.org/10.1016/j.memsci.2010.11.027

    Article  Google Scholar 

  215. Waheed, N., Mushtaq, A., Tabassum, S., Gilani, M.A., Ilyas, A., Ashraf, F., Jamal, Y., Bilad, M.R., Khan, A.U., Khan, A.L.: Mixed matrix membranes based on polysulfone and rice husk extracted silica for CO2 separation. Sep Purif Technol 170, 122–129 (2016). https://doi.org/10.1016/j.seppur.2016.06.035

    Article  Google Scholar 

  216. Bhattacharya, M., Mandal, M.K.: Synthesis of rice straw extracted nano-silica-composite membrane for CO2 separation. J Clean Prod 186, 241–252 (2018). https://doi.org/10.1016/j.jclepro.2018.03.099

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Taiwan government of Ministry of Science and Technology (MOST) (MOST-108-2221-E-008-061) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript draft was interpreted and written by WK Setiawan. Prof. KY Chiang provided technical support, revised the manuscript, and also supervised the research. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kung-Yuh Chiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setiawan, W.K., Chiang, KY. Crop Residues as Potential Sustainable Precursors for Developing Silica Materials: A Review. Waste Biomass Valor 12, 2207–2236 (2021). https://doi.org/10.1007/s12649-020-01126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01126-x

Keywords

Navigation