Skip to main content
Log in

Enhanced Separation of Incinerator Bottom Ash: Composition and Environmental Behaviour of Separated Mineral and Weakly Magnetic Fractions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The paper reports an investigation on the compositional characteristics and environmental behaviour of eight fractions deriving from an advanced separation process applied to waste incineration bottom ash to recover ferrous and non-ferrous metals. Specifically, five mineral fractions and three weakly magnetic mixed metal/mineral fractions were analyzed for their physical properties, chemical composition and leaching behaviour in order to assess their recycling potential and estimate the expected environmental impacts. While the mineral fractions were found to contain only small amounts of undesired waste glass fragments, the weakly magnetic materials turned out to be commingled with a consistent portion of mineral components, resulting in a heterogeneous mixture with limited utilization potential. Their bulk and chemical composition as well as leaching properties were strongly affected by the presence of mineral particles associated with molten magnetic metals. The most critical elements with a view to leaching turned out to be, for both the mineral and the weakly magnetic fractions, Sb and Cr, which exceeded the quality standards for inert waste disposal in landfills.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eurostat: Generation and treatment of Municipal waste, https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_wasmun&lang=en

  2. ISPRA: Istituto Superiore per la Protezione e la Ricerca Ambientale (Italian Environmental Protection Agency), Rapporto Rifiuti Urbani (Report on Municipal Waste), Report no. 297/2018 (2018)

  3. Sabbas, T., Polettini, A., Pomi, R., Astrup, T., Hjelmar, O., Mostbauer, P., Cappai, G., Magel, G., Salhofer, S., Speiser, C., Heuss-Assbichler, S., Klein, R., Lechner, P.: Management of municipal solid waste incineration residues. Waste Manag. (2003). https://doi.org/10.1016/S0956-053X(02)00161-7

    Article  Google Scholar 

  4. Vehlow, J., Bergfeldt, B., Visser, R., Wilén, C.: European Union waste management strategy and the importance of biogenic waste. J. Mater. Cycles Waste Manag. 9, 130–139 (2007). https://doi.org/10.1007/s10163-007-0178-9

    Article  Google Scholar 

  5. Astrup, T.F., Cappai, G., Lechner, P., Muntoni, A., Polettini, A., Pomi, R., van Gerven, T., van Zomeren, A.: State-of-the-art and outlook on management of waste-to-energy bottom ashes: utilization. In: Cossu, R., Salieri, V., Bisinella, V. (eds.) Urban Mining: A Global Cycle Approach to Resource Recovery from Solid Waste. CISA, Padova (2012)

    Google Scholar 

  6. Astrup, T., Muntoni, A., Polettini, A., Pomi, R., Van Gerven, T., Van Zomeren, A.: Treatment and Reuse of Incineration Bottom Ash (chapter 24). In: Prasad M.N.V., Shih, K. (eds.) Environmental Materials and Waste. Resource Recovery and Pollution Prevention, pp. 607–645 (2016)

  7. Arm, M.: Variation in deformation properties of processed MSWI bottom ash: results from triaxial tests. Waste Manag. 24, 1035–1042 (2004). https://doi.org/10.1016/j.wasman.2004.07.013

    Article  Google Scholar 

  8. Forteza, R., Far, M., Seguí, C., Cerdá, V.: Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Manag. 24, 899–909 (2004). https://doi.org/10.1016/j.wasman.2004.07.004

    Article  Google Scholar 

  9. Heinrichs, S., Wens, B., Feil, A., T., P.: Recovery of NF-metals from bottom ash’s fine fraction: State-of-the-art in Germany. In: Proceedings in Venice 2012, 4th International Symposium on Energy from Biomass and Waste (2012)

  10. Allegrini, E., Maresca, A., Olsson, M.E., Holtze, M.S., Boldrin, A., Astrup, T.F.: Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Manag. 34, 1627–1636 (2014). https://doi.org/10.1016/j.wasman.2014.05.003

    Article  Google Scholar 

  11. Izquierdo, M., Querol, X., Vazquez, E.: Procedural uncertainties of Proctor compaction tests applied on MSWI bottom ash. J. Hazard. Mater. 186, 1639–1644 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.045

    Article  Google Scholar 

  12. Berkhout, S.P.M., Oudenhoven, B.P.M., Rem, P.C.: Optimizing non-ferrous metal value from MSWI bottom ashes. J. Environ. Prot. 2, 564–570 (2011). https://doi.org/10.4236/jep.2011.25065

    Article  Google Scholar 

  13. Chimenos, J., Segarra, M., Fernández, M., Espiell, F.: Characterization of the bottom ash in municipal solid waste incinerator. J. Hazard. Mater. 64, 211–222 (1999). https://doi.org/10.1016/S0304-3894(98)00246-5

    Article  Google Scholar 

  14. Hu, Y., Bakker, M.C.M.: Recovery of aluminum residue from incineration of cans in municipal solid waste. https://dpi-journals.com/index.php/JRST/article/view/1485. (2015)

  15. Meima, J., Comans, R.N.: Reducing Sb-leaching from municipal solid waste incinerator bottom ash by addition of sorbent minerals. J. Geochem. Explor. 62, 299–304 (1998). https://doi.org/10.1016/S0375-6742(97)00044-7

    Article  Google Scholar 

  16. Šyc, M., Kameníková, P., Svoboda, K., Krausová, A., Pohořelý, M., Zach, B., Punčochář, M.: Resource recovery potential of the bottom ash from municipal solid waste incineration in the Czech Republic. In: Proceedings in Sardinia 2015, Fifteenth International Waste Management and Landfill Symposium (2015)

  17. Muchová, L., Rem, P.C.: Metal content and recovery of MSWI bottom ash in Amsterdam. WIT Trans. Ecol. Environ. 92, 10 (2006)

    Google Scholar 

  18. Holm, O., Simon, F.-G.: Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. Waste Manag. 59, 229–236 (2017). https://doi.org/10.1016/J.WASMAN.2016.09.004

    Article  Google Scholar 

  19. Bunge, R.: Recovery of metals from waste incinerator bottom ash. Institut für Umwelt und Verfahrenstechnik UMTEC, Rapperswil (2015)

    Google Scholar 

  20. del Valle-Zermeño, R., Gómez-Manrique, J., Giro-Paloma, J., Formosa, J., Chimenos, J.M.: Material characterization of the MSWI bottom ash as a function of particle size. Effects of glass recycling over time. Sci. Total Environ. 581–582, 897–905 (2017). https://doi.org/10.1016/J.SCITOTENV.2017.01.047

    Article  Google Scholar 

  21. Kahle, K., Kamuk, B., Kallesøe, J., Fleck, E., Lamers, F., Jacobsson, L., Sahlén, J.: Bottom ash from WTE plants. Metal recovery and utilization. ISWA: Working group on energy recovery, Vienna, Austria (2015)

  22. Zhang, F.-S., Yamasaki, S., Kimura, K.: Rare earth element content in various waste ashes and the potential risk to Japanese soils. Environ. Int. 27, 393–398 (2001). https://doi.org/10.1016/S0160-4120(01)00097-6

    Article  Google Scholar 

  23. Zhao, L., Zhang, F.-S., Zhang, J.: Chemical properties of rare earth elements in typical medical waste incinerator ashes in China. J. Hazard. Mater. 158, 465–470 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.091

    Article  Google Scholar 

  24. Funari, V., Bokhari, S.N.H., Vigliotti, L., Meisel, T., Braga, R.: The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting. J. Hazard. Mater. 301, 471–479 (2015). https://doi.org/10.1016/j.jhazmat.2015.09.015

    Article  Google Scholar 

  25. Morf, L.S., Gloor, R., Haag, O., Haupt, M., Skutan, S., Di Lorenzo, F., Böni, D.: Precious metals and rare earth elements in municipal solid waste–sources and fate in a Swiss incineration plant. Waste Manag. 33, 634–644 (2013). https://doi.org/10.1016/j.wasman.2012.09.010

    Article  Google Scholar 

  26. Bayuseno, A.P., Schmahl, W.W.: Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manag. 30, 1509–1520 (2010). https://doi.org/10.1016/j.wasman.2010.03.010

    Article  Google Scholar 

  27. Chung, Y.-S., Moon, J.-H., Kim, S.-H., Kang, S.-H., Kim, Y.-J.: Determination of the elemental composition of the bottom ash of a municipal incinerator by instrumental neutron activation analysis. J. Radioanal. Nucl. Chem. 271, 339–344 (2007). https://doi.org/10.1007/s10967-007-0214-1

    Article  Google Scholar 

  28. Fujimori, E., Minamoto, K., Haraguchi, H.: Comparative study on the distributions of precious metals (Ru, Rh, Pd, Ir, Pt, and Au) in industrial waste incineration ashes as determined by tellurium coprecipitation and ICP-MS. Bull. Chem. Soc. Jpn. 78, 1963–1969 (2005). https://doi.org/10.1246/bcsj.78.1963

    Article  Google Scholar 

  29. Fujimori, E., Minamoto, K., Iwata, S., Chiba, K., Haraguchi, H.: Enrichment of elements in industrial waste incineration bottom ashes obtained from three different types of incinerators, as studied by ICP-AES and ICP-MS. J. Mater. Cycles Waste Manag. 6, 73–79 (2004). https://doi.org/10.1007/s10163-003-0106-6

    Article  Google Scholar 

  30. Jung, C.-H., Osako, M.: Thermodynamic behavior of rare metals in the melting process of municipal solid waste (MSW) incineration residues. Chemosphere 69, 279–288 (2007). https://doi.org/10.1016/j.chemosphere.2007.03.071

    Article  Google Scholar 

  31. Kida, A., Noma, Y., Imada, T.: Chemical speciation and leaching properties of elements in municipal incinerator ashes. Waste Manag. 16, 527–536 (1996). https://doi.org/10.1016/S0956-053X(96)00094-3

    Article  Google Scholar 

  32. Muchova, L., Bakker, E., Rem, P.: Precious metals in municipal solid waste incineration bottom ash. Water Air Soil Pollut. Focus. 9, 107–116 (2008). https://doi.org/10.1007/s11267-008-9191-9

    Article  Google Scholar 

  33. Hu, Y., Rem, P.: Aluminium alloys in municipal solid waste incineration bottom ash. Waste Manag. Res. 27, 251–257 (2009). https://doi.org/10.1177/0734242X08095564

    Article  Google Scholar 

  34. Allegrini, E., Vadenbo, C., Boldrin, A., Astrup, T.F.: Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash. J. Environ. Manag. 151, 132–143 (2015). https://doi.org/10.1016/j.jenvman.2014.11.032

    Article  Google Scholar 

  35. Polettini, A., Astrup, T., Cappai, G., Lechner, P., Muntoni, A., Pomi, R., Van Gerven, T., van Zomeren, A.: Treatment and disposal of incineration residues. In: Cossu, R., Stegmann, R. (eds.) Solid Waste Landfilling, pp. 157–178. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  36. Simon, F.G., Holm, O.: Recovery of metals from waste, an example for the resource cycle. In: Proceedings of World Resources Forum, Shaping the Future of Natural Resources, Davos (CH) (2013)

  37. Holm, O., Bandow, N., Kalbe, U., Simon, F.G.: Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. In: Cossu, R., He, P., Kjeldsen, P., Matsufuji, Y., Reinhart, D., and Stegmann, R. (eds) Proceedings in Sardinia 2015, Fifteenth International Waste Management and Landfill Symposium, CISA (2015)

  38. ASTM: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. In: American Society for Testing and Materials International (ed) D6913/D6913M-17. West Conshohocken, PA (2017)

  39. Lê, S., Josse, J., Husson, F.: FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008). https://doi.org/10.18637/jss.v025.i01

    Article  Google Scholar 

  40. R Development Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2009)

  41. Šyc, M., Krausová, A., Kameníková, P., Šomplák, R., Pavlas, M., Zach, B., Pohořelý, M., Svoboda, K., Punčochář, M.: Material analysis of bottom ash from waste-to-energy plants. Waste Manag. 73, 360–366 (2018). https://doi.org/10.1016/J.WASMAN.2017.10.045

    Article  Google Scholar 

  42. Baciocchi, R., Costa, G., Lategano, E., Marini, C., Polettini, A., Pomi, R., Postorino, P., Rocca, S.: Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Manag. 30, 1310–1317 (2010)

    Article  Google Scholar 

  43. Huber, F., Blasenbauer, D., Aschenbrenner, P., Fellner, J.: Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash. Waste Manag. 95, 593–603 (2019). https://doi.org/10.1016/J.WASMAN.2019.06.047

    Article  Google Scholar 

  44. Xia, Y., He, P., Shao, L., Zhang, H.: Metal distribution characteristic of MSWI bottom ash in view of metal recovery. J. Environ. Sci. 52, 178–189 (2017). https://doi.org/10.1016/J.JES.2016.04.016

    Article  Google Scholar 

  45. Pérez-Martínez, S., Giro-Paloma, J., Maldonado-Alameda, A., Formosa, J., Queralt, I., Chimenos, J.M.: Characterisation and partition of valuable metals from WEEE in weathered municipal solid waste incineration bottom ash, with a view to recovering. J. Clean. Prod. 218, 61–68 (2019). https://doi.org/10.1016/J.JCLEPRO.2019.01.313

    Article  Google Scholar 

  46. Ministero dell’Ambiente e della Tutela del Territorio: DM 5/4/2006, n. 186, Regolamento recante modifiche al DM 5/2/1998 “Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero, ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22.”, GU Serie Generale n. 115 19-05-2006 (2006)

  47. Johnson, C.A., Brandenberger, S., Baccini, P.: Acid neutralizing capacity of municipal waste incinerator bottom ash. Environ. Sci. Technol. 29, 142–147 (1995). https://doi.org/10.1021/es00001a018

    Article  Google Scholar 

  48. Polettini, A., Pomi, R.: The leaching behavior of incinerator bottom ash as affected by accelerated ageing. J. Hazard. Mater. (2004). https://doi.org/10.1016/j.jhazmat.2004.06.009

    Article  Google Scholar 

  49. Rocca, S., van Zomeren, A., Costa, G., Dijkstra, J.J., Comans, R.N.J., Lombardi, F.: Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Waste Manag. 32, 759–768 (2012). https://doi.org/10.1016/J.WASMAN.2011.11.018

    Article  Google Scholar 

  50. Dijkstra, J.J., Meeussen, J.C.L., Van der Sloot, H.A., Comans, R.N.J.: A consistent geochemical modelling approach for the leaching and reactive transport of major and trace elements in MSWI bottom ash. Appl. Geochem. 23, 1544–1562 (2008). https://doi.org/10.1016/j.apgeochem.2007.12.032

    Article  Google Scholar 

  51. Costa, G., Polettini, A., Pomi, R., Stramazzo, A.: Leaching modelling of slurry-phase carbonated steel slag. J. Hazard. Mater. 302, 415–425 (2015). https://doi.org/10.1016/j.jhazmat.2015.10.005

    Article  Google Scholar 

  52. van Zomeren, A., van der Sloot, H.A.: Systematic leaching behaviour of worldwide MSWI bottom ashes in spite of their variability in content. In: Cossu, R., van der Sloot, H.A. (eds.) Sustainable Landfilling, pp. 366–376. CISA, Padova (IT) (2013)

    Google Scholar 

  53. Cornelis, G., Johnson, C.A., Gerven, T.V., Vandecasteele, C.: Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review. Appl. Geochem. 23, 955–976 (2008). https://doi.org/10.1016/j.apgeochem.2008.02.001

    Article  Google Scholar 

  54. Dijkstra, J.J., van der Sloot, H.A., Comans, R.N.J.: The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Appl. Geochem. 21, 335–351 (2006). https://doi.org/10.1016/j.apgeochem.2005.11.003

    Article  Google Scholar 

  55. Verbinnen, B., Billen, P., Van Caneghem, J., Vandecasteele, C.: Recycling of MSWI bottom ash: a review of chemical barriers, engineering applications and treatment technologies. Waste Biomass Valoriz. 8, 1453–1466 (2017). https://doi.org/10.1007/s12649-016-9704-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Polettini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, G., Polettini, A., Pomi, R. et al. Enhanced Separation of Incinerator Bottom Ash: Composition and Environmental Behaviour of Separated Mineral and Weakly Magnetic Fractions. Waste Biomass Valor 11, 7079–7095 (2020). https://doi.org/10.1007/s12649-020-01106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01106-1

Keywords

Navigation