Abstract
The chemical and anatomical properties of Eucalyptus globulus stumps barks collected from fresh stumps (SB) and from industrial stumps bark piles (ISB) were determined. The stump bark showed similar anatomical structure to that of the stem bark, however with abundant prismatic crystals in the axial parenchyma cells. Stumps barks (ISB) presented a great amount of ashes (19.2%) that were incorporated during forest and mill processing, and lower content in extractives (4.1%), lignin (18.5%) and polysaccharides (48.5%). The non-polar (DCM) extracts were composed essentially by triterpenoids, fatty acids (C8 to C28), phytosterols (sterols and steroid ketones) and fatty alcohols (C15 to C28). The polar extracts (ethanol and water) were rich in phenolic compounds, condensed tannins and flavonoids, with higher values for the ethanol extracts and for SB. The antioxidant activity of ethanol extracts from SB was higher although only moderate (IC50 6.8). The lignin monomeric composition (H:G:S) was similar in SB (1:12:45) and in ISB (1:9:26). Sugar-derived compounds formed by Py-GC/MS included more low molecular compounds in ISB than in SB (45.5% vs.20.3%) indicative of a more degraded structure.
Graphic Abstract

This is a preview of subscription content, access via your institution.






References
Pereira, H., Miranda, I., Gominho, J., Tavares, J., Quilhó, T., Graça, J., Rodrigues, J., Shatalov, A., Knapic, S.: Qualidade tecnológica do eucalipto (Eucalyptus globulus). Centro de Estudos Florestais. ISA-UTL, Lisboa. In Portuguese (2010)
Soares, P., Tomé, M.: Biomass expansion factors for Eucalyptus globulus stands in Portugal. For. Syst. 21, 141 (2012). https://doi.org/10.5424/fs/2112211-12086
Gominho, J., Lourenço, A., Miranda, I., Pereira, H.: Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Ind. Crops Prod. 39, 12–16 (2012). https://doi.org/10.1016/j.indcrop.2012.01.026
Pinto, F., Gominho, J., André, R.N., Gonçalves, D., Miranda, M., Varela, F., Neves, D., Santos, J., Lourenço, A., Pereira, H.: Improvement of gasification performance of Eucalyptus globulus stumps with torrefaction and densification pre-treatments. Fuel 206, 289–299 (2017). https://doi.org/10.1016/j.fuel.2017.06.008
Gominho, J., Costa, R., Lourenço, A., Neiva, D.M., Pereira, H.: The effect of different pre-treatments to improve delignification of eucalypt stumps in a biorefinery context. Bioresour. Technol. Rep. 6, 89–95 (2019). https://doi.org/10.1016/j.biteb.2019.02.004
Quilhó, T., Pereira, H., Richter, H.: Variability of bark structure in plantation-grown Eucalyptus globulus. IAWA J. 20, 171–180 (1999)
Quilhó, T., Pereira, H., Richter, H.: Within-tree variation in phloem cell dimensions and proportions in Eucalyptus globulus. IAWA J. 21, 31–40 (2000)
Miranda, I., Gominho, J., Mirra, I., Pereira, H.: Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Ind. Crops Prod. 41, 299–305 (2013). https://doi.org/10.1016/j.indcrop.2012.04.024
Neiva, D.M., Gominho, J., Pereira, H.: Modeling and optimization of Eucalyptus globulus bark and wood delignification using response surface methodology. BioResources 9, 2907–2921 (2014). https://doi.org/10.15376/biores.9.2.2907-2921
Freire, C.S.R., Silvestre, A.J.D., Pereira, C.C.L., Neto, C.P., Cavaleiro, J.A.S.: New lipophilic components of pitch deposits from an Eucalyptus globulus ECF bleached kraft pulp mill. J. Wood Chem. Technol. 22, 55–66 (2002). https://doi.org/10.1081/WCT-120004434
Domingues, R.M.A., Sousa, G.D.A., Silva, C.M.M., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P.: High value triterpenic compounds from the outer barks of several Eucalyptus species cultivated in Brazil and in Portugal. Ind. Crops Prod. 33, 158–164 (2011). https://doi.org/10.1016/j.indcrop.2010.10.006
Domingues, R.M.A., Patinha, D.S.J., Sousa, G.D.A., Villaverde, J.J., Silva, C.M., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P.: Eucalyptus biomass residues from agro-forest and pulping industries as sources of high-value triterpenic compounds. Cell. Chem. Technol. 45, 475–481 (2011)
Le Normand, M., Moriana, R., Ek, M.: The bark biorefinery: a side-stream of the forest industry converted into nanocomposites with high oxygen-barrier properties. Cellulose 21, 4583–4594 (2014). https://doi.org/10.1007/s10570-014-0423-z
Vangeel, T., Renders, T., Van Aelst, K., Cooreman, E., Van den Bosch, S., Van den Bossche, G., Koelewijn, S.-F., Courtin, C.M., Sels, B.F.: Reductive catalytic fractionation of black locust bark. Green Chem. 21, 5841–5851 (2019). https://doi.org/10.1039/C9GC02139F
Kumaniaev, I., Samec, J.S.M.M.: Valorization of Quercus suber Bark toward hydrocarbon bio-oil and 4-ethylguaiacol. ACS Sustain. Chem. Eng. 6, 5737–5742 (2018). https://doi.org/10.1021/acssuschemeng.8b00537
Angyalossy, V., Pace, M.R., Evert, R.F., Marcati, C.R., Oskolski, A.A., Terrazas, T., Kotina, E., Lens, F., Mazzoni-Viveiros, S.C., Angeles, G., Machado, S.R., Crivellaro, A., Rao, K.S., Junikka, L., Nikolaeva, N., Baas, P.: IAWA list of microscopic bark features. IAWA J. 37, 517–615 (2016). https://doi.org/10.1163/22941932-20160151
Rowell, R.M.: Handbook of Wood Chemistry and Wood Composites. CRC Press - Taylor & Francis, London (2013)
Ferreira, J.P.A.A., Miranda, I., Gominho, J., Pereira, H.: Selective fractioning of Pseudotsuga menziesii bark and chemical characterization in view of an integrated valorization. Ind. Crops Prod. 74, 998–1007 (2015). https://doi.org/10.1016/j.indcrop.2015.05.065
Miranda, I., Lima, L., Quilhó, T., Knapic, S., Pereira, H.: The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Ind. Crops Prod. 82, 81–87 (2016). https://doi.org/10.1016/j.indcrop.2015.12.003
Scherer, R., Godoy, H.T.: Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 112, 654–658 (2009). https://doi.org/10.1016/j.foodchem.2008.06.026
Faix, O., Meier, D., Fortmann, I.: Thermal degradation products of wood A collection of electron-impact (EI) mass spectra of monomeric lignin derived products. Holz als Roh-und Werkstoff 48, 351 (1990). https://doi.org/10.1007/BF02626519
Ralph, J., Hatfield, R.D.: Pyrolysis-GC-MS characterization of forage materials. J. Agric. Food Chem. 39, 1426–1437 (1991). https://doi.org/10.1021/jf00008a014
Jorge, F., Quilhó, T., Pereira, H.: Variability of fibre length in wood and bark in Eucalyptus globulus. IAWA J. 21, 41–48 (2000)
Evert, R.F., Eichhorn, S.E.: Periderm. Esau’s Plant Anatomy, Meristems, Cells and Tissues of the Plant Body: Their Structure, Function and Development, p. 601. Wiley, New Jersey (2006)
Tippett, J.T., O’Brien, T.P.: The structure of Eucalypt roots. Aust. J. Bot. 24, 619–632 (1976). https://doi.org/10.1071/BT9760619
Neiva, D.M., Gominho, J., Fernandes, L., Lourenço, A., Chemetova, C., Simões, R.M.S.S., Pereira, H.: The potential of hydrothermally pretreated industrial barks from E. globulus as a feedstock for pulp production. J. Wood Chem. Technol. 36, 383–392 (2016). https://doi.org/10.1080/02773813.2016.1184280
Miranda, I., Gominho, J., Pereira, H.: Incorporation of bark and tops in Eucalyptus globulus wood pulping. BioResources 7, 4350–4361 (2012)
Neiva, D.M., Araújo, S., Gominho, J., de Carneiro, A., Pereira, H.: Potential of Eucalyptus globulus industrial bark as a biorefinery feedstock: chemical and fuel characterization. Ind. Crops Prod. 123, 262–270 (2018). https://doi.org/10.1016/J.INDCROP.2018.06.070
Gutiérrez, A., del RÃo, J.C., González-Vila, F.J., Romero, J., del Å”io, J.C., González-Vila, F.J., Romero, J.: Variation in the composition of wood extractives from Eucalyptus globulus during seasoning. J. Wood Chem. Technol. 18, 439–446 (1998). https://doi.org/10.1080/02773819809349591
Domingues, R.M.A., de Melo, M.M.R., Neto, C.P., Silvestre, A.J.D., Silva, C.M.: Measurement and modeling of supercritical fluid extraction curves of Eucalyptus globulus bark: influence of the operating conditions upon yields and extract composition. J. Supercrit. Fluids 72, 176–185 (2012). https://doi.org/10.1016/j.supflu.2012.08.010
Thimmappa, R., Geisler, K., Louveau, T., O’Maille, P., Osbourn, A.: Triterpene biosynthesis in plants. Annu. Rev. Plant Biol. 65, 225–257 (2014). https://doi.org/10.1146/annurev-arplant-050312-120229
Santos, S.A.O., Freire, C.S.R., Domingues, M.R.M., Silvestre, A.J.D., Neto, C.P.: Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. Bark by high-performance liquid chromatography-mass spectrometry. J. Agric. Food Chem. 59, 9386–9393 (2011). https://doi.org/10.1021/jf201801q
Patinha, D.J.S., Domingues, R.M.A., Villaverde, J.J., Silva, A.M.S., Silva, C.M., Freire, C.S.R., Neto, C.P., Silvestre, A.J.D.: Lipophilic extractives from the bark of Eucalyptus grandis x globulus, a rich source of methyl morolate: Selective extraction with supercritical CO2. Ind. Crops Prod. 43, 340–348 (2013). https://doi.org/10.1016/j.indcrop.2012.06.056
Nes, W.D.: Biosynthesis of cholesterol and other sterols. Chem. Rev. 111, 6423–6451 (2011). https://doi.org/10.1021/cr200021m
LuÃs, Â., Neiva, D., Pereira, H., Gominho, J., Domingues, F., Duarte, A.: Stumps of Eucalyptus globulus as a source of antioxidant and antimicrobial polyphenols. Molecules 19, 16428–16446 (2014). https://doi.org/10.3390/molecules191016428
Lima, L., Miranda, I., Knapic, S., Quilhó, T., Pereira, H.: Chemical and anatomical characterization, and antioxidant properties of barks from 11 Eucalyptus species. Eur. J. Wood Wood Prod. 76, 783–792 (2018). https://doi.org/10.1007/s00107-017-1247-y
Santos, S.A.O., Villaverde, J.J., Silva, C.M., Neto, C.P., Silvestre, A.J.D.: Supercritical fluid extraction of phenolic compounds from Eucalyptus globulus Labill bark. J. Supercrit. Fluids 71, 71–79 (2012). https://doi.org/10.1016/j.supflu.2012.07.004
Santos, S.A.O., Villaverde, J.J., Freire, C.S.R., Domingues, M.R.M., Neto, C.P., Silvestre, A.J.D.: Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis×E. urophylla) and E. maidenii bark extracts. Ind. Crops Prod. 39, 120–127 (2012). https://doi.org/10.1016/j.indcrop.2012.02.003
Costa, C.A.E.E., Pinto, P.C.R., Rodrigues, A.E.: Evaluation of chemical processing impact on E. globulus wood lignin and comparison with bark lignin. Ind. Crops Prod. 61, 479–491 (2014). https://doi.org/10.1016/j.indcrop.2014.07.045
Blanchette, R.A., Zabel, R.A., Morrell, J.J.: Wood microbiology: decay and its prevention. Mycologia 85, 874 (1993). https://doi.org/10.2307/3760624
Mali, T., Mäki, M., Hellén, H., Heinonsalo, J., Bäck, J., Lundell, T.: Decomposition of spruce wood and release of volatile organic compounds depend on decay type, fungal interactions and enzyme production patterns. FEMS Microbiol. Ecol. (2019). https://doi.org/10.1093/femsec/fiz135
Choi, S.S., Kim, M.C., Kim, Y.K.: Influence of silica on formation of levoglucosan from carbohydrates by pyrolysis. J. Anal. Appl. Pyrolysis 90, 56–62 (2011). https://doi.org/10.1016/j.jaap.2010.10.009
Acknowledgements
The authors acknowledge financial support provided by Fundação para a Ciência e a Tecnologia (FCT) to the Forest Research Centre (UIDB/00239/2020), and to Ana Lourenço through a research contract (DL 57/2016/CP1382/CT0007). The raw material was provided by ALTRI-Celtejo.
Author information
Authors and Affiliations
Contributions
JG—conceived the study and performed the GC–MS studies. RAC—performed the chemical analysis. AL—performed the Py-GC/MS analysis. TQ—performed the anatomical observations. HP—reviewed the manuscript. All authors contributed to writing the manuscript and approved the final submission.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gominho, J., Costa, R.A., Lourenço, A. et al. Eucalyptus globulus Stumps Bark: Chemical and Anatomical Characterization Under a Valorisation Perspective. Waste Biomass Valor 12, 1253–1265 (2021). https://doi.org/10.1007/s12649-020-01098-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-020-01098-y