Skip to main content
Log in

Assessing the Relationship Between the Phenolic Content and Elemental Composition of Grape (Vitis vinifera L.) Stems

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

There is a growing interest in the application of grape stems as source of nutrients and bioactive compounds, for its use in the cosmetic, pharmaceutical and food industries. The main goal of this study was to determine the content of essential minerals, toxic metals and phenolic compounds present in grape stems, not only to understand if this by-product can be applied in the development of new products as a source of mineral nutrients, but also to understand the possibility of existing a relationship between all these parameters. The results demonstrated that this by-product presented a high content of essential minerals, being the most abundant Na, Mg, Ca, and K, ranging from 0.65, 1.34, and 1.41 to 24.45 g/kg DW, respectively, on average, as well as phenolic contents ranging from 30.91 ± 0.73 to 96.12 ± 8.14 mg GAE/g DW. In fact, stems are richer in phenolic compounds and minerals, in some cases higher than some food matrices consumed in our diet, whereby this by-product can be a good bet in the production of value added products. Furthermore, the principal component analysis showed a relationship between some elements (NI, Na, Al, As, Cd, and Pb) and the higher/lowest concentration of phenolics.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Apostolou, A., Stagos, D., Galitsiou, E., Spyrou, A., Haroutounian, S., Portesis, N., et al.: Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Food Chem. Toxicol. 61, 60–68 (2013). https://doi.org/10.1016/j.fct.2013.01.029

    Article  Google Scholar 

  2. Gouvinhas, I., Queiroz, M., Rodrigues, M., Barros, A.I.R.N.A.: Evaluation of the Phytochemistry and Biological Activity of Grape (Vitis vinifera L.) Stems: Toward a Sustainable Winery Industry, 2nd edn. Elsevier Inc., Amsterdam (2019)

    Google Scholar 

  3. Teixeira, A., Baenas, N., Dominguez-Perles, R., Barros, A., Rosa, E., Moreno, D.A., et al.: Natural bioactive compounds from winery by-products as health promoters: a review. Int. J. Mol. Sci. 15, 15638–15678 (2014). https://doi.org/10.3390/ijms150915638

    Article  Google Scholar 

  4. Deiana, A.C., Sardella, M.F., Silva, H., Amaya, A., Tancredi, N.: Use of grape stalk, a waste of the viticulture industry, to obtain activated carbon. J. Hazard Mater. 172, 13–19 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.095

    Article  Google Scholar 

  5. Karvela, E., Makris, D.P., Kalogeropoulos, N., Karathanos, V.T.: Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols. Talanta 79, 1311–1321 (2009). https://doi.org/10.1016/j.talanta.2009.05.042

    Article  Google Scholar 

  6. Gouvinhas, I., Santos, R.A., Queiroz, M., Leal, C., Saavedra, M.J., Domínguez-Perles, R., et al.: Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Ind. Crops. Prod. (2018). https://doi.org/10.1016/j.indcrop.2018.10.006

    Article  Google Scholar 

  7. Piñeiro, Z., Guerrero, R.F., Fernández-Marin, M.I., Cantos-Villar, E., Palma, M.: Ultrasound-assisted extraction of stilbenoids from grape stems. J. Agric. Food Chem. 61, 12549–12556 (2013). https://doi.org/10.1021/jf4030129

    Article  Google Scholar 

  8. Tsao, R.: Chemistry and biochemistry of dietary polyphenols. Nutrients 2, 1231–1246 (2010). https://doi.org/10.3390/nu2121231

    Article  Google Scholar 

  9. Salehi, B., Vlaisavljevic, S., Adetunji, C.O., Kregiel, D., Antolak, H., Pawlikowska, E., et al.: Plants of the Genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends. Food Sci. Technol. (2019). https://doi.org/10.1016/j.tifs.2019.07.042

    Article  Google Scholar 

  10. Jackson, R.S.: Chemical constituents of grapes and wine. Fourth Edi. (2014). https://doi.org/10.1016/B978-0-12-381468-5.00006-3

    Article  Google Scholar 

  11. Mir-marqués, A., Cervera, M.L., De, G.M.: Mineral analysis of human diets by spectrometry methods. Trends. Anal. Chem. (2016). https://doi.org/10.1016/j.trac.2016.07.007

    Article  Google Scholar 

  12. Rodríguez-solana, R., Manuel, J., Manuel, J., Cortés, S.: Assessment of minerals in aged grape marc distillates by FAAS / FAES and ICP-MS. Characterization and safety evaluation. Food Control 35, 49–55 (2014). https://doi.org/10.1016/j.foodcont.2013.06.031

    Article  Google Scholar 

  13. Nosratpour, M., Jafari, S.M., Resources, N.: Bioavailability of Minerals ( Ca, Mg, Zn, K, Mn, Se ) in Food Products. Elsevier (2018). https://doi.org/10.1016/B978-0-08-100596-5.21618-1

    Article  Google Scholar 

  14. Kim, J., Kim, Y., Kumar, V.: Heavy metal toxicity: an update of chelating therapeutic strategies. J. Trace. Elem. Med. Biol. (2019). https://doi.org/10.1016/j.jtemb.2019.05.003

    Article  Google Scholar 

  15. Milićević, T., Ani, M., Reli, D., Vukovi, G., Sandra, Š., Popovi, A.: Science of the total environment bioavailability of potentially toxic elements in soil–grapevine (leaf, skin, pulp and seed ) system and environmental and health risk assessment. Sci. Total Environ. 626, 528–545 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.094

    Article  Google Scholar 

  16. Volpe, M.G., La, C.F., Volpe, F., De, M.A., Serino, V., Petitto, F., et al.: Heavy metal uptake in the enological food chain. Food Chem. 117, 553–560 (2009). https://doi.org/10.1016/j.foodchem.2009.04.033

    Article  Google Scholar 

  17. Edelstein, M., Ben-hur, M.: Scientia Horticulturae Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. (Amsterdam) (2017). https://doi.org/10.1016/j.scienta.2017.12.039

    Article  Google Scholar 

  18. Gouvinhas, I., Machado, N., Cunha, M., Pereira, M., Matos, C., Gomes, S., et al.: Trace element content of monovarietal and commercial portuguese olive oils. J. Oleo Sci. 64, 1083–1093 (2015). https://doi.org/10.5650/jos.ess15101

    Article  Google Scholar 

  19. Costa-silva, F., Marques, G., Matos, C.C., Barros, A.I.R.N.A., Nunes, F.M.: Selenium contents of Portuguese commercial and wild edible mushrooms. Food Chem. 126, 91–96 (2011). https://doi.org/10.1016/j.foodchem.2010.10.082

    Article  Google Scholar 

  20. Domínguez-Perles, R., Teixeira, A.I., Rosa, E., Barros, A.I.: Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and response surface methodology. Food Chem. 164, 339–346 (2014). https://doi.org/10.1016/j.foodchem.2014.05.020

    Article  Google Scholar 

  21. Sousa, E.C., Uchôa-thomaz, A.M.A., Osvaldo, J., Carioca, J.O.B., S.M.D, Moris, A.D. Lima, et al.: Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 34, 135–142 (2014)

    Article  Google Scholar 

  22. Gouvinhas, I., De Almeida, J.M.M.M., Carvalho, T., Machado, N., Barros, A.I.R.N.A.: Discrimination and characterisation of extra virgin olive oils from three cultivars in different maturation stages using Fourier transform infrared spectroscopy in tandem with chemometrics. Food Chem. 174, 226–232 (2015). https://doi.org/10.1016/j.foodchem.2014.11.037

    Article  Google Scholar 

  23. Pantelić, M.M., Dabi, D.Č., Ivanka, Ž.Ć., Pergal, M.V., Reli, D.J., Todi, S.R., et al.: Phenolic pro files, antioxidant activity and minerals in leaves of different grapevine varieties grown in Serbia. J. Food Compos. Anal. 62, 76–83 (2017). https://doi.org/10.1016/j.jfca.2017.05.002

    Article  Google Scholar 

  24. Fabani, M.P., Baroni, M.V., Luna, L., Lingua, M.S., Monferran, M.V., Paños, H., et al.: Journal of food composition and analysis changes in the phenolic pro fi le of Argentinean fresh grapes during production of sun-dried raisins. J. Food Compos. Anal. 58, 23–32 (2017). https://doi.org/10.1016/j.jfca.2017.01.006

    Article  Google Scholar 

  25. Bustamante, M.A., Moral, R., Paredes, C., Pe, A., Pe, M.D.: Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manag. 28, 372–380 (2008). https://doi.org/10.1016/j.wasman.2007.01.013

    Article  Google Scholar 

  26. Prozil, S.O., Evtuguin, D.V., Cruz, L.P.: Chemical composition of grape stalks of Vitis vinifera L. from red grape pomaces. Ind. Crops Prod. 35, 178–184 (2012). https://doi.org/10.1016/j.indcrop.2011.06.035

    Article  Google Scholar 

  27. Ozcan, M.M.: Mineral contents of several grape seeds. Asian J. Chem. 22, 6480–6488 (2010)

    Google Scholar 

  28. Canizo, B.V., Escudero, L.B., Pellerano, R.G., Wuilloud, R.G.: Data mining approach based on chemical composition of grape skin for quality evaluation and traceability prediction of grapes. Comput. Electron. Agric. 162, 514–522 (2019). https://doi.org/10.1016/j.compag.2019.04.043

    Article  Google Scholar 

  29. De, N.M., Manfra, M., Bolognese, A., Sofo, A.: Nutraceutical properties and polyphenolic profile of berry skin and wine of Vitis vinifera L. (cv.Aglianico). Food Chem. (2012). https://doi.org/10.1016/j.foodchem.2012.10.123

    Article  Google Scholar 

  30. Vystavna, Y., Rushenko, L., Diadin, D., Klymenko, O., Klymenko, M.: Trace metals in wine and vineyard environment in southern Ukraine. Food Chem. 146, 339–344 (2014). https://doi.org/10.1016/j.foodchem.2013.09.091

    Article  Google Scholar 

  31. Lachman, J., Hejtmánková, A., Pivec, V., Dědina, M., Přibyl, J.: Towards complex utilisation of winemaking residues: characterisation of grape seeds by total phenols, tocols and essential elements content as a by-product of winemaking. Ind. Crops Prod. 49, 445–453 (2013). https://doi.org/10.1016/j.indcrop.2013.05.022

    Article  Google Scholar 

  32. Di Bella, G., Naccari, C., Bua, G.D., Rastrelli, L., Lo Turco, V., Potortì, A.G., et al.: Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. (2016). https://doi.org/10.3109/09637486.2016.1153610

    Article  Google Scholar 

  33. Gogoasa, I., Alexandra, P., Maria, A.L., Ariana, V., Maria, R., Maria, D., et al.: The mineral content of different coffee brands. J. Hortic. For. Biotechnol. 17, 68–71 (2013)

    Google Scholar 

  34. Chikwanha, O.C., Raffrenato, E., Muchenje, V., Musarurwa, H.T., Mapiye, C.: Varietal differences in nutrient, amino acid and mineral composition and in vitro rumen digestibility of grape (Vitis vinifera) pomace from the Cape Winelands vineyards in South Africa and impact of preservation techniques. Ind. Crops. Prod. 118, 30–37 (2018). https://doi.org/10.1016/j.indcrop.2018.03.026

    Article  Google Scholar 

  35. Cugnetto, A., Santagostini, L., Rolle, L., Guidoni, S., Gerbi, V., Novello, V.: Tracing the “ terroirs ” via the elemental composition of leaves, grapes and derived wines in cv Nebbiolo (Vitis vinifera L.). Sci. Hortic. (Amsterdam) 172, 101–108 (2014). https://doi.org/10.1016/j.scienta.2014.03.055

    Article  Google Scholar 

  36. CODEX STAN 193-1995. Codex General Standard For Contaminants And Toxins In Food And Feed 2015.

  37. EFSA. Safety of aluminium from dietary intake. EFSA J 2008:1–34.

  38. Gouvinhas, I., DomÃ-nguez-Perles, R., Machado, N., Carvalho, T., Matos, C., Barros, A.I.R.N.A.: Effect of agro-environmental factors on the mineral content of olive oils: categorization of the three major portuguese cultivars. JAOCS (2016). https://doi.org/10.1007/s11746-016-2827-4

    Article  Google Scholar 

  39. Kumar, B., Smita, K., Cumbal, F.L.: Plant mediated detoxification of mercury and lead. Arab. J. Chem. 10, S2335–S2342 (2017). https://doi.org/10.1016/j.arabjc.2013.08.010

    Article  Google Scholar 

  40. Dias, C., Domínguez-Perles, R., Aires, A., Teixeira, A., Rosa, E., Barros, A., et al.: Phytochemistry and activity against digestive pathogens of grape (Vitis vinifera L.) stem’s (poly)phenolic extracts. LWT. Food Sci. Technol. 61, 25–32 (2015). https://doi.org/10.1016/j.lwt.2014.11.033

    Article  Google Scholar 

  41. Garrido, J., Borges, F.: Wine and grape polyphenols: a chemical perspective. Food Res. Int. 54, 1844–1858 (2013). https://doi.org/10.1016/j.foodres.2013.08.002

    Article  Google Scholar 

  42. Marchante, L., Loarce, L., Izquierdo-cañas, P.M., Alañón, E., García-romero, E., Pérez-coello, M.S., et al.: Natural extracts from grape seed and stem by-products in combination with colloidal silver as alternative preservatives to SO2 for white wines: effects on chemical composition and sensorial propertie. Food Res. Int. (2019). https://doi.org/10.1016/j.foodres.2019.108594

    Article  Google Scholar 

  43. Llobera, A., Cañellas, J.: Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem. Food Chem. 101, 659–666 (2007). https://doi.org/10.1016/j.foodchem.2006.02.025

    Article  Google Scholar 

  44. Llobera, A., Cañellas, J.: Antioxidant activity and dietary fibre of Prensal Blanc white grape (Vitis vinifera) by-products. Int. J. Food Sci. Technol. 43, 1953–1959 (2008). https://doi.org/10.1111/j.1365-2621.2008.01798.x

    Article  Google Scholar 

  45. Anastasiadi, M., Chorianopoulos, N.G., Nychas, G.J.E., Karoutounian, S.A.: Antilisterial activities of polyphenol-rich extracts of grapes and vinification byproducts. J Agric Food Chem 57, 457–463 (2009). https://doi.org/10.1021/jf8024979

    Article  Google Scholar 

  46. González-Centeno, M.R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., Teissedre, P.-L.: Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). J. Agric. Food Chem. 60, 11850–11858 (2012). https://doi.org/10.1021/jf303047k

    Article  Google Scholar 

  47. Sahpazidou, D., Geromichalos, G.D., Stagos, D., Apostolou, A., Haroutounian, S.A., Tsatsakis, A.M., et al.: Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells. Toxicol. Lett. 230, 218–224 (2014). https://doi.org/10.1016/j.toxlet.2014.01.042

    Article  Google Scholar 

  48. Barros, A., Gironés-Vilaplana, A., Teixeira, A., Collado-González, J., Moreno, D.A., Gil-Izquierdo, A., et al.: Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: a comparative study. Food Res Int. 65, 375–384 (2014). https://doi.org/10.1016/j.foodres.2014.07.021

    Article  Google Scholar 

  49. Teixeira, N., Mateus, N., de Freitas, V., Oliveira, J.: Wine industry by-product: full polyphenolic characterization of grape stalks. Food Chem. 268, 110–117 (2018). https://doi.org/10.1016/j.foodchem.2018.06.070

    Article  Google Scholar 

  50. Gouvinhas, I., Machado, N., Sobreira, C., Domínguez-Perles, R., Gomes, S., Rosa, E., et al.: Critical review on the significance of Olive phytochemicals in plant physiology and human health. Molecules (2017). https://doi.org/10.3390/molecules22111986

    Article  Google Scholar 

  51. Lavid, N., Schwartz, A., Yarden, O., Tel-Or, E.: The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212, 323–331 (2001). https://doi.org/10.1007/s004250000400

    Article  Google Scholar 

  52. Yan, L., Kim, I.H.: Effect of dietary grape pomace fermented by Saccharomyces boulardii on the growth performance, nutrient digestibility and meat quality in finishing pigs. Asian Australas J. Anim. Sci. 24, 1763 (2011). https://doi.org/10.5713/ajas.2011.11189

    Article  Google Scholar 

  53. Karamać, M.: Chelation of Cu(II), Zn(II), and Fe(II) by tannin constituents of selected edible nuts. Int. J. Mol. Sci. 10, 5485–5497 (2009). https://doi.org/10.3390/ijms10125485

    Article  Google Scholar 

  54. Karamać, M., Pegg, R.B.: Limitations of the tetramethylmurexide assay for investigating the Fe(II) chelation activity of phenolic compounds. J. Agric. Food Chem. 57, 6425–6431 (2009). https://doi.org/10.1021/jf901100t

    Article  Google Scholar 

  55. Li, Y., Li, Z., Hou, H., Zhuang, Y., Sun, L.: Metal chelating, inhibitory DNA damage, and anti-inflammatory activities of phenolics from rambutan (nephelium lappaceum) peel and the quantifications of geraniin and corilagin. Molecules (2018). https://doi.org/10.3390/molecules23092263

    Article  Google Scholar 

  56. Wang, T., Jónsdóttir, R., Ólafsdóttir, G.: Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 116, 240–248 (2009). https://doi.org/10.1016/j.foodchem.2009.02.041

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Funds by FCT—Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020, and the I&D project Interact—Integrative Research in Environment, Agro-Chains and Technology (NORTE-01-0145-FEDER-000017), regarding the research line “Fostering viticulture sustainability for Douro Valley: multidisciplinary efforts from field to wine (VitalityWINE)”, and the research line “Innovation for Sustainable Agro-food Chains (ISAC)” co-founded by the European Regional Development Fund (FEDER) through NORTE-2020 (Programa Operacional Regional do Norte 2014/2020) and and FEDER-Interreg España-Portugal programme for financial support through the project 0377_Iberphenol_6_E. We also acknowledge Eng. Manuel Henriques from Rozés for the samples provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Gouvinhas.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, C., Costa, C.M., Barros, A.I.R.N.A. et al. Assessing the Relationship Between the Phenolic Content and Elemental Composition of Grape (Vitis vinifera L.) Stems. Waste Biomass Valor 12, 1313–1325 (2021). https://doi.org/10.1007/s12649-020-01090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01090-6

Keywords

Navigation