Skip to main content

Advertisement

Log in

Alkali-Activated Cements from Urban, Mining and Agro-Industrial Waste: State-of-the-art and Opportunities

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Facing the beginning of the third decade of the twenty-first century, humanity faces an environmental threat that can pose some serious concerns regarding the life on the planet as we know it. The industrial sector is probably the most significant contributor to this concerning scenario, with the construction industry (CI) playing a leading role. Massive efforts have thus been directed to the research of more sustainable and environmentally friendly paths in the CI, showing a clear and sustained demand for new, bold and sustainable structural and non-structural materials. The development of alternative solutions to Portland cement (OPC) and relative products (e.g. mortars and concretes) is rapidly becoming the spearhead of said efforts, mostly due to the high contribution, in terms of CO2-eq, associated with cement production. The present paper focus on the recent developments associated with the incorporation of urban, mining and agro-industrial waste in construction materials, namely in alkali-activated cements. Scientific knowledge and its transfer into live-scale applications, based mostly on technical aspects, have been considered. At this stage, the transition from experimental studies to live-scale applications is probably the most relevant factor, as the secular knowledge associated with current solutions, combined with the heavy financial investments already made, is rapidly generating the sole biggest resistance to this necessary change of hearts and minds.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bernal, S.A., Mejía De Gutiérrez, R., Provis, J.L.: Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr. Build. Mater. 33, 99–108 (2012). https://doi.org/10.1016/j.conbuildmat.2012.01.017

    Article  Google Scholar 

  2. Bernal, S.A., Rodríguez, E.D., de Gutiérrez, R.M., Provis, J.L.: Performance of alkali-activated slag mortars exposed to acids. J. Sustain. Cem. Mater. 1, 138–151 (2012). https://doi.org/10.1080/21650373.2012.747235

    Article  Google Scholar 

  3. Shi, C.: Strength pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 26, 1789–1799 (1996). https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  4. Fernández-Jiménez, A., García-Lodeiro, I., Palomo, A.: Durability of alkali-activated fly ash cementitious materials. J. Mater. Sci. 42, 3055–3065 (2007). https://doi.org/10.1007/s10853-006-0584-8

    Article  Google Scholar 

  5. Davidovits, J.: Geopolymers—inorganic polymeric new materials. J. Therm. Anal. 37, 1633–1656 (1991). https://doi.org/10.1007/BF01912193

    Article  Google Scholar 

  6. Cheng, T.W., Chiu, J.P.: Fire-resistant geopolymer produce by granulated blast furnace slag. Miner. Eng. 16, 205–210 (2003). https://doi.org/10.1016/S0892-6875(03)00008-6

    Article  Google Scholar 

  7. Giosuè, C., Mobili, A., Di Perna, C., Tittarelli, F.: Performance of lightweight cement-based and alkali-activated mortars exposed to high-temperature. Constr. Build. Mater. 220, 565–576 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.193

    Article  Google Scholar 

  8. Alcamand, H.A., Borges, P.H.R., Silva, F.A., Trindade, A.C.C.: The effect of matrix composition and calcium content on the sulfate durability of metakaolin and metakaolin/slag alkali-activated mortars. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.12.102

    Article  Google Scholar 

  9. Keulen, A., van Zomeren, A., Dijkstra, J.J.: Leaching of monolithic and granular alkali activated slag-fly ash materials, as a function of the mixture design. Waste Manag. 78, 497–508 (2018). https://doi.org/10.1016/j.wasman.2018.06.019

    Article  Google Scholar 

  10. Špak, M., Raschman, P.: Influence of different mineral precursors on the properties of fly ash based alkali-activated mortars. Key Eng. Mater. 761, 73–78 (2018). https://doi.org/10.4028/www.scientific.net/KEM.761.73

    Article  Google Scholar 

  11. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N., Ramezanianpour, A.A.: Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem. Concr. Compos. 33, 251–260 (2011). https://doi.org/10.1016/j.cemconcomp.2010.10.021

    Article  Google Scholar 

  12. Bumanis, G., Vitola, L., Bajare, D., Pundiene, I.: Impact of Reactive SiO2/Al2O3 ratio in precursor on durability of porous alkali activated materials. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.01.060

    Article  Google Scholar 

  13. Fernández-Jiménez, A., Palomo, A., Criado, M.: Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem. Concr. Res. 35, 1204–1209 (2005). https://doi.org/10.1016/j.cemconres.2004.08.021

    Article  Google Scholar 

  14. Shi, C., Jiménez, A.F., Palomo, A.: New cements for the 21st century : The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41, 750–763 (2011). https://doi.org/10.1016/j.cemconres.2011.03.016

    Article  Google Scholar 

  15. Puertas, F., Martínez-Ramírez, S., Alonso, S., Vázquez, T.: Alkali-activated fly ash/slag cements. Strength behaviour and hydration products. Cem. Concr. Res. 30, 1625–1632 (2000). 10.1016/S0008–8846(00)00298–2

  16. Fernández-Jiménez, A., Zibouche, F., Boudissa, N., García-Lodeiro, I., Abadlia, M.T., Palomo, A.: “Metakaolin-slag-clinker blends.” the role of Na+ or K+ as alkaline activators of theses ternary blends. J. Am. Ceram. Soc. 96, 1991–1998 (2013). 10.1111/jace.12272

  17. Samson, G., Cyr, M., Gao, X.X.: Formulation and characterization of blended alkali-activated materials based on flash-calcined metakaolin, fly ash and GGBS. Constr. Build. Mater. 144, 50–64 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.160

    Article  Google Scholar 

  18. Chi, M., Huang, R.: Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr. Build. Mater. 40, 291–298 (2013). https://doi.org/10.1016/j.conbuildmat.2012.11.003

    Article  Google Scholar 

  19. McLellan, B.C., Williams, R.P., Lay, J., van Riessen, A., Corder, G.D.: Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 19, 1080–1090 (2011). https://doi.org/10.1016/j.jclepro.2011.02.010

    Article  Google Scholar 

  20. Cristelo, N., Miranda, T., Oliveira, D.V., Rosa, I., Soares, E., Coelho, P., Fernandes, L.: Assessing the production of jet mix columns using alkali activated waste based on mechanical and financial performance and CO2 (eq) emissions. J. Clean. Prod. 102, 447–460 (2015). https://doi.org/10.1016/j.jclepro.2015.04.102

    Article  Google Scholar 

  21. Habert, G., D’Espinose De Lacaillerie, J.B., Roussel, N.: An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 19, 1229–1238 (2011). 10.1016/j.jclepro.2011.03.012

  22. Mália, M., De Brito, J., Pinheiro, M.D., Bravo, M.: Construction and demolition waste indicators. Waste Manag. Res. 31, 241–255 (2013). https://doi.org/10.1177/0734242X12471707

    Article  Google Scholar 

  23. European Commission: Internal Market, Industry, Entrepreneurship and SMEs, https://ec.europa.eu/growth/sectors/construction_en

  24. European Commission: Construction and demolition waste—Environment—European Commission, https://ec.europa.eu/environment/waste/construction_demolition.htm

  25. Rodríguez, G., Medina, C., Alegre, F.J., Asensio, E., de Rojas, M.I.S.: Assessment of C & DW plant management in Spain : in pursuit of sustainability and eco-efficiency. J. Clean. Prod. 90, 1–9 (2014). https://doi.org/10.1016/j.jclepro.2014.11.067

    Article  Google Scholar 

  26. Robayo-Salazar, R.A., Rivera, J.F., Mejía de Gutiérrez, R.: Alkali-activated building materials made with recycled construction and demolition wastes. Constr. Build. Mater. 149, 130–138 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.122

    Article  Google Scholar 

  27. Allahverdi, A., Najafi Kani, E.: Construction wastes as raw materials for geopolymer binders. Int. J. Civ. Eng. 7, 154–160 (2009)

    Google Scholar 

  28. Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., Galetakis, M.: Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Adv. Powder Technol. 26, 368–376 (2015)

    Article  Google Scholar 

  29. Vásquez, A., Cárdenas, V., Robayo, R.A., de Gutiérrez, R.M.: Geopolymer based on concrete demolition waste. Adv. Powder Technol. 27, 1173–1179 (2016)

    Article  Google Scholar 

  30. Ahmari, S., Ren, X., Toufigh, V., Zhang, L.: Production of geopolymeric binder from blended waste concrete powder and fly ash. Constr. Build. Mater. 35, 718–729 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.044

    Article  Google Scholar 

  31. Zaharaki, D., Galetakis, M., Komnitsas, K.: Valorization of construction and demolition (C&D) and industrial wastes through alkali activation. Constr. Build. Mater. 121, 686–693 (2016). https://doi.org/10.1016/j.conbuildmat.2016.06.051

    Article  Google Scholar 

  32. Lampris, C., Lupo, R., Cheeseman, C.R.: Geopolymerisation of silt generated from construction and demolition waste washing plants. Waste Manag. 29, 368–373 (2009)

    Article  Google Scholar 

  33. Bassani, M., Tefa, L., Russo, A., Palmero, P.: Alkali-activation of recycled construction and demolition waste aggregate with no added binder. Constr. Build. Mater. 205, 398–413 (2019). https://doi.org/10.1016/j.conbuildmat.2019.02.031

    Article  Google Scholar 

  34. Bassani, M., Tefa, L., Coppola, B., Palmero, P.: Alkali-activation of aggregate fines from construction and demolition waste: valorisation in view of road pavement subbase applications. J. Clean. Prod. 234, 71–84 (2019). https://doi.org/10.1016/j.jclepro.2019.06.207

    Article  Google Scholar 

  35. Bernal, S.A., Rodríguez, E.D., Kirchheim, A.P., Provis, J.L.: Management and valorisation of wastes through use in producing alkali-activated cement materials. J. Chem. Technol. Biotechnol. 91(9), 2365–2388 (2016)

    Article  Google Scholar 

  36. Ros-Dosdá, T., Fullana-i-Palmer, P., Mezquita, A., Masoni, P., Monfort, E.: How can the European ceramic tile industry meet the EU’s low-carbon targets? A life cycle perspective. J. Clean. Prod. 199, 554–564 (2018)

    Article  Google Scholar 

  37. Pacheco-Torgal, F., Jalali, S.: Reusing ceramic wastes in concrete. Constr. Build. Mater. 24, 832–838 (2010). https://doi.org/10.1016/j.conbuildmat.2009.10.023

    Article  Google Scholar 

  38. Khalil, N.M., Algamal, Y.: Recycling of ceramic wastes for the production of high performance mullite refractories. Silicon (2019). https://doi.org/10.1007/s12633-019-00248-9

    Article  Google Scholar 

  39. Mohammadhosseini, H., Lim, N.H.A.S., Tahir, M.M., Alyousef, R., Alabduljabbar, H., Samadi, M.: Enhanced performance of green mortar comprising high volume of ceramic waste in aggressive environments. Constr. Build. Mater. 212, 607–617 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.024

    Article  Google Scholar 

  40. Matias, G., Faria, P., Torres, I.: Lime mortars with ceramic wastes: characterization of components and their influence on the mechanical behaviour. Constr. Build. Mater. 73, 523–534 (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.108

    Article  Google Scholar 

  41. Kanellopoulos, A., Nicolaides, D., Petrou, M.F.: Mechanical and durability properties of concretes containing recycled lime powder and recycled aggregates. Constr. Build. Mater. 53, 253–259 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.102

    Article  Google Scholar 

  42. Subaşı, S., Öztürk, H., Emiroğlu, M.: Utilizing of waste ceramic powders as filler material in self-consolidating concrete. Constr. Build. Mater. 149, 567–574 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.180

    Article  Google Scholar 

  43. Keshavarz, Z., Mostofinejad, D.: Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Constr. Build. Mater. 195, 218–230 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.033

    Article  Google Scholar 

  44. Moreira, E.B., Baldovino, J.A., Rose, J.L., Luis dos Santos Izzo, R.: Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures. J. Rock Mech. Geotech. Eng. 11, 369–378 (2019). https://doi.org/10.1016/j.jrmge.2018.04.015

    Article  Google Scholar 

  45. Cristelo, N., Fernández-Jiménez, A., Vieira, C., Miranda, T., Palomo, Á.: Stabilisation of construction and demolition waste with a high fines content using alkali activated fly ash. Constr. Build. Mater. 170, 26–39 (2018)

    Article  Google Scholar 

  46. Azevedo, A.R.G., Vieira, C.M.F., Ferreira, W.M., Faria, K.C.P., Pedroti, L.G., Mendes, B.C.: Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. J. Build. Eng. 29, 101156 (2020). https://doi.org/10.1016/j.jobe.2019.101156

    Article  Google Scholar 

  47. G. de Moraes, E., Sangiacomo, L., P. Stochero, N., Arcaro, S., R. Barbosa, L., Lenzi, A., Siligardi, C., Novaes de Oliveira, A.P.: Innovative thermal and acoustic insulation foam by using recycled ceramic shell and expandable styrofoam (EPS) wastes. Waste Manag. 89, 336–344 (2019). 10.1016/j.wasman.2019.04.019

  48. García-Díaz, I., Palomo, J.G., Puertas, F.: Belite cements obtained from ceramic wastes and the mineral pair CaF2/CaSO4. Cem. Concr. Compos. 33, 1063–1070 (2011). https://doi.org/10.1016/j.cemconcomp.2011.06.003

    Article  Google Scholar 

  49. Puertas, F., García-Díaz, I., Barba, A., Gazulla, M.F., Palacios, M., Gómez, M.P., Martínez-Ramírez, S.: Ceramic wastes as alternative raw materials for Portland cement clinker production. Cem. Concr. Compos. 30, 798–805 (2008). https://doi.org/10.1016/j.cemconcomp.2008.06.003

    Article  Google Scholar 

  50. Li, L., Liu, W., You, Q., Chen, M., Zeng, Q.: Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.120853

    Article  Google Scholar 

  51. Puertas, F., Barba, A., Gazulla, M.F., Gómez, M.P., Palacios, M.: Ceramic wastes as raw materials in Portland cement clinker fabrication—characterization and alkaline activation. Mater. Constr. 56, 73–84 (2006)

    Google Scholar 

  52. Reig, L., Tashima, M.M., Soriano, L., Borrachero, M.V., Monzó, J., Payá, J.: Alkaline activation of ceramic waste materials. Waste Biomass Valoriz. 4, 729–736 (2013)

    Article  Google Scholar 

  53. Reig, L., Tashima, M.M., Borrachero, M.V., Monzó, J., Cheeseman, C.R., Payá, J.: Properties and microstructure of alkali-activated red clay brick waste. Constr. Build. Mater. 43, 98–106 (2013). https://doi.org/10.1016/j.conbuildmat.2013.01.031

    Article  Google Scholar 

  54. Khater, H.M., El Nagar, A.M., Ezzat, M.: Optimization of alkali activated grog/ceramic wastes geopolymer bricks. Int. J. Innov. Res. Sci. Eng. Technol. 5, 37–46 (2016). https://doi.org/10.15680/IJIRSET.2015.0501005

    Article  Google Scholar 

  55. Huseien, G.F., Sam, A.R.M., Shah, K.W., Mirza, J., Tahir, M.M.: Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Constr. Build. Mater. 210, 78–92 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.194

    Article  Google Scholar 

  56. Zedan, S.R., Mohamed, M.R., Ahmed, D.A., Mohammed, A.H.: Alkali activated ceramic waste with or without two different calcium sources. Adv. Mater. Res. 4, 133–144 (2015). https://doi.org/10.12989/amr.2015.4.3.133

    Article  Google Scholar 

  57. Robayo, R.A., Mulford, A., Munera, J., Mejía de Gutiérrez, R.: Alternative cements based on alkali-activated red clay brick waste. Constr. Build. Mater. 128, 163–169 (2016). https://doi.org/10.1016/j.conbuildmat.2016.10.023

    Article  Google Scholar 

  58. Reig, L., Soriano, L., Tashima, M.M., Borrachero, M.V., Monzó, J., Payá, J.: Influence of calcium additions on the compressive strength and microstructure of alkali-activated ceramic sanitary-ware. J. Am. Ceram. Soc. 101, 3094–3104 (2018). https://doi.org/10.1111/jace.15436

    Article  Google Scholar 

  59. Coppola, B., Tardivat, C., Richaud, S., Tulliani, J.M., Montanaro, L., Palmero, P.: Alkali-activated refractory wastes exposed to high temperatures: development and characterization. J. Eur. Ceram. Soc. 40, 3314–3326 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.02.052

    Article  Google Scholar 

  60. EUROSTAT: Generation of waste by waste category, hazardousness and NACE rev. 2 activity

  61. Shi, C., Zheng, K.: A review on the use of waste glasses in the production of cement and concrete. Resour. Conserv. Recycl. 52, 234–247 (2007). https://doi.org/10.1016/j.resconrec.2007.01.013

    Article  Google Scholar 

  62. Vafaei, M., Allahverdi, A.: High strength geopolymer binder based on waste-glass powder. Adv. Powder Technol. 28, 215–222 (2017). https://doi.org/10.1016/j.apt.2016.09.034

    Article  Google Scholar 

  63. Avila-López, U., Almanza-Robles, J.M., Escalante-García, J.I.: Investigation of novel waste glass and limestone binders using statistical methods. Constr. Build. Mater. 82, 296–303 (2015)

    Article  Google Scholar 

  64. Menchaca-Ballinas, L.E., Escalante-Garcia, J.I.: Low CO2 emission cements of waste glass activated by CaO and NaOH. J. Clean. Prod. 239, 117992 (2019). https://doi.org/10.1016/j.jclepro.2019.117992

    Article  Google Scholar 

  65. Rivera, J.F., Cuarán-Cuarán, Z.I., Vanegas-Bonilla, N., Mejía de Gutiérrez, R.: Novel use of waste glass powder: Production of geopolymeric tiles. Adv. Powder Technol. 29, 3448–3454 (2018)

    Article  Google Scholar 

  66. Fernández-Jiménez, A., Cristelo, N., Miranda, T., Palomo, Á.: Sustainable alkali activated materials: precursor and activator derived from industrial wastes. J. Clean. Prod. 162, 1200–1209 (2017)

    Article  Google Scholar 

  67. Cristelo, N., Fernández-Jiménez, A., Castro, F., Fernandes, L., Tavares, P.: Sustainable alkaline activation of fly ash, aluminium anodising sludge and glass powder blends with a recycled alkaline cleaning solution. Constr. Build. Mater. 204, 609–620 (2019)

    Article  Google Scholar 

  68. Zhang, L., Yue, Y.: Influence of waste glass powder usage on the properties of alkali-activated slag mortars based on response surface methodology. Constr. Build. Mater. 181, 527–534 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.040

    Article  Google Scholar 

  69. Huseien, G.F., Hamzah, H.K., Mohd Sam, A.R., Khalid, N.H.A., Shah, K.W., Deogrescu, D.P., Mirza, J.: Alkali-activated mortars blended with glass bottle waste nano powder: environmental benefit and sustainability. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.118636

    Article  Google Scholar 

  70. Moncea, A.M., Badanoiu, A., Georgescu, M., Stoleriu, S.: Cementitious composites with glass waste from recycling of cathode ray tubes. Mater. Struct. Constr. 46, 2135–2144 (2013). https://doi.org/10.1617/s11527-013-0041-5

    Article  Google Scholar 

  71. Vinai, R., Soutsos, M.: Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders. Cem. Concr. Res. 116, 45–56 (2019). https://doi.org/10.1016/j.cemconres.2018.11.008

    Article  Google Scholar 

  72. Puertas, F., Torres-Carrasco, M.: Use of glass waste as an activator in the preparation of alkali-activated slag: mechanical strength and paste characterisation. Cem. Concr. Res. 57, 95–104 (2014). https://doi.org/10.1016/j.cemconres.2013.12.005

    Article  Google Scholar 

  73. Torres-Carrasco, M., Palomo, J.G., Puertas, F.: Sodium silicate solutions from dissolution of glasswastes Statistical analysis. Mater. Constr. 64, e014 (2014)

    Article  Google Scholar 

  74. Li, X.G., Lv, Y., Ma, B.G., Chen, Q.B., Yin, X.B., Jian, S.W.: Utilization of municipal solid waste incineration bottom ash in blended cement. J. Clean. Prod. 32, 96–100 (2012)

    Article  Google Scholar 

  75. Pan, J.R., Huang, C., Kuo, J.J., Lin, S.H.: Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Manag. 28, 1113–1118 (2008). https://doi.org/10.1016/j.wasman.2007.04.009

    Article  Google Scholar 

  76. Kikuchi, R.: Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker. Resour. Conserv. Recycl. 31, 137–147 (2001). https://doi.org/10.1016/S0921-3449(00)00077-X

    Article  Google Scholar 

  77. Pera, J., Coutaz, L., Ambroise, J., Chababbet, M.: Use of incinerator bottom ash in concrete. Cem. Concr. Res. 27, 1–5 (1997). https://doi.org/10.1016/S0008-8846(96)00193-7

    Article  Google Scholar 

  78. del Valle-Zermeño, R., Gómez-Manrique, J., Giro-Paloma, J., Formosa, J., Chimenos, J.M.: Material characterization of the MSWI bottom ash as a function of particle size. Effects of glass recycling over time. Sci. Total Environ. 581–582, 897–905 (2017). https://doi.org/10.1016/j.scitotenv.2017.01.047

    Article  Google Scholar 

  79. Maldonado-Alameda, A., Giro-Paloma, J., Svobodova-Sedlackova, A., Formosa, J., Chimenos, J.M.: Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.118443

    Article  Google Scholar 

  80. Cristelo, N., Segadães, L., Coelho, J., Chaves, B., Sousa, N.R., de Lurdes Lopes, M.: Recycling municipal solid waste incineration slag and fly ash as precursors in low-range alkaline cements. Waste Manag. 104, 60–73 (2020). https://doi.org/10.1016/j.wasman.2020.01.013

    Article  Google Scholar 

  81. Kan, L., Shi, R., Zhao, Y., Duan, X., Wu, M.: Feasibility study on using incineration fly ash from municipal solid waste to develop high ductile alkali-activated composites. J. Clean. Prod. 254, 120168 (2020). https://doi.org/10.1016/j.jclepro.2020.120168

    Article  Google Scholar 

  82. Haq, E.U., Padmanabhan, S.K., Zubair, M., Ali, L., Licciulli, A.: Intumescence behaviour of bottom ash based geopolymer mortar through microwave irradiation—As affected by alkali activation. Constr. Build. Mater. 126, 951–956 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.135

    Article  Google Scholar 

  83. Xuan, D., Tang, P., Poon, C.S.: MSWIBA-based cellular alkali-activated concrete incorporating waste glass powder. Cem. Concr. Compos. 95, 128–136 (2019). https://doi.org/10.1016/j.cemconcomp.2018.10.018

    Article  Google Scholar 

  84. Huang, G., Ji, Y., Zhang, L., Li, J., Hou, Z.: The influence of curing methods on the strength of MSWI bottom ash-based alkali-activated mortars: The role of leaching of OH − and free alkali. Constr. Build. Mater. 186, 978–985 (2018)

    Article  Google Scholar 

  85. Huang, G., Ji, Y., Zhang, L., Li, J., Hou, Z.: Advances in understanding and analyzing the anti-diffusion behavior in complete carbonation zone of MSWI bottom ash-based alkali-activated concrete. Constr. Build. Mater. 186, 1072–1081 (2018)

    Article  Google Scholar 

  86. Sedira, N., Castro-Gomes, J.: Effect of activators on hybrid alkaline binder based on tungsten mining waste and ground granulated blast furnace slag. Constr. Build. Mater. 232, 117176 (2020)

    Article  Google Scholar 

  87. Silva, I., Castro-Gomes, J.P., Albuquerque, A.: Effect of immersion in water partially alkali-activated materials obtained of tungsten mine waste mud. Constr. Build. Mater. 35, 117–124 (2012). https://doi.org/10.1016/j.conbuildmat.2012.02.069

    Article  Google Scholar 

  88. Gräfe, M., Power, G., Klauber, C.: Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy 108, 60–79 (2011). https://doi.org/10.1016/j.hydromet.2011.02.004

    Article  Google Scholar 

  89. Pacheco-Torgal, F., Castro-Gomez, J., Jalali, S.: Properties of tungten mine geopolymeric binder. Constr. Build. Mater. 22, 1201–1211 (2008). https://doi.org/10.1016/j.conbuildmat.2007.01.022

    Article  Google Scholar 

  90. Pacheco-Torgal, F., Castro-Gomes, J.P., Jalali, S.: Investigations of tungsten mine waste geopolymeric binder: strength and microstructure. Constr. Build. Mater. 22, 2212–2219 (2008). https://doi.org/10.1016/j.conbuildmat.2007.08.003

    Article  Google Scholar 

  91. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders. Cem. Concr. Res. 37, 933–941 (2007)

    Article  Google Scholar 

  92. Kastiukas, G., Zhou, X.: Effects of waste glass on alkali-activated tungsten mining waste: composition and mechanical properties. Mater. Struct. Constr. 50, 194 (2017)

    Article  Google Scholar 

  93. Sedira, N., Castro-Gomes, J., Magrinho, M.: Red clay brick and tungsten mining waste-based alkali-activated binder: Microstructural and mechanical properties. Constr. Build. Mater. 190, 1034–1048 (2018)

    Article  Google Scholar 

  94. Dimas, D.D., Giannopoulou, I.P., Panias, D.: Utilization of alumina red mud for synthesis of inorganic polymeric materials. Miner. Process. Extr. Metall. Rev. 30, 211–239 (2009). https://doi.org/10.1080/08827500802498199

    Article  Google Scholar 

  95. Krivenko, P., Kovalchuk, O., Pasko, A., Hult, T.C.M., Lutter, G., Vandevenne, N., Schreurs, S., Wouter, S.: Development of alkali activated cements and concrete mixture design with high volumes of red mud. Constr. Build. Mater. 151, 819–826 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.031

    Article  Google Scholar 

  96. Hu, Y., Liang, S., Yang, J., Chen, Y., Ye, N., Ke, Y., Tao, S., Xiao, K., Hu, J., Hou, H., Fan, W., Zhu, S., Zhang, Y., Xiao, B.: Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Constr. Build. Mater. 200, 398–407 (2019). https://doi.org/10.1016/j.conbuidmat.2018.12.122

    Article  Google Scholar 

  97. Kumar, A., Kumar, S.: Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr. Build. Mater. 38, 865–871 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.013

    Article  Google Scholar 

  98. Frías, M., De La Villa, R.V., De Rojas, M.S., Medina, C., Juan Valdés, A.: Scientific aspects of kaolinite based coal mining wastes in pozzolan/Ca(OH)2 system. J. Am. Ceram. Soc. 95, 386–391 (2012). https://doi.org/10.1111/j.1551-2916.2011.04985.x

    Article  Google Scholar 

  99. Longhi, M.A., Rodríguez, E.D., Bernal, S.A., Provis, J.L., Kirchheim, A.P.: Valorisation of a kaolin mining waste for the production of geopolymers. J. Clean. Prod. 115, 265–272 (2016). https://doi.org/10.1016/j.jclepro.2015.12.011

    Article  Google Scholar 

  100. Ascensao, G., Seabra, M.P., Aguilar, J.B., Labrincha, J.A.: Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability. J. Clean. Prod. 148, 23–30 (2017). https://doi.org/10.1016/j.jclepro.2017.01.150

    Article  Google Scholar 

  101. Singh, S., Aswath, M.U., Ranganath, R.V.: Effect of mechanical activation of red mud on the strength of geopolymer binder. Constr. Build. Mater. 177, 91–101 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.096

    Article  Google Scholar 

  102. Della, V.P., Kühn, I., Hotza, D.: Rice husk ash as an alternate source for active silica production. Mater. Lett. 57, 818–821 (2002). https://doi.org/10.1016/S0167-577X(02)00879-0

    Article  Google Scholar 

  103. Villaquirán-Caicedo, M.A., Mejía De Gutiérrez, R., Gallego, N.C.: A novel MK-based geopolymer composite activated with rice husk ash and KOH: performance at high temperature. Mater. Constr. 67, 1–13 (2017). https://doi.org/10.3989/mc.2017.02316

    Article  Google Scholar 

  104. FAO: Organizacion de las Naciones Unidas para la Alimentacion y la Agricultura. FAO, Rome (2019)

  105. Detphan, S., Chindaprasirt, P.: Preparation of fly ash and rice husk ash geopolymer. Int. J. Miner. Metall. Mater. 16, 720–726 (2009). https://doi.org/10.1016/S1674-4799(10)60019-2

    Article  Google Scholar 

  106. Mejía, J.M., Mejía De Gutiérrez, R., Montes, C.: Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. J. Clean. Prod. 118, 133–139 (2016). https://doi.org/10.1016/j.jclepro.2016.01.057.This

    Article  Google Scholar 

  107. Bernal, S.A., Rodríguez, E.D., De Gutiérrez, R.M., Provis, J.L.: Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Mater. Constr. 65, 1–10 (2015). https://doi.org/10.3989/mc.2015.03114

    Article  Google Scholar 

  108. Bouzón, N., Payá, J., Borrachero, M.V., Soriano, L., Tashima, M.M., Monzó, J.: Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Mater. Lett. 115, 72–74 (2014). https://doi.org/10.1016/j.matlet.2013.10.001

    Article  Google Scholar 

  109. Pereira, A., Akasaki, J.L., Melges, J.L.P., Tashima, M.M., Soriano, L., Borrachero, M.V., Monzó, J., Payá, J.: Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceram. Int. 41, 13012–13024 (2015). https://doi.org/10.1016/j.ceramint.2015.07.001

    Article  Google Scholar 

  110. Moraes, J.C.B., Tashima, M.M., Akasaki, J.L., Melges, J.L.P., Monzó, J., Borrachero, M.V., Soriano, L., Payá, J.: Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS). Constr. Build. Mater. 144, 214–224 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.166

    Article  Google Scholar 

  111. Castaldelli, V.N., Akasaki, J.L., Melges, J.L.P., Tashima, M.M., Soriano, L., Borrachero, M.V., Monzó, J., Payá, J.: Use of slag/sugar cane bagasse ash (SCBA) blends in the production of alkali-activated materials. Materials (Basel). 6, 3108–3127 (2013). https://doi.org/10.3390/ma6083108

    Article  Google Scholar 

  112. Moraes, J.C.B., Font, A., Soriano, L., Akasaki, J.L., Tashima, M.M., Monzó, J., Borrachero, M.V., Payá, J.: New use of sugar cane straw ash in alkali-activated materials: a silica source for the preparation of the alkaline activator. Constr. Build. Mater. 171, 611–621 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.230

    Article  Google Scholar 

  113. Tay, J.-H.: Ash from oil-palm waste as concrete material. J. Mater. Civ. Eng. 2, 94–105 (1990). https://doi.org/10.1061/(ASCE)0899-1561(1990)2:2(94)

    Article  Google Scholar 

  114. Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., Siripanichgorn, A.: Use of waste ash from palm oil industry in concrete. Waste Manag. 27, 81–88 (2007). https://doi.org/10.1016/j.wasman.2005.12.014

    Article  Google Scholar 

  115. Yusuf, M.O., Johari, M.A.M., Ahmad, Z.A., Maslehuddin, M.: Evolution of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash based concrete. Mater. Des. 55, 387–393 (2014). https://doi.org/10.1016/j.matdes.2013.09.047

    Article  Google Scholar 

  116. Salih, M.A., Farzadnia, N., Abang Ali, A.A., Demirboga, R.: Development of high strength alkali activated binder using palm oil fuel ash and GGBS at ambient temperature. Constr. Build. Mater. 93, 289–300 (2015). https://doi.org/10.1016/j.conbuildmat.2015.05.119

    Article  Google Scholar 

  117. Mijarsh, M.J.A., Megat Johari, M.A., Ahmad, Z.A.: Synthesis of geopolymer from large amounts of treated palm oil fuel ash: application of the Taguchi method in investigating the main parameters affecting compressive strength. Constr. Build. Mater. 52, 473–481 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.039

    Article  Google Scholar 

  118. Mijarsh, M.J.A., MegatJohari, M.A., Ahmad, Z.A.: Effect of delay time and Na2SiO3 concentrations on compressive strength development of geopolymer mortar synthesized from TPOFA. Constr. Build. Mater. 86, 64–74 (2015). https://doi.org/10.1016/j.conbuildmat.2015.03.078

    Article  Google Scholar 

  119. Yahya, Z., Abdullah, M.M.A.B., Hussin, K., Ismail, K.N., Razak, R.A., Sandu, A.V.: Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials (Basel). 8, 2227–2242 (2015). https://doi.org/10.3390/ma8052227

    Article  Google Scholar 

  120. de Moraes Pinheiro, S.M., Font, A., Soriano, L., Tashima, M.M., Monzó, J., Borrachero, M.V., Payá, J.: Olive-stone biomass ash (OBA): an alternative alkaline source for the blast furnace slag activation. Constr. Build. Mater. 178, 327–338 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.157

    Article  Google Scholar 

  121. Font, A., Soriano, L., Moraes, J.C.B., Tashima, M.M., Monzó, J., Borrachero, M.V., Payá, J.: A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Mater. Lett. 203, 46–49 (2017). https://doi.org/10.1016/j.matlet.2017.05.129

    Article  Google Scholar 

  122. Font, A., Soriano, L., de Moraes Pinheiro, S.M., Tashima, M.M., Monzó, J., Borrachero, M.V., Payá, J.: Design and properties of 100% waste-based ternary alkali-activated mortars: blast furnace slag, olive-stone biomass ash and rice husk ash. J. Clean. Prod. 243, 118568 (2020). https://doi.org/10.1016/j.jclepro.2019.118568

    Article  Google Scholar 

  123. Alonso, M.M., Gascó, C., Morales, M.M., Suárez-Navarro, J.A., Zamorano, M., Puertas, F.: Olive biomass ash as an alternative activator in geopolymer formation: a study of strength, durability, radiology and leaching behaviour. Cem. Concr. Compos. 104, 103384 (2019). https://doi.org/10.1016/j.cemconcomp.2019.103384

    Article  Google Scholar 

Download references

Funding

This research has been co-financed by the project “Geo-Design—Artifacts for Hotels and Urban Furniture Incorporating Waste”, No. NORTE-01-0247-FEDER-017501, co-financed by the European Regional Development Fund (ERDF) through NORTE 2020 (North Regional Operational Program 2014/2020). This work was co-financed by the R&D Project “JUSTREST-Development of Alkali Binders for Geotechnical Applications Made Exclusively from Industrial Waste”, with reference PTDC/ECM-GEO/0637/2014, financed by the Foundation for Science and Technology—FCT/MCTES (PIDDAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Cristelo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, J., Castro, F., Fernández-Jiménez, A. et al. Alkali-Activated Cements from Urban, Mining and Agro-Industrial Waste: State-of-the-art and Opportunities. Waste Biomass Valor 12, 2665–2683 (2021). https://doi.org/10.1007/s12649-020-01071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01071-9

Keywords

Navigation