Liang, S., McDonald, A.G., Coats, E.R.: Lactic acid production with undefined mixed culture fermentation of potato peel waste. Waste Manag. 34(11), 2022–2027 (2014)
Google Scholar
Schieber, A., Saldaña, M.D.A.: Potato peels: a source of nutritionally and pharmacologically interesting compounds-a review. Food. 3(2), 23–29 (2009)
Google Scholar
Amado, I.R., Franco, D., Sánchez, M., Zapata, C., Vázquez, J.A.: Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 165, 290–299 (2014)
Google Scholar
Al-Weshahy, A., Rao, V.A.: Potato peel as a source of important phytochemical antioxidant nutraceuticals and their role in human health-a review. INTECH Open Access Publisher, London (2012)
Google Scholar
Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A.F., Arora, A.: Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem. 225, 10–22 (2017)
Google Scholar
Hossain, M.B., Tiwari, B.K., Gangopadhyay, N., O’Donnell, C.P., Brunton, N.P., Rai, D.K., et al.: Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason. Sonochem. 21(4), 1470–1476 (2014)
Google Scholar
Friedman, M., Huang, V., Quiambao, Q., Noritake, S., Liu, J., Kwon, O., et al.: Potato peels and their bioactive glycoalkaloids and phenolic compounds inhibit the growth of pathogenic trichomonads. J. Agric. Food Chem. 66(30), 7942–7947 (2018)
Google Scholar
Wijngaard, H.H., Ballay, M., Brunton, N.: The optimisation of extraction of antioxidants from potato peel by pressurised liquids. Food Chem. 133(4), 1123–1130 (2012)
Google Scholar
Jeddou, K.B., Chaari, F., Maktouf, S., Nouri-Ellouz, O., Helbert, C.B., Ghorbel, R.E.: Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem. 205, 97–105 (2016)
Google Scholar
Wu, D.: Recycle technology for potato peel waste processing: a review. Procedia Environ. Sci. 31, 103–107 (2016)
Google Scholar
Schieber, A., Stintzing, F.C., Carle, R.: By-products of plant food processing as a source of functional compounds—recent developments. Trends Food Sci. Technol. 12(11), 401–413 (2001)
Google Scholar
Escarpa, A., González, M.C.: Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal. Chim. Acta 427(1), 119–127 (2001)
Google Scholar
Kosseva, M.R.: Processing of food wastes. Adv. Food Nutr. Res. 58, 57–136 (2009)
Google Scholar
Herrero, M., Cifuentes, A., Ibañez, E.: Sub-and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chem. 98(1), 136–148 (2006)
Google Scholar
King, J.W., Grabiel, R.D.: Isolation of polyphenolic compounds from fruits or vegetables utilizing sub-critical water extraction. US Patent 7,208,181. USDA (2007)
Singh, P.P., Saldaña, M.D.A.: Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 44(8), 2452–2458 (2011)
Google Scholar
Duba, K.S., Fiori, L.: Extraction of bioactives from food processing residues using techniques performed at high pressures. Curr. Opin. Food Sci. 5, 14–22 (2015)
Google Scholar
Miao, C., Chakraborty, M., Dong, T., Yu, X., Chi, Z., Chen, S.: Sequential hydrothermal fractionation of yeast Cryptococcus curvatus biomass. Bioresour. Technol. 164, 106–112 (2014)
Google Scholar
de Araújo Padilha, C.E., da Costa, N.C., Oliveira Filho, M.A., de Sousa Júnior, F.C., de Assis, C.F., de Santana Souza, D.F., et al.: Fractionation of green coconut fiber using sequential hydrothermal/alkaline pretreatments and Amberlite XAD-7HP resin. J. Environ. Chem. Eng. 7(6), 103474 (2019)
Google Scholar
Toor, S.S., Rosendahl, L., Rudolf, A.: Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy. 36(5), 2328–2342 (2011)
Google Scholar
Savage, P.E.: Organic chemical reactions in supercritical water. Chem. Rev. 99(2), 603–622 (1999)
Google Scholar
Brunner, G.: Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J. Supercrit. Fluids 47(3), 373–381 (2009)
Google Scholar
Akiya, N., Savage, P.E.: Roles of water for chemical reactions in high-temperature water. Chem. Rev. 102(8), 2725–2750 (2002). https://doi.org/10.1021/cr000668w
Article
Google Scholar
Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., et al.: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1), 71–106 (2011)
Google Scholar
Martinez-Fernandez, J.S., Chen, S.: Sequential hydrothermal liquefaction characterization and nutrient recovery assessment. Algal Res. 25, 274 (2017)
Google Scholar
Friedman, M., Roitman, J.N., Kozukue, N.: Glycoalkaloid and calystegine contents of eight potato cultivars. J. Agric. Food Chem. 51(10), 2964–2973 (2003)
Google Scholar
Jarén, C., López, A., Arazuri, S.: Advanced analytical techniques for quality evaluation of potato and its products. In: Singh, J., Kaur, L. (eds.) Advances in potato chemistry and technology, 2nd edn, pp. 563–602. Elsevier, Amsterdam (2016)
Google Scholar
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al.: Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 1617, 1–16 (2008)
Google Scholar
Ko, M.-J., Cheigh, C.-I., Chung, M.-S.: Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem. 143, 147–155 (2014)
Google Scholar
Chakraborty, M., McDonald, A.G., Nindo, C., Chen, S.: An α-glucan isolated as a co-product of biofuel by hydrothermal liquefaction of Chlorella sorokiniana biomass. Algal Res. 2(3), 230–236 (2013)
Google Scholar
Bouchard, A., Hofland, G.W., Witkamp, G.-J.: Properties of sugar, polyol, and polysaccharide water—ethanol solutions. J. Chem. Eng. Data 52(5), 1838–1842 (2007)
Google Scholar
Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144–158 (1965)
Google Scholar
Waterhouse, A.L.: Determination of total phenolics. Curr. Protoc. Food Anal. Chem. 6, l1 (2002)
Google Scholar
Berry, J.H.J.: UHPLC of Polyphenols in Red Wine. https://www.agilent.com/cs/library/applications/: Agilent Technologies (2010). Accessed 19 Sept 2018
Friedman, M.: Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds. J. Chromatogr. A 1054(1), 143–155 (2004)
Google Scholar
Brand-Williams, W., Cuvelier, M.-E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1), 25–30 (1995)
Google Scholar
Sant’ Anna, V., Brandelli, A., Marczak, L.D.F., Tessaro, I.C.: Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Sep. Purif. Technol. 100, 82–87 (2012)
Google Scholar
Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., Núñez, M.J.: Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 53(6), 2111–2117 (2005)
Google Scholar
Gai, C., Zhang, Y., Chen, W.-T., Zhou, Y., Schideman, L., Zhang, P., et al.: Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresour. Technol. 184, 328–335 (2015)
Google Scholar
Gao, Y., Chen, H., Wang, J., Shi, T., Yang, H.-P., Wang, X.-H.: Characterization of products from hydrothermal liquefaction and carbonation of biomass model compounds and real biomass. J. Fuel Chem. Technol. 39(12), 893–900 (2011)
Google Scholar
Zha, S., Zhao, Q., Chen, J., Wang, L., Zhang, G., Zhang, H., et al.: Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium meyenii). Carbohydr. Polym. 111, 584–587 (2014)
Google Scholar
Navarre, D.A., Shakya, R., Hellmann, H.: Vitamins, phytonutrients, and minerals in potato. In: Singh, J., Kaur, L. (eds.) Advances in potato chemistry and technology, 2nd edn, pp. 117–166. Elsevier, Amsterdam (2016)
Google Scholar
Liang, S., McDonald, A.G.: Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J. Agric. Food Chem. 62(33), 8421–8429 (2014)
Google Scholar
Önal, E.P., Uzun, B.B., Pütün, A.E.: Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process. Technol. 92(5), 879–885 (2011)
Google Scholar
Farvin, K.H.S., Grejsen, H.D., Jacobsen, C.: Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus trachurus): effect on lipid and protein oxidation. Food Chem. 131(3), 843–851 (2012)
Google Scholar
Vamvuka, D., Pitharoulis, M., Alevizos, G., Repouskou, E., Pentari, D.: Ash effects during combustion of lignite/biomass blends in fluidized bed. Renew. Energy. 34(12), 2662–2671 (2009)
Google Scholar
Li, C., Aston, J.E., Lacey, J.A., Thompson, V.S., Thompson, D.N.: Impact of feedstock quality and variation on biochemical and thermochemical conversion. Renew. Sustain. Energy Rev. 65, 525–536 (2016)
Google Scholar
Alvarez, V.H., Cahyadi, J., Xu, D., Saldaña, M.D.A.: Optimization of phytochemicals production from potato peel using subcritical water: experimental and dynamic modeling. J. Supercrit. Fluids. 90, 8–17 (2014)
Google Scholar
Tsao, R.: Chemistry and biochemistry of dietary polyphenols. Nutrients. 2(12), 1231–1246 (2010)
Google Scholar
Cvetanović, A., Švarc-Gajić, J., Zeković, Z., Jerković, J., Zengin, G., Gašić, U., et al.: The influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chem. 271, 328–337 (2019)
Google Scholar
Cocero Alonso, M.J., Abad Fernández, N., Adamovic, T., Vaquerizo Martín, L., Martínez Fajardo, C., Pazo Cepeda, M.V.: Understanding biomass fractionation in subcritical & supercritical water. J. Supercrit. Fluids (2017). https://doi.org/10.1016/j.supflu.2017.08.012
Article
Google Scholar
Teo, C.C., Tan, S.N., Yong, J.W.H., Hew, C.S., Ong, E.S.: Pressurized hot water extraction (PHWE). J. Chromatogr. A. 1217(16), 2484–2494 (2010)
Google Scholar
Carr, A.G., Mammucari, R., Foster, N.R.: A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 172(1), 1–17 (2011)
Google Scholar
Srinivas, K., King, J.W., Howard, L.R., Monrad, J.K.: Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J. Food Eng. 100(2), 208–218 (2010)
Google Scholar
Faeth, J.L., Valdez, P.J., Savage, P.E.: Fast hydrothermal liquefaction of Nannochloropsis sp. to produce biocrude. Energy Fuels. 27(3), 1391–1398 (2013)
Google Scholar
Jaromír, L., Karel, H., Matyáš, O.: Colored potatoes. In: Singh, J., Kaur, L. (eds.) Advances in potato chemistry and technology, 2nd edn, pp. 249–281. Elsevier, Amsterdam (2016)
Google Scholar
Balasundram, N., Sundram, K., Samman, S.: Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99(1), 191–203 (2006)
Google Scholar
Al-Weshahy, A., Rao, A.V.: Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Res. Int. 42(8), 1062–1066 (2009)
Google Scholar
Deußer, H., Guignard, C., Hoffmann, L., Evers, D.: Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chem. 135(4), 2814–2824 (2012)
Google Scholar
Singh, A., Sabally, K., Kubow, S., Donnelly, D.J., Gariepy, Y., Orsat, V., et al.: Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules 16(3), 2218–2232 (2011)
Google Scholar
Moure, A., Cruz, J.M., Franco, D., Domınguez, J.M., Sineiro, J., Domınguez, H., et al.: Natural antioxidants from residual sources. Food Chem. 72(2), 145–171 (2001)
Google Scholar
Naczk, M., Shahidi, F.: Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal. 41(5), 1523–1542 (2006)
Google Scholar
Nara, K., Miyoshi, T., Honma, T., Koga, H.: Antioxidative activity of bound-form phenolics in potato peel. Biosci. Biotechnol. Biochem. 70(6), 1489–1491 (2006)
Google Scholar
Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., et al.: In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 403(1), 136–138 (2011)
Google Scholar
Lafka, T.-I., Sinanoglou, V., Lazos, E.S.: On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 104(3), 1206–1214 (2007)
Google Scholar
Ciriminna, R., Carnaroglio, D., Delisi, R., Arvati, S., Tamburino, A., Pagliaro, M.: Industrial feasibility of natural products extraction with microwave technology. Chem. Select. 1(3), 549–555 (2016)
Google Scholar
Waglay, A., Karboune, S.: Potato proteins functional food ingredients. In: Singh, J., Kaur, L. (eds.) Advances in potato chemistry and technology, 2nd edn, pp. 75–104. Elsevier, Amsterdam (2016)
Google Scholar
Ben, J.K., Bouaziz, F., Helbert, C.B., Nouri-Ellouz, O., Maktouf, S., Ellouz-Chaabouni, S., et al.: Structural functional and biological properties of potato peel oligosaccharides. Int. J. Biol. Macromol. 112, 1146–1155 (2018)
Google Scholar
Plaza, M., Amigo-Benavent, M., del Castillo, M.D., Ibáñez, E., Herrero, M.: Neoformation of antioxidants in glycation model systems treated under subcritical water extraction conditions. Food Res. Int. 43(4), 1123–1129 (2010)
Google Scholar
Friedman, M.: Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J. Agric. Food Chem. 54(23), 8655–8681 (2006)
Google Scholar
Rayburn, J.R., Bantle, J.A., Friedman, M.: Role of carbohydrate side chains of potato glycoalkaloids in developmental toxicity. J. Agric. Food Chem. 42(7), 1511–1515 (1994)
Google Scholar
Nikolic, N.C., Stankovic, M.Z.: Solanidine hydrolytic extraction and separation from the potato (Solanum tuberosum L.) vines by using solid−liquid−liquid systems. J. Agric. Food Chem. 51(7), 1845–1849 (2003)
Google Scholar
Friedman, M., McDonald, G.M.: Acid-catalyzed partial hydrolysis of carbohydrate groups of the potato glycoalkaloid. alpha.-chaconine in alcoholic solutions. J. Agric. Food Chem. 43(6), 1501–1506 (1995)
Google Scholar
Friedman, M., McDonald, G., Haddon, W.F.: Kinetics of acid-catalyzed hydrolysis of carbohydrate groups of potato glycoalkaloids. Alpha.-chaconine and alpha-solanine. J. Agric. Food Chem. 41(9), 1397–1406 (1993)
Google Scholar
Peterson, A.A., Vogel, F., Lachance, R.P., Fröling, M., Antal, J.M.J., Tester, J.W.: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ. Sci. 1(1), 32 (2008)
Google Scholar
Rogalinski, T., Liu, K., Albrecht, T., Brunner, G.: Hydrolysis kinetics of biopolymers in subcritical water. J. Supercrit. Fluids. 46(3), 335–341 (2008)
Google Scholar
Ben Taher, I., Fickers, P., Chniti, S., Hassouna, M.: Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnol. Prog. 33, 397 (2017)
Google Scholar
Chakraborty, M., Miao, C., McDonald, A., Chen, S.: Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology. Fuel 95, 63–70 (2012)
Google Scholar
Ben, J.K., Bouaziz, F., Zouari-Ellouzi, S., Chaari, F., Ellouz-Chaabouni, S., Ellouz-Ghorbel, R., et al.: Improvement of texture and sensory properties of cakes by addition of potato peel powder with high level of dietary fiber and protein. Food Chem. 217, 668–677 (2017)
Google Scholar
Ahamed, A., Yin, K., Ng, B.J.H., Ren, F., Chang, V.-C., Wang, J.-Y.: Life cycle assessment of the present and proposed food waste management technologies from environmental and economic impact perspectives. J. Clean. Prod. 131, 607–614 (2016)
Google Scholar
Elliott, D.C.: Hydrothermal processing. Wiley, Chichester, UK (2011)
Google Scholar
Lucian, M., Volpe, M., Gao, L., Piro, G., Goldfarb, J.L., Fiori, L.: Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 233, 257–268 (2018)
Google Scholar
Lucian, M., Volpe, M., Fiori, L.: Hydrothermal carbonization kinetics of lignocellulosic agro-wastes: experimental data and modeling. Energies. 12(3), 516 (2019)
Google Scholar
Valdez, P.J., Nelson, M.C., Wang, H.Y., Lin, X.N., Savage, P.E.: Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass Bioenergy 46, 317–331 (2012)
Google Scholar
Bertoft, E., Blennow, A.: Structure of potato starch. In: Singh, J., Kaur, L. (eds.) Advances in potato chemistry and technology, 2nd edn, pp. 57–73. Elsevier, Amsterdam (2016)
Google Scholar
Cordell, D., Drangert, J.-O., White, S.: The story of phosphorus: global food security and food for thought. Glob. Environ. Chang. 19(2), 292–305 (2009)
Google Scholar
Barreiro, D.L., Bauer, M., Hornung, U., Posten, C., Kruse, A., Prins, W.: Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal Res. 9, 99–106 (2015)
Google Scholar