Skip to main content

Recovering Valuable Bioactive Compounds from Potato Peels with Sequential Hydrothermal Extraction

Abstract

Potato peel is a major underutilized by-product stream from potato processing industry and a potential source of valuable bioactives such as antioxidants. A Sequential Hydrothermal Extraction (SeqHTE) process was employed for recovering compounds of high commercial value from the peels. Process performance was evaluated in terms of effectiveness, quality and yields of the bioactive extracts. The highest recoveries of polyphenols were 22.48 and 32.87 mg/g dry peel from the Russet Burbank and peel mixture sample, respectively. The extracts displayed significant antioxidant activities, measured as free radical inhibition, ranging from 40 to 92%. Moreover, glycoalkaloids, polysaccharides, and soluble nutrients were also recovered through the SeqHTE process. Alkaloid extraction ranged from 20 to 450 and from 35 to 610 mg/kg dry peel for the Russet Burbank and peel mixture, respectively. Similarly, polysaccharide yield varied from 0 to 35.7 wt%. Separating these compounds significantly reduced solid content in the remaining stream, which may effectively alleviate concerns about adverse environmental impacts and costs associated with handling raw potato peels. These results demonstrated the suitability of SeqHTE as a platform for valorizing waste biomass by fractionating and recovering high value compounds from it.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Liang, S., McDonald, A.G., Coats, E.R.: Lactic acid production with undefined mixed culture fermentation of potato peel waste. Waste Manag. 34(11), 2022–2027 (2014)

    Google Scholar 

  2. Schieber, A., Saldaña, M.D.A.: Potato peels: a source of nutritionally and pharmacologically interesting compounds-a review. Food. 3(2), 23–29 (2009)

    Google Scholar 

  3. Amado, I.R., Franco, D., Sánchez, M., Zapata, C., Vázquez, J.A.: Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 165, 290–299 (2014)

    Google Scholar 

  4. Al-Weshahy, A., Rao, V.A.: Potato peel as a source of important phytochemical antioxidant nutraceuticals and their role in human health-a review. INTECH Open Access Publisher, London (2012)

    Google Scholar 

  5. Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A.F., Arora, A.: Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem. 225, 10–22 (2017)

    Google Scholar 

  6. Hossain, M.B., Tiwari, B.K., Gangopadhyay, N., O’Donnell, C.P., Brunton, N.P., Rai, D.K., et al.: Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason. Sonochem. 21(4), 1470–1476 (2014)

    Google Scholar 

  7. Friedman, M., Huang, V., Quiambao, Q., Noritake, S., Liu, J., Kwon, O., et al.: Potato peels and their bioactive glycoalkaloids and phenolic compounds inhibit the growth of pathogenic trichomonads. J. Agric. Food Chem. 66(30), 7942–7947 (2018)

    Google Scholar 

  8. Wijngaard, H.H., Ballay, M., Brunton, N.: The optimisation of extraction of antioxidants from potato peel by pressurised liquids. Food Chem. 133(4), 1123–1130 (2012)

    Google Scholar 

  9. Jeddou, K.B., Chaari, F., Maktouf, S., Nouri-Ellouz, O., Helbert, C.B., Ghorbel, R.E.: Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem. 205, 97–105 (2016)

    Google Scholar 

  10. Wu, D.: Recycle technology for potato peel waste processing: a review. Procedia Environ. Sci. 31, 103–107 (2016)

    Google Scholar 

  11. Schieber, A., Stintzing, F.C., Carle, R.: By-products of plant food processing as a source of functional compounds—recent developments. Trends Food Sci. Technol. 12(11), 401–413 (2001)

    Google Scholar 

  12. Escarpa, A., González, M.C.: Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal. Chim. Acta 427(1), 119–127 (2001)

    Google Scholar 

  13. Kosseva, M.R.: Processing of food wastes. Adv. Food Nutr. Res. 58, 57–136 (2009)

    Google Scholar 

  14. Herrero, M., Cifuentes, A., Ibañez, E.: Sub-and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chem. 98(1), 136–148 (2006)

    Google Scholar 

  15. King, J.W., Grabiel, R.D.: Isolation of polyphenolic compounds from fruits or vegetables utilizing sub-critical water extraction. US Patent 7,208,181. USDA (2007)

  16. Singh, P.P., Saldaña, M.D.A.: Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 44(8), 2452–2458 (2011)

    Google Scholar 

  17. Duba, K.S., Fiori, L.: Extraction of bioactives from food processing residues using techniques performed at high pressures. Curr. Opin. Food Sci. 5, 14–22 (2015)

    Google Scholar 

  18. Miao, C., Chakraborty, M., Dong, T., Yu, X., Chi, Z., Chen, S.: Sequential hydrothermal fractionation of yeast Cryptococcus curvatus biomass. Bioresour. Technol. 164, 106–112 (2014)

    Google Scholar 

  19. de Araújo Padilha, C.E., da Costa, N.C., Oliveira Filho, M.A., de Sousa Júnior, F.C., de Assis, C.F., de Santana Souza, D.F., et al.: Fractionation of green coconut fiber using sequential hydrothermal/alkaline pretreatments and Amberlite XAD-7HP resin. J. Environ. Chem. Eng. 7(6), 103474 (2019)

    Google Scholar 

  20. Toor, S.S., Rosendahl, L., Rudolf, A.: Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy. 36(5), 2328–2342 (2011)

    Google Scholar 

  21. Savage, P.E.: Organic chemical reactions in supercritical water. Chem. Rev. 99(2), 603–622 (1999)

    Google Scholar 

  22. Brunner, G.: Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J. Supercrit. Fluids 47(3), 373–381 (2009)

    Google Scholar 

  23. Akiya, N., Savage, P.E.: Roles of water for chemical reactions in high-temperature water. Chem. Rev. 102(8), 2725–2750 (2002). https://doi.org/10.1021/cr000668w

    Article  Google Scholar 

  24. Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., et al.: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1), 71–106 (2011)

    Google Scholar 

  25. Martinez-Fernandez, J.S., Chen, S.: Sequential hydrothermal liquefaction characterization and nutrient recovery assessment. Algal Res. 25, 274 (2017)

    Google Scholar 

  26. Friedman, M., Roitman, J.N., Kozukue, N.: Glycoalkaloid and calystegine contents of eight potato cultivars. J. Agric. Food Chem. 51(10), 2964–2973 (2003)

    Google Scholar 

  27. Jarén, C., López, A., Arazuri, S.: Advanced analytical techniques for quality evaluation of potato and its products. In: Singh, J., Kaur, L. (eds.) Advances in potato chemistry and technology, 2nd edn, pp. 563–602. Elsevier, Amsterdam (2016)

    Google Scholar 

  28. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al.: Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 1617, 1–16 (2008)

    Google Scholar 

  29. Ko, M.-J., Cheigh, C.-I., Chung, M.-S.: Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem. 143, 147–155 (2014)

    Google Scholar 

  30. Chakraborty, M., McDonald, A.G., Nindo, C., Chen, S.: An α-glucan isolated as a co-product of biofuel by hydrothermal liquefaction of Chlorella sorokiniana biomass. Algal Res. 2(3), 230–236 (2013)

    Google Scholar 

  31. Bouchard, A., Hofland, G.W., Witkamp, G.-J.: Properties of sugar, polyol, and polysaccharide water—ethanol solutions. J. Chem. Eng. Data 52(5), 1838–1842 (2007)

    Google Scholar 

  32. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144–158 (1965)

    Google Scholar 

  33. Waterhouse, A.L.: Determination of total phenolics. Curr. Protoc. Food Anal. Chem. 6, l1 (2002)

    Google Scholar 

  34. Berry, J.H.J.: UHPLC of Polyphenols in Red Wine. https://www.agilent.com/cs/library/applications/: Agilent Technologies (2010). Accessed 19 Sept 2018

  35. Friedman, M.: Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds. J. Chromatogr. A 1054(1), 143–155 (2004)

    Google Scholar 

  36. Brand-Williams, W., Cuvelier, M.-E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1), 25–30 (1995)

    Google Scholar 

  37. Sant’ Anna, V., Brandelli, A., Marczak, L.D.F., Tessaro, I.C.: Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Sep. Purif. Technol. 100, 82–87 (2012)

    Google Scholar 

  38. Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., Núñez, M.J.: Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 53(6), 2111–2117 (2005)

    Google Scholar 

  39. Gai, C., Zhang, Y., Chen, W.-T., Zhou, Y., Schideman, L., Zhang, P., et al.: Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresour. Technol. 184, 328–335 (2015)

    Google Scholar 

  40. Gao, Y., Chen, H., Wang, J., Shi, T., Yang, H.-P., Wang, X.-H.: Characterization of products from hydrothermal liquefaction and carbonation of biomass model compounds and real biomass. J. Fuel Chem. Technol. 39(12), 893–900 (2011)

    Google Scholar 

  41. Zha, S., Zhao, Q., Chen, J., Wang, L., Zhang, G., Zhang, H., et al.: Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium meyenii). Carbohydr. Polym. 111, 584–587 (2014)

    Google Scholar 

  42. Navarre, D.A., Shakya, R., Hellmann, H.: Vitamins, phytonutrients, and minerals in potato. In: Singh, J., Kaur, L. (eds.) Advances in potato chemistry and technology, 2nd edn, pp. 117–166. Elsevier, Amsterdam (2016)

    Google Scholar 

  43. Liang, S., McDonald, A.G.: Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J. Agric. Food Chem. 62(33), 8421–8429 (2014)

    Google Scholar 

  44. Önal, E.P., Uzun, B.B., Pütün, A.E.: Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process. Technol. 92(5), 879–885 (2011)

    Google Scholar 

  45. Farvin, K.H.S., Grejsen, H.D., Jacobsen, C.: Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus trachurus): effect on lipid and protein oxidation. Food Chem. 131(3), 843–851 (2012)

    Google Scholar 

  46. Vamvuka, D., Pitharoulis, M., Alevizos, G., Repouskou, E., Pentari, D.: Ash effects during combustion of lignite/biomass blends in fluidized bed. Renew. Energy. 34(12), 2662–2671 (2009)

    Google Scholar 

  47. Li, C., Aston, J.E., Lacey, J.A., Thompson, V.S., Thompson, D.N.: Impact of feedstock quality and variation on biochemical and thermochemical conversion. Renew. Sustain. Energy Rev. 65, 525–536 (2016)

    Google Scholar 

  48. Alvarez, V.H., Cahyadi, J., Xu, D., Saldaña, M.D.A.: Optimization of phytochemicals production from potato peel using subcritical water: experimental and dynamic modeling. J. Supercrit. Fluids. 90, 8–17 (2014)

    Google Scholar 

  49. Tsao, R.: Chemistry and biochemistry of dietary polyphenols. Nutrients. 2(12), 1231–1246 (2010)

    Google Scholar 

  50. Cvetanović, A., Švarc-Gajić, J., Zeković, Z., Jerković, J., Zengin, G., Gašić, U., et al.: The influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chem. 271, 328–337 (2019)

    Google Scholar 

  51. Cocero Alonso, M.J., Abad Fernández, N., Adamovic, T., Vaquerizo Martín, L., Martínez Fajardo, C., Pazo Cepeda, M.V.: Understanding biomass fractionation in subcritical & supercritical water. J. Supercrit. Fluids (2017). https://doi.org/10.1016/j.supflu.2017.08.012

    Article  Google Scholar 

  52. Teo, C.C., Tan, S.N., Yong, J.W.H., Hew, C.S., Ong, E.S.: Pressurized hot water extraction (PHWE). J. Chromatogr. A. 1217(16), 2484–2494 (2010)

    Google Scholar 

  53. Carr, A.G., Mammucari, R., Foster, N.R.: A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 172(1), 1–17 (2011)

    Google Scholar 

  54. Srinivas, K., King, J.W., Howard, L.R., Monrad, J.K.: Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J. Food Eng. 100(2), 208–218 (2010)

    Google Scholar 

  55. Faeth, J.L., Valdez, P.J., Savage, P.E.: Fast hydrothermal liquefaction of Nannochloropsis sp. to produce biocrude. Energy Fuels. 27(3), 1391–1398 (2013)

    Google Scholar 

  56. Jaromír, L., Karel, H., Matyáš, O.: Colored potatoes. In: Singh, J., Kaur, L. (eds.) Advances in potato chemistry and technology, 2nd edn, pp. 249–281. Elsevier, Amsterdam (2016)

    Google Scholar 

  57. Balasundram, N., Sundram, K., Samman, S.: Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99(1), 191–203 (2006)

    Google Scholar 

  58. Al-Weshahy, A., Rao, A.V.: Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Res. Int. 42(8), 1062–1066 (2009)

    Google Scholar 

  59. Deußer, H., Guignard, C., Hoffmann, L., Evers, D.: Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chem. 135(4), 2814–2824 (2012)

    Google Scholar 

  60. Singh, A., Sabally, K., Kubow, S., Donnelly, D.J., Gariepy, Y., Orsat, V., et al.: Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules 16(3), 2218–2232 (2011)

    Google Scholar 

  61. Moure, A., Cruz, J.M., Franco, D., Domınguez, J.M., Sineiro, J., Domınguez, H., et al.: Natural antioxidants from residual sources. Food Chem. 72(2), 145–171 (2001)

    Google Scholar 

  62. Naczk, M., Shahidi, F.: Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal. 41(5), 1523–1542 (2006)

    Google Scholar 

  63. Nara, K., Miyoshi, T., Honma, T., Koga, H.: Antioxidative activity of bound-form phenolics in potato peel. Biosci. Biotechnol. Biochem. 70(6), 1489–1491 (2006)

    Google Scholar 

  64. Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., et al.: In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 403(1), 136–138 (2011)

    Google Scholar 

  65. Lafka, T.-I., Sinanoglou, V., Lazos, E.S.: On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 104(3), 1206–1214 (2007)

    Google Scholar 

  66. Ciriminna, R., Carnaroglio, D., Delisi, R., Arvati, S., Tamburino, A., Pagliaro, M.: Industrial feasibility of natural products extraction with microwave technology. Chem. Select. 1(3), 549–555 (2016)

    Google Scholar 

  67. Waglay, A., Karboune, S.: Potato proteins functional food ingredients. In: Singh, J., Kaur, L. (eds.) Advances in potato chemistry and technology, 2nd edn, pp. 75–104. Elsevier, Amsterdam (2016)

    Google Scholar 

  68. Ben, J.K., Bouaziz, F., Helbert, C.B., Nouri-Ellouz, O., Maktouf, S., Ellouz-Chaabouni, S., et al.: Structural functional and biological properties of potato peel oligosaccharides. Int. J. Biol. Macromol. 112, 1146–1155 (2018)

    Google Scholar 

  69. Plaza, M., Amigo-Benavent, M., del Castillo, M.D., Ibáñez, E., Herrero, M.: Neoformation of antioxidants in glycation model systems treated under subcritical water extraction conditions. Food Res. Int. 43(4), 1123–1129 (2010)

    Google Scholar 

  70. Friedman, M.: Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J. Agric. Food Chem. 54(23), 8655–8681 (2006)

    Google Scholar 

  71. Rayburn, J.R., Bantle, J.A., Friedman, M.: Role of carbohydrate side chains of potato glycoalkaloids in developmental toxicity. J. Agric. Food Chem. 42(7), 1511–1515 (1994)

    Google Scholar 

  72. Nikolic, N.C., Stankovic, M.Z.: Solanidine hydrolytic extraction and separation from the potato (Solanum tuberosum L.) vines by using solid−liquid−liquid systems. J. Agric. Food Chem. 51(7), 1845–1849 (2003)

    Google Scholar 

  73. Friedman, M., McDonald, G.M.: Acid-catalyzed partial hydrolysis of carbohydrate groups of the potato glycoalkaloid. alpha.-chaconine in alcoholic solutions. J. Agric. Food Chem. 43(6), 1501–1506 (1995)

    Google Scholar 

  74. Friedman, M., McDonald, G., Haddon, W.F.: Kinetics of acid-catalyzed hydrolysis of carbohydrate groups of potato glycoalkaloids. Alpha.-chaconine and alpha-solanine. J. Agric. Food Chem. 41(9), 1397–1406 (1993)

    Google Scholar 

  75. Peterson, A.A., Vogel, F., Lachance, R.P., Fröling, M., Antal, J.M.J., Tester, J.W.: Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ. Sci. 1(1), 32 (2008)

    Google Scholar 

  76. Rogalinski, T., Liu, K., Albrecht, T., Brunner, G.: Hydrolysis kinetics of biopolymers in subcritical water. J. Supercrit. Fluids. 46(3), 335–341 (2008)

    Google Scholar 

  77. Ben Taher, I., Fickers, P., Chniti, S., Hassouna, M.: Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnol. Prog. 33, 397 (2017)

    Google Scholar 

  78. Chakraborty, M., Miao, C., McDonald, A., Chen, S.: Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology. Fuel 95, 63–70 (2012)

    Google Scholar 

  79. Ben, J.K., Bouaziz, F., Zouari-Ellouzi, S., Chaari, F., Ellouz-Chaabouni, S., Ellouz-Ghorbel, R., et al.: Improvement of texture and sensory properties of cakes by addition of potato peel powder with high level of dietary fiber and protein. Food Chem. 217, 668–677 (2017)

    Google Scholar 

  80. Ahamed, A., Yin, K., Ng, B.J.H., Ren, F., Chang, V.-C., Wang, J.-Y.: Life cycle assessment of the present and proposed food waste management technologies from environmental and economic impact perspectives. J. Clean. Prod. 131, 607–614 (2016)

    Google Scholar 

  81. Elliott, D.C.: Hydrothermal processing. Wiley, Chichester, UK (2011)

    Google Scholar 

  82. Lucian, M., Volpe, M., Gao, L., Piro, G., Goldfarb, J.L., Fiori, L.: Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 233, 257–268 (2018)

    Google Scholar 

  83. Lucian, M., Volpe, M., Fiori, L.: Hydrothermal carbonization kinetics of lignocellulosic agro-wastes: experimental data and modeling. Energies. 12(3), 516 (2019)

    Google Scholar 

  84. Valdez, P.J., Nelson, M.C., Wang, H.Y., Lin, X.N., Savage, P.E.: Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass Bioenergy 46, 317–331 (2012)

    Google Scholar 

  85. Bertoft, E., Blennow, A.: Structure of potato starch. In: Singh, J., Kaur, L. (eds.) Advances in potato chemistry and technology, 2nd edn, pp. 57–73. Elsevier, Amsterdam (2016)

    Google Scholar 

  86. Cordell, D., Drangert, J.-O., White, S.: The story of phosphorus: global food security and food for thought. Glob. Environ. Chang. 19(2), 292–305 (2009)

    Google Scholar 

  87. Barreiro, D.L., Bauer, M., Hornung, U., Posten, C., Kruse, A., Prins, W.: Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal Res. 9, 99–106 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department Agriculture National Institute of Food and Agriculture Grant 2018-67021-27719. The authors thank J. R. Simplot Company for supplying the peel samples employed in this study. Moreover, the authors sincerely thank Mrs. Embrey Bronstad for her collaboration in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 164 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martinez-Fernandez, J.S., Seker, A., Davaritouchaee, M. et al. Recovering Valuable Bioactive Compounds from Potato Peels with Sequential Hydrothermal Extraction. Waste Biomass Valor 12, 1465–1481 (2021). https://doi.org/10.1007/s12649-020-01063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01063-9

Keywords

  • Potato peels
  • Bioactive compounds
  • Sequential hydrothermal extraction
  • Polyphenols
  • Glycoalkaloids