Skip to main content
Log in

Characterization and Utilization of Landfill-Mined-Soil-Like-Fractions (LFMSF) for Sustainable Development: A Critical Appraisal

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Unscientifically Created Landfills and Dumps, UCLDs, pose a severe threat to geoenvironment due to uncontrolled release of greenhouse gases and toxic leachate, accidental fire(s) and occasional slope failure(s). Further, UCLDs also become a socio-economic burden on the municipalities through the consumption of enormous land of the modern-day cities and creation of unhealthy living conditions for the surrounding populace. However, an increase in demand for the land to settle the ever-growing population of such cities and to meet the infrastructural requirements, the habitable boundaries of these cities are expanding, and hence mining of the UCLDs, termed as landfill mining, LFM, is being advocated. Apart from this, LFM facilitates the recovery of resources such as metals, plastics, glass and paper from the landfill mined residues, LMRs. Despite these advantages, LFM faces a significant challenge due to the creation of huge volumes of fine-fractions, separated from the LMRs, also known as ‘Landfill-Mined-Soil-like-Fractions’, LFMSF, which primarily is a conglomeration of organics, soils, debris and smaller chips of metals, plastics, and glass. Unfortunately, utilization of the LFMSF, as a manmade resource, has still not become a well-accepted practice. This is mainly due to the lack of understanding of the characteristics of the LFMSF that are mostly site-specific. With this in view, synthesis of the literature dealing with the issues related to the characterization and utilization of the LFMSF was conducted. It has been realized that by developing and following adequate characterization protocols and guidelines, the LFMSF can be utilized as a manmade resource for sustainable development, without impacting the geoenvironment adversely.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AASHTO:

American Association of State Highway and Transportation Officials

AMD:

Acid mine drainage

CEC:

Cation exchange capacity

COD:

Chemical oxygen demand

CV:

Calorific value

Cc :

Coefficient of curvature

Cu :

Coefficient of uniformity

D10 :

Particle size corresponding to 10% finer

D30 :

Particle size corresponding to 30% finer

D60 :

Particle size corresponding to 60% finer

EC:

Electrical conductivity

ELFM:

Enhanced landfill mining

EPA:

Environmental Protection Agency

EPS:

Extracellular polymeric substance

ESR:

Electron spin resonance

FA:

Fulvic acid

FTIR:

Fourier transform infrared spectroscopy

Gs :

Specific gravity

HA:

Humic acid

ISSCS:

Indian standard soil classification system

kd :

Distribution coefficient

LFM:

Landfill mining

LOI:

Loss on ignition

LMRs:

Landfill mined residues

LFMSF:

Landfill-mined soil-like-fractions

L/S ratio:

Liquid to solid ratio

MC:

Moisture content

MChg :

Hygroscopic moisture content

MSW:

Municipal solid waste

NFB:

Nitrogen fixing bacteria

NMR:

Nuclear magnetic resonance

NP:

Acid-neutralizing potential

NRC:

Nutrient retention capacity

OM:

Organic matter

PCR:

Polymerase chain reaction

PRB:

Permeable reactive barrier

PSB:

Phosphorous stabilizing bacteria

PSD:

Particle size distribution

RDF:

Refused derived fuel

SSA:

Specific surface area

TOC:

Total organic carbon

UCLDs:

Unscientifically created landfills and dumpsites

USCS:

Unified soil classification system

γb :

Bulk density

References

  1. Review of the application of landfill standards. Wright corporate strategy pty limited. https://www.environment.gov.au/system/files/resources/81bc0f7f-bd53-403d-9c9d-32c861d1f166/files/landfill-standards.pdf (2010). Accessed 21 Dec 2019

  2. International Guidelines for Landfill Evaluation: ISWA—The International Solid Waste Association. https://www.waste.ccacoalition.org/document/international-guidelines-landfill-evaluation (2011). Accessed 21 Nov 2019

  3. Environmental Guidelines Solid waste landfills, Second Edition 2016. https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/waste/solid-waste-landfill-guidelines-160259.pdf (2016). Accessed 27 Nov 2019

  4. Calvatzaki, E., Lazaridis, M.: Estimation of greenhouse gas emissions from landfills: application to the akrotiri landfill site (chania, greece). Glob. NEST J. 12(1), 9 (2010). https://doi.org/10.30955/gnj.000681

    Article  Google Scholar 

  5. Cimpan, C., Rothmann, M., Hamelin, L., Wenzel, H.: Towards increased recycling of household waste: documenting cascading effects and material efficiency of commingled recyclables and biowaste collection. J. Environ. Manage. 157, 69–83 (2015). https://doi.org/10.1016/j.jenvman.2015.04.008

    Article  Google Scholar 

  6. Nagendran, R., Selvam, A., Joseph, K., Chiemchaisri, C.: Phytoremediation and rehabilitation of municipal solid waste landfills and dumpsites: a brief review. Waste Manag. 26(12), 1357–1369 (2006). https://doi.org/10.1016/j.wasman.2006.05.003

    Article  Google Scholar 

  7. Patil, B.S., Singh, D.: Study of sustainable engineered bioreactor landfill (SEBL) for small communities. J. Solid Waste Technol. Manag. 41(1), 1–14 (2015)

    Article  Google Scholar 

  8. Samadder, S.R., Prabhakar, R., Khan, D., Kishan, D., Chauhan, M.S.: Analysis of the contaminants released from municipal solid waste landfill site: a case study. Sci. Total Environ. 580, 593–601 (2017). https://doi.org/10.1016/j.scitotenv.2016.12.003

    Article  Google Scholar 

  9. Chembukavu, A.A., Mohammad, A., Singh, D.N.: Bioreactor landfills in developing countries: a critical review. J. Solid Waste Technol. Manag. 45(1), 21–38 (2019)

    Article  Google Scholar 

  10. Dubey, A., Chakrabarti, M., Pandit, D.: Landfill mining as a remediation technique for open dumpsites in India. Procedia Environ. Sci. 35, 319–327 (2016). https://doi.org/10.1016/j.proenv.2016.07.012

    Article  Google Scholar 

  11. Jafari, N.H., Stark, T.D., Thalhamer, T.: Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills. Waste Manag. 59, 286–301 (2017). https://doi.org/10.1016/j.wasman.2016.10.052

    Article  Google Scholar 

  12. Wolfsberger, T., Aldrian, A., Sarc, R., Hermann, R., Höllen, D., Budischowsky, A., Zöscher, A., Ragoßnig, A., Pomberger, R.: Landfill mining: resource potential of Austrian landfills—evaluation and quality assessment of recovered municipal solid waste by chemical analyses. Waste Manag. Res. 33(11), 962–974 (2015). https://doi.org/10.1177/0734242X15600051

    Article  Google Scholar 

  13. Dong, T.T.T., Lee, B.-K.: Analysis of potential RDF resources from solid waste and their energy values in the largest industrial city of Korea. Waste Manag. 29(5), 1725–1731 (2009). https://doi.org/10.1016/j.wasman.2008.11.022

    Article  Google Scholar 

  14. CPCB: Annual Report 2014-15. Ministry of Environment, Forest & Climate Change, p. 274 (2015). http://cpcbenvis.nic.in/annual_report/AnnualReport_55_Annual_Report_2014-15.pdf

  15. Singh, D.N.: Novel techniques to simulate and monitor contaminant-geomaterial interactions. Indian Geotech. J. 49(1), 2–36 (2019). https://doi.org/10.1007/s40098-019-00351-z

    Article  Google Scholar 

  16. Hogland, W.: Remediation of an old landsfill site. Environ. Sci. Pollut. Res. 9(1), 49–54 (2002). https://doi.org/10.1007/BF02987426

    Article  Google Scholar 

  17. Hull Ross, M., Krogmann, U., Strom Peter, F.: Composition and characteristics of excavated materials from a New Jersey landfill. J. Environ. Eng. 131(3), 478–490 (2005). https://doi.org/10.1061/(ASCE)0733-9372(2005)131:3(478)

    Article  Google Scholar 

  18. Hogland, W., Hogland, M., Marques, M.: Enhanced landfill mining: material recovery, energy utilisation and economics in the EU (Directive) perspective. In: Proceedings of the International Academic Symposium on Enhanced Landfill Mining, pp. 209–222 (2010)

  19. Hölzle, I.: Contaminants in landfill soils—reliability of prefeasibility studies. Waste Manag. 63, 337–344 (2017). https://doi.org/10.1016/j.wasman.2016.08.024

    Article  Google Scholar 

  20. Hölzle, I.: Dry screening—assessing the effectiveness of contaminant reduction in recovered landfill soils. J. Clean. Prod. 172, 1998–2008 (2018). https://doi.org/10.1016/j.jclepro.2017.11.225

    Article  Google Scholar 

  21. Ortner, M.E., Knapp, J., Bockreis, A.: Landfill mining: objectives and assessment challenges. Proc. Inst. Civ. Eng. Waste Resour. Manag. 167(2), 51–61 (2014). https://doi.org/10.1680/warm.13.00012

    Article  Google Scholar 

  22. Hölzle, I.: Contaminant patterns in soils from landfill mining. Waste Manag. 83, 151–160 (2019). https://doi.org/10.1016/j.wasman.2018.11.013

    Article  Google Scholar 

  23. Hölzle, I.: Analysing material flows of landfill mining in a regional context. J. Clean. Prod. 207, 317–328 (2019). https://doi.org/10.1016/j.jclepro.2018.10.002

    Article  Google Scholar 

  24. Danthurebandara, M., Van Passel, S., Machiels, L., Van Acker, K.: Valorization of thermal treatment residues in enhanced landfill mining: environmental and economic evaluation. J. Clean. Prod. 99, 275–285 (2015). https://doi.org/10.1016/j.jclepro.2015.03.021

    Article  Google Scholar 

  25. Danthurebandara, M., Van Passel, S., Vanderreydt, I., Van Acker, K.: Assessment of environmental and economic feasibility of enhanced landfill mining. Waste Manag. 45, 434–447 (2015). https://doi.org/10.1016/j.wasman.2015.01.041

    Article  Google Scholar 

  26. Frändegård, P., Krook, J., Svensson, N.: Integrating remediation and resource recovery: on the economic conditions of landfill mining. Waste Manag. 42, 137–147 (2015). https://doi.org/10.1016/j.wasman.2015.04.008

    Article  Google Scholar 

  27. Van Passel, S., Dubois, M., Eyckmans, J., de Gheldere, S., Ang, F., Tom Jones, P., Van Acker, K.: The economics of enhanced landfill mining: private and societal performance drivers. J. Clean. Prod. 55, 92–102 (2013). https://doi.org/10.1016/j.jclepro.2012.03.024

    Article  Google Scholar 

  28. Winterstetter, A., Wille, E., Nagels, P., Fellner, J.: Decision making guidelines for mining historic landfill sites in Flanders. Waste Manag. 77, 225–237 (2018). https://doi.org/10.1016/j.wasman.2018.03.049

    Article  Google Scholar 

  29. Krook, J., Svensson, N., Eklund, M.: Landfill mining: a critical review of two decades of research. Waste Manag. 32(3), 513–520 (2012). https://doi.org/10.1016/j.wasman.2011.10.015

    Article  Google Scholar 

  30. Jones, P.T., Geysen, D., Tielemans, Y., Van Passel, S., Pontikes, Y., Blanpain, B., Quaghebeur, M., Hoekstra, N.: Enhanced Landfill Mining in view of multiple resource recovery: a critical review. J. Clean. Prod. 55, 45–55 (2013). https://doi.org/10.1016/j.jclepro.2012.05.021

    Article  Google Scholar 

  31. Kaartinen, T., Sormunen, K., Rintala, J.: Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. J. Clean. Prod. 55, 56–66 (2013). https://doi.org/10.1016/j.jclepro.2013.02.036

    Article  Google Scholar 

  32. Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., Spooren, J.: Characterization of landfilled materials: screening of the enhanced landfill mining potential. J. Clean. Prod. 55, 72–83 (2013). https://doi.org/10.1016/j.jclepro.2012.06.012

    Article  Google Scholar 

  33. Jani, Y., Kaczala, F., Marchand, C., Hogland, M., Kriipsalu, M., Hogland, W., Kihl, A.: Characterisation of excavated fine fraction and waste composition from a Swedish landfill. Waste Manag. Res. 34(12), 1292–1299 (2016). https://doi.org/10.1177/0734242X16670000

    Article  Google Scholar 

  34. Hogland, M., Hogland, W., Jani, Y., Kaczala, F., de Sá Salomão, A.L., Kriipsalu, M., Orupõld, K., Burlakovs, J.: Experiences of three landfill mining projects in the baltic sea area: with focus on machinery for material recovery. Linnaeus Eco-Tech. (2014). https://doi.org/10.15626/Eco-Tech.2014.014

    Article  Google Scholar 

  35. Burlakovs, J., Kriipsalu, M., Klavins, M., Bhatnagar, A., Vincevica-Gaile, Z., Stenis, J., Jani, Y., Mykhaylenko, V., Denafas, G., Turkadze, T., Hogland, M., Rudovica, V., Kaczala, F., Rosendal, R.M., Hogland, W.: Paradigms on landfill mining: from dump site scavenging to ecosystem services revitalization. Resour. Conserv. Recycl. 123, 73–84 (2017). https://doi.org/10.1016/j.resconrec.2016.07.007

    Article  Google Scholar 

  36. Kaczala, F., Mehdinejad, M.H., Lääne, A., Orupõld, K., Bhatnagar, A., Kriipsalu, M., Hogland, W.: Leaching characteristics of the fine fraction from an excavated landfill: physico-chemical characterization. J. Mater. Cycles Waste Manage. 19(1), 294–304 (2017). https://doi.org/10.1007/s10163-015-0418-3

    Article  Google Scholar 

  37. Hogland, M., Āriņa, D., Kriipsalu, M., Jani, Y., Kaczala, F., de Sá Salomão, A.L., Orupõld, K., Pehme, K.-M., Rudoviča, V., Denafas, G., Burlakovs, J., Vincēviča-Gaile, Z., Hogland, W.: Remarks on four novel landfill mining case studies in Estonia and Sweden. J. Mater. Cycles Waste Manage. 20(2), 1355–1363 (2018). https://doi.org/10.1007/s10163-017-0683-4

    Article  Google Scholar 

  38. Mönkäre, T.J., Palmroth, M.R.T., Rintala, J.A.: Characterization of fine fraction mined from two Finnish landfills. Waste Manag. 47, 34–39 (2016). https://doi.org/10.1016/j.wasman.2015.02.034

    Article  Google Scholar 

  39. Mönkäre, T.J., Palmroth, M.R.T., Rintala, J.A.: Screening biological methods for laboratory scale stabilization of fine fraction from landfill mining. Waste Manag. 60, 739–747 (2017). https://doi.org/10.1016/j.wasman.2016.11.015

    Article  Google Scholar 

  40. Somani, M., Datta, M., Ramana, G.V., Sreekrishnan, T.R.: Investigations on fine fraction of aged municipal solid waste recovered through landfill mining: case study of three dumpsites from India. Waste Manag. Res. 36(8), 744–755 (2018). https://doi.org/10.1177/0734242X18782393

    Article  Google Scholar 

  41. Masi, S., Caniani, D., Grieco, E., Lioi, D.S., Mancini, I.M.: Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites. Waste Manag. 34(3), 702–710 (2014). https://doi.org/10.1016/j.wasman.2013.12.013

    Article  Google Scholar 

  42. Liu, Q., Li, Q., Wang, N., Liu, D., Zan, L., Chang, L., Gou, X., Wang, P.: Bioremediation of petroleum-contaminated soil using aged refuse from landfills. Waste Manag. 77, 576–585 (2018). https://doi.org/10.1016/j.wasman.2018.05.010

    Article  Google Scholar 

  43. Hogland, W., Marques, M., Nimmermark, S.: Landfill mining and waste characterization: a strategy for remediation of contaminated areas. J. Mater. Cycles Waste Manag. 6(2), 119–124 (2004). https://doi.org/10.1007/s10163-003-0110-x

    Article  Google Scholar 

  44. Prechthai, T., Padmasri, M., Visvanathan, C.: Quality assessment of mined MSW from an open dumpsite for recycling potential. Resour. Conserv. Recycl. 53(1), 70–78 (2008). https://doi.org/10.1016/j.resconrec.2008.09.002

    Article  Google Scholar 

  45. Spooren, J., Nielsen, P., Quaghebeur, M., Tielemans, Y.: Characterisation study of land filled materials with a particular focus on the fines and their potential in enhanced landfill mining. GIN2012, Linköping. www. gin2012. se (2012)

  46. Burlakovs, J., Kaczala, F., Vincevica-Gaile, Z., Rudovica, V., Orupõld, K., Stapkevica, M., Bhatnagar, A., Kriipsalu, M., Hogland, M., Klavins, M., Hogland, W.: Mobility of metals and valorization of sorted fine fraction of waste after landfill excavation. Waste Biomass Valoriz. 7(3), 593–602 (2016). https://doi.org/10.1007/s12649-016-9478-4

    Article  Google Scholar 

  47. Bhatnagar, A., Kaczala, F., Burlakovs, J., Kriipsalu, M., Hogland, M., Hogland, W.: Hunting for valuables from landfills and assessing their market opportunities: a case study with Kudjape landfill in Estonia. Waste Manag. Res. 35(6), 627–635 (2017). https://doi.org/10.1177/0734242X17697816

    Article  Google Scholar 

  48. Visvanathan, C., Norbu, T., Chiemchaisri, C., Charnnok, B., aus rückgebautem Deponiematerial, E.: Applying mechanical pre-treatment and landfill mining approach in recovering refuse derived fuel (RDF) from dumpsite waste: thailand case study. In: International Symposium MBT 2007, pp. 385–396

  49. Krčmar, D., Tenodi, S., Grba, N., Kerkez, D., Watson, M., Rončević, S., Dalmacija, B.: Preremedial assessment of the municipal landfill pollution impact on soil and shallow groundwater in Subotica, Serbia. Sci. Total Environ. 615, 1341–1354 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.283

    Article  Google Scholar 

  50. Karthikeyan, O.P., Swati, M., Nagendran, R., Joseph, K.: Performance of bioreactor landfill with waste mined from a dumpsite. Environ. Monit. Assess. 135(1), 141–151 (2007). https://doi.org/10.1007/s10661-007-9709-z

    Article  Google Scholar 

  51. Parrodi, J., Höllen, D., Pomberger, R.: Characterization of fine fractions from landfill mining: a review of previous landfill mining investigations. In: Proceeding of Sixteenth International Waste Management and Landfill Symposium 2017, pp. 2–6

  52. Jones, P., Geysen, D., Tielemans, Y., Pontikes, Y., Blanpain, B., Mishra, B., Apelian, D.: Closing material loops: the enhanced landfill mining concept. JOM 64(7), 743 (2012)

    Article  Google Scholar 

  53. Bosmans, A., Vanderreydt, I., Geysen, D., Helsen, L.: The crucial role of waste-to-energy technologies in enhanced landfill mining: a technology review. J. Clean. Prod. 55, 10–23 (2013). https://doi.org/10.1016/j.jclepro.2012.05.032

    Article  Google Scholar 

  54. Canopoli, L., Fidalgo, B., Coulon, F., Wagland, S.T.: Physico-chemical properties of excavated plastic from landfill mining and current recycling routes. Waste Manag. 76, 55–67 (2018). https://doi.org/10.1016/j.wasman.2018.03.043

    Article  Google Scholar 

  55. Song, Y.S., Yun, J.M., Hong, W.P., Kim, T.H.: Investigation of solid waste soil as road construction material. Environ. Geol. 44(2), 203–209 (2003). https://doi.org/10.1007/s00254-002-0746-1

    Article  Google Scholar 

  56. Somani, M., Datta, M., Ramana, G.V., Sreekrishnan, T.R.: Leachate characteristics of aged soil-like material from MSW dumps: sustainability of landfill mining. J. Hazard. Toxic Radioact. Waste 23(4), 04019014 (2019). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000452

    Article  Google Scholar 

  57. Kurian, J., Esakku, S., Palanivelu, K., Selvam, A.: Studies on landfill mining at solid waste dumpsites in India. In: Proceedings Sardinia, pp. 248–255 (2003)

  58. Wagner, T.P., Raymond, T.: Landfill mining: case study of a successful metals recovery project. Waste Manag. 45, 448–457 (2015). https://doi.org/10.1016/j.wasman.2015.06.034

    Article  Google Scholar 

  59. Wanka, S., Münnich, K., Fricke, K.: Landfill mining—wet mechanical treatment of fine MSW with a wet jigger. Waste Manag. 59, 316–323 (2017). https://doi.org/10.1016/j.wasman.2016.10.050

    Article  Google Scholar 

  60. Chen, M.-L., Wu, G.-J., Gan, B.-R., Jiang, W.-H., Zhou, J.-W.: Physical and compaction properties of granular materials with artificial grading behind the particle size distributions. Adv. Mater. Sci. Eng. 2018, 20 (2018). https://doi.org/10.1155/2018/8093571

    Article  Google Scholar 

  61. Standard, B.O.I.: Methods of Test for Soils Part 4 Grain Size Analysis (IS: 2720 (Part 4)—1985), p. 43. New Delhi (1986)

  62. Standards, B.O.I.: Classification and Identification of Soils for General Engineering Purposes (IS: 1498–1970), p. 28 (2007)

  63. International, A.: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), p. 10. ASTM International, United States (2017)

  64. International, A.: Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes, p. 06. ASTM International, United States (2015)

  65. Bodman, G., Constantin, G.: Influence of particle size distribution in soil compaction. Hilgardia 36(15), 567–591 (1965)

    Article  Google Scholar 

  66. Wang, J.-J., Zhang, H.-P., Tang, S.-C., Liang, Y.: Effects of particle size distribution on shear strength of accumulation soil. J. Geotech. Geoenviron. Eng. 139(11), 1994–1997 (2013). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000931

    Article  Google Scholar 

  67. Wang, J.-P., François, B., Lambert, P.: Equations for hydraulic conductivity estimation from particle size distribution: a dimensional analysis. Water Resour. Res. 53(9), 8127–8134 (2017). https://doi.org/10.1002/2017WR020888

    Article  Google Scholar 

  68. Susha Lekshmi, S.U., Singh, D.N., Shojaei Baghini, M.: A critical review of soil moisture measurement. Measurement 54, 92–105 (2014). https://doi.org/10.1016/j.measurement.2014.04.007

    Article  Google Scholar 

  69. Shetty, R., Singh, D.: Rheological characteristics of fine-grained soil-slurries. J. Test. Eval. 46(6), 2351–2363 (2018). https://doi.org/10.1520/JTE20170035

    Article  Google Scholar 

  70. Knappett, J., Craig, R.F.: Craig’s Soil Mechanics. CRC Press, Boca Raton (2012)

    Google Scholar 

  71. Shashank, B.S., Sharma, S., Sowmya, S., Latha, R.A., Meenu, P.S., Singh, D.N.: State-of-the-art on geotechnical engineering perspective on bio-mediated processes. Environ. Earth Sci. 75(3), 270 (2016). https://doi.org/10.1007/s12665-015-5071-6

    Article  Google Scholar 

  72. Sharma, S., Meenu, P., Asha Latha, R., Shashank, B., Singh, D.: Characterization of sediments from the sewage disposal lagoons for sustainable development. Adv. Civil Eng. Mater. 5(1), 1–23 (2016). https://doi.org/10.1520/ACEM20150010

    Article  Google Scholar 

  73. Shanthakumar, S., Singh, D.N., Phadke, R.C.: Methodology for determining particle-size distribution characteristics of fly ashes. J. Mater. Civ. Eng. 22(5), 435–442 (2010). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000042

    Article  Google Scholar 

  74. Patel, A., Bartake, P., Singh, D.: An empirical relationship for determining shear wave velocity in granular materials accounting for grain morphology. Geotech. Test. J. 32(1), 1–10 (2009). https://doi.org/10.1520/GTJ100796

    Article  Google Scholar 

  75. Mazzoli, A., Favoni, O.: Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by scanning electron microscopy and image processing program. Powder Technol. 225, 65–71 (2012). https://doi.org/10.1016/j.powtec.2012.03.033

    Article  Google Scholar 

  76. Sharma, S., Singh, D.N.: Characterization of sediments for sustainable development: state of the art. Mar. Georesour. Geotechnol. 33(5), 447–465 (2015). https://doi.org/10.1080/1064119X.2014.953232

    Article  Google Scholar 

  77. Shah, P., Singh, D.: Methodology for determination of hygroscopic moisture content of soils. J. ASTM Int. 3(2), 1–14 (2006). https://doi.org/10.1520/JAI13376

    Article  Google Scholar 

  78. Prakash, K., Sridharan, A., Sudheendra, S.: Hygroscopic moisture content: determination and correlations. Environ. Geotech. 3(5), 293–301 (2016). https://doi.org/10.1680/envgeo.14.00008

    Article  Google Scholar 

  79. Iyer, K.K.R., Joseph, J., Shetty, R., Singh, D.N.: Some investigations to quantify hysteresis associated with water retention behaviour of fine-grained soils. Geomech. Geoeng. 13(4), 264–275 (2018). https://doi.org/10.1080/17486025.2018.1445872

    Article  Google Scholar 

  80. Khorshidi, M., Lu, N., Akin Idil, D., Likos William, J.: Intrinsic relationship between specific surface area and soil water retention. J. Geotech. Geoenviron. Eng. 143(1), 04016078 (2017). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001572

    Article  Google Scholar 

  81. Arnepalli, D.N., Shanthakumar, S., Hanumantha Rao, B., Singh, D.N.: Comparison of methods for determining specific-surface area of fine-grained soils. Geotech. Geol. Eng. 26(2), 121–132 (2008). https://doi.org/10.1007/s10706-007-9152-5

    Article  Google Scholar 

  82. Pathak, P., Singh, D., Pandit, G., Rakesh, R.: Determination of distribution coefficient: a critical review. Int. J. Environ. Waste Manag. 14(1), 27–64 (2014)

    Article  Google Scholar 

  83. Cpheeo, M.R.: Muncipal Solid Waste Management Manual, p. 62. New Delhi, Ministry of Urban Development (2016)

    Google Scholar 

  84. International, A.: Standard test methods for moisture, ash, and organic matter of peat and other organic soils (ASTM D2974- 14), p. 04. ASTM International, United States (2014)

  85. AASHTO: AASHTO T 267: Standard Method of Test for Determination of Organic Content in Soils by Loss on Ignition, p. 04. AASHTO (1986)

  86. Hirota, J., Szyper, J.P.: Separation of total particulate carbon into inorganic and organic components. Limnol. Oceanogr. 20(5), 896–900 (1975). https://doi.org/10.4319/lo.1975.20.5.0896

    Article  Google Scholar 

  87. Huang, P.-T., Patel, M., Santagata, M.C., Bobet, A.: Classification of organic soils (2009)

  88. Burlakovs, J., Jani, Y., Kriipsalu, M., Vincevica-Gaile, Z., Kaczala, F., Celma, G., Ozola, R., Rozina, L., Rudovica, V., Hogland, M., Viksna, A., Pehme, K.-M., Hogland, W., Klavins, M.: On the way to ‘zero waste’ management: recovery potential of elements, including rare earth elements, from fine fraction of waste. J. Clean. Prod. 186, 81–90 (2018). https://doi.org/10.1016/j.jclepro.2018.03.102

    Article  Google Scholar 

  89. Iglesias Jiménez, E., Pérez García, V.: Relationships between organic carbon and total organic matter in municipal solid wastes and city refuse composts. Biores. Technol. 41(3), 265–272 (1992). https://doi.org/10.1016/0960-8524(92)90012-M

    Article  Google Scholar 

  90. Sumedha, C., Chandra, V.R., Kumar, Y.A.: Modeling chemical compositions of municipal solid waste. Environ. Geotech. 3(2), 65–77 (2016). https://doi.org/10.1680/envgeo.13.00082

    Article  Google Scholar 

  91. Pertusatti, J., Prado, A.G.S.: Buffer capacity of humic acid: thermodynamic approach. J. Colloid Interface Sci. 314(2), 484–489 (2007). https://doi.org/10.1016/j.jcis.2007.06.006

    Article  Google Scholar 

  92. Tadini, A.M., Nicolodelli, G., Mounier, S., Montes, C.R., Milori, D.M.B.P.: The importance of humin in soil characterisation: a study on Amazonian soils using different fluorescence techniques. Sci. Total Environ. 537, 152–158 (2015). https://doi.org/10.1016/j.scitotenv.2015.07.125

    Article  Google Scholar 

  93. De la Cruz, F.B., Dittmar, T., Niggemann, J., Osburn, C.L., Barlaz, M.A.: Evaluation of copper oxide oxidation for quantification of lignin in municipal solid waste. Environ. Eng. Sci. 32(6), 486–496 (2015). https://doi.org/10.1089/ees.2014.0402

    Article  Google Scholar 

  94. De la Cruz Florentino, B., Osborne, J., Barlaz Morton, A.: Determination of sources of organic matter in solid waste by analysis of phenolic copper oxide oxidation products of lignin. J. Environ. Eng. 142(2), 04015076 (2016). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001038

    Article  Google Scholar 

  95. Vasilevich, R., Lodygin, E., Beznosikov, V., Abakumov, E.: Molecular composition of raw peat and humic substances from permafrost peat soils of European Northeast Russia as climate change markers. Sci. Total Environ. 615, 1229–1238 (2018). https://doi.org/10.1016/j.scitotenv.2017.10.053

    Article  Google Scholar 

  96. González Pérez, M., Martin-Neto, L., Saab, S.C., Novotny, E.H., Milori, D.M.B.P., Bagnato, V.S., Colnago, L.A., Melo, W.J., Knicker, H.: Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR. FTIR Fluoresc. Spectrosc. Geoderma 118(3), 181–190 (2004). https://doi.org/10.1016/S0016-7061(03)00192-7

    Article  Google Scholar 

  97. Adelopo, A.O., Haris, P.I., Alo, B.I., Huddersman, K., Jenkins, R.O.: Multivariate analysis of the effects of age, particle size and landfill depth on heavy metals pollution content of closed and active landfill precursors. Waste Manag. 78, 227–237 (2018). https://doi.org/10.1016/j.wasman.2018.05.040

    Article  Google Scholar 

  98. Silveira, M.L.A., Alleoni, L.R.F., Guilherme, L.R.G.: Biosolids and heavy metals in soils. Scientia Agricola 60, 793–806 (2003)

    Article  Google Scholar 

  99. Gordon, A.M., McBride, R.A., Fisken, A.J.: The effect of landfill leachate spraying on foliar nutrient concentrations and leaf transpiration in a Northern Hardwood Forest, Canada. For.: Int. J. For Res. 62(1), 19–28 (1989). https://doi.org/10.1093/forestry/62.1.19

    Article  Google Scholar 

  100. Kookana, R.S., Naidu, R.: Effect of soil solution composition on cadmium transport through variable charge soils. Geoderma 84(1), 235–248 (1998). https://doi.org/10.1016/S0016-7061(97)00131-6

    Article  Google Scholar 

  101. Pathak, P., Singh, D.N., Apte, P.R., Pandit, G.G.: Statistical analysis for prediction of distribution coefficient of soil-contaminant system. J. Environ. Eng. 142(1), 04015054 (2016). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001010

    Article  Google Scholar 

  102. Pathak, P., Singh, D.N., Pandit, G.G., Rakesh, R.R.: Guidelines for quantification of geomaterial-contaminant interaction. J. Hazard. Toxic Radioact. Waste 20(1), 04015012 (2016). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000292

    Article  Google Scholar 

  103. Pathak, P., Singh, D.N., Pandit, G.G., Apte, P.R.: Establishing sensitivity of distribution coefficient on various attributes of a soil-contaminant system. J. Hazard. Toxic Radioact. Waste 18(1), 64–75 (2014). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000199

    Article  Google Scholar 

  104. Arnepalli, D.N., Hanumantha Rao, B., Shanthakumar, S., Singh, D.N.: Determination of distribution coefficient of geomaterials and immobilizing agents. Can. Geotech. J. 47(10), 1139–1148 (2010). https://doi.org/10.1139/T10-014

    Article  Google Scholar 

  105. Robinet, J.-C., Sardini, P., Coelho, D., Parneix, J.-C., Prêt, D., Sammartino, S., Boller, E., Altmann, S.: Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: example of the Callovo-Oxfordian mudstone (Bure, France). Water Resour. Res. (2012). https://doi.org/10.1029/2011wr011352

    Article  Google Scholar 

  106. Patil, B.S., Singh, D.N.: Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills. Waste Manag. Res. 35(3), 301–312 (2016). https://doi.org/10.1177/0734242x16679258

    Article  Google Scholar 

  107. Mönkäre, T.J., Palmroth, M.R.T., Rintala, J.A.: Stabilization of fine fraction from landfill mining in anaerobic and aerobic laboratory leach bed reactors. Waste Manag. 45, 468–475 (2015). https://doi.org/10.1016/j.wasman.2015.06.040

    Article  Google Scholar 

  108. Akcil, A., Koldas, S.: Acid mine drainage (AMD): causes, treatment and case studies. J. Clean. Prod. 14(12), 1139–1145 (2006). https://doi.org/10.1016/j.jclepro.2004.09.006

    Article  Google Scholar 

  109. Saria, L., Shimaoka, T., Miyawaki, K.: Leaching of heavy metals in acid mine drainage. Waste Manag. Res. 24(2), 134–140 (2006). https://doi.org/10.1177/0734242X06063052

    Article  Google Scholar 

  110. Yanful, E.K., Simms, P.H., Payant, S.C.: Soil covers for controlling acid generation in mine tailings: a laboratory evaluation of the physics and geochemistry. Water Air Soil Pollut. 114(3), 347–375 (1999). https://doi.org/10.1023/A:1005187613503

    Article  Google Scholar 

  111. Dent, D.: Acid Sulphate Soils: A Baseline for Research and Development, vol. 39. Wageningen, ILRI (1986)

    Google Scholar 

  112. Benzaazoua, M., Bussière, B., Demers, I., Aubertin, M., Fried, É., Blier, A.: Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: application to mine Doyon, Quebec, Canada. Minerals Engineering 21(4), 330–340 (2008). https://doi.org/10.1016/j.mineng.2007.11.012

    Article  Google Scholar 

  113. Simate, G.S., Ndlovu, S.: Acid mine drainage: challenges and opportunities. J. Environ. Chem. Eng. 2(3), 1785–1803 (2014). https://doi.org/10.1016/j.jece.2014.07.021

    Article  Google Scholar 

  114. Vasilatos, C., Koukouzas, N., Alexopoulos, D.: Geochemical control of acid mine drainage in abandoned mines: the case of ermioni mine,Greece. Procedia Earth Planet. Sci. 15, 945–950 (2015). https://doi.org/10.1016/j.proeps.2015.08.151

    Article  Google Scholar 

  115. Lin, J.-S., Li, X., Luo, Z., Mysore, K.S., Wen, J., Xie, F.: NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula. Nat. Plants 4(11), 942–952 (2018). https://doi.org/10.1038/s41477-018-0261-3

    Article  Google Scholar 

  116. Shridhar, B.S.: RNitrogen fixing microorganisms. Int. J. Microbiol. Res. 3(1), 46–52 (2012)

    Google Scholar 

  117. Meiklejohn, J., Weir, J.B.: Nitrogen-fixers—Pseudomonads and other Aerobic Bacteria—from Rhodesian soils. Microbiology 50(3), 487–496 (1968). https://doi.org/10.1099/00221287-50-3-487

    Article  Google Scholar 

  118. Magalhães Cruz, L., de Souza, E.M., Weber, O.B., Baldani, J.I., Döbereiner, J., Pedrosa, F.D.O.: 16S ribosomal DNA characterization of nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril). Appl. Environ. Microbiol. 67(5), 2375–2379 (2001). https://doi.org/10.1128/aem.67.5.2375-2379.2001

    Article  Google Scholar 

  119. Yang, Z., Han, Y., Ma, Y., Chen, Q., Zhan, Y., Lu, W., Cai, L., Hou, M., Chen, S., Yan, Y., Lin, M.: Global investigation of an engineered nitrogen-fixing Escherichia coli strain reveals regulatory coupling between host and heterologous nitrogen-fixation genes. Sci. Rep. 8(1), 10928 (2018). https://doi.org/10.1038/s41598-018-29204-0

    Article  Google Scholar 

  120. Kim, S.-J., Ahn, J.-H., Weon, H.-Y., Lim, J.-M., Kim, S.-G., Kwon, S.-W.: Pseudoxanthomonas sangjuensis sp. nov., isolated from greenhouse soil. Int. J. Syst. Evolut. Microbiol. 65(9), 3170–3174 (2015). https://doi.org/10.1099/ijsem.0.000395

    Article  Google Scholar 

  121. Goswami, D., Thakker, J.N., Dhandhukia, P.C.: Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric. 2(1), 1127500 (2016). https://doi.org/10.1080/23311932.2015.1127500

    Article  Google Scholar 

  122. Santamaría, J., Toranzos, G.A.: Enteric pathogens and soil: a short review. Int. Microbiol. 6(1), 5–9 (2003). https://doi.org/10.1007/s10123-003-0096-1

    Article  Google Scholar 

  123. Mandal, P., Biswas, A., Choi, K., Pal, U.: Methods for rapid detection of foodborne pathogens: an overview. Am. J. Food Technol. 6(2), 87–102 (2011). https://doi.org/10.3923/ajft.2011.87.102

    Article  Google Scholar 

  124. Wilkes, G., Edge, T., Gannon, V., Jokinen, C., Lyautey, E., Medeiros, D., Neumann, N., Ruecker, N., Topp, E., Lapen, D.R.: Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Res. 43(8), 2209–2223 (2009). https://doi.org/10.1016/j.watres.2009.01.033

    Article  Google Scholar 

  125. Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C.: An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol. Adv. 28(2), 232–254 (2010). https://doi.org/10.1016/j.biotechadv.2009.12.004

    Article  Google Scholar 

  126. Josephson, K.L., Gerba, C.P., Pepper, I.L.: Polymerase chain reaction detection of nonviable bacterial pathogens. Appl. Environ. Microbiol. 59(10), 3513–3515 (1993)

    Article  Google Scholar 

  127. Stephen Inbaraj, B., Chen, B.H.: Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J. Food Drug Anal. 24(1), 15–28 (2016). https://doi.org/10.1016/j.jfda.2015.05.001

    Article  Google Scholar 

  128. Singh, R., Mukherjee, M.D., Sumana, G., Gupta, R.K., Sood, S., Malhotra, B.D.: Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sens. Actuat. B: Chem. 197, 385–404 (2014). https://doi.org/10.1016/j.snb.2014.03.005

    Article  Google Scholar 

  129. Mungroo, N.A., Neethirajan, S.: Optical Biosensors for the Detection of Food Borne Pathogens, vol. 34. vol. 1 (2016)

  130. Mc Carthy, G., Lawlor, P.G., Coffey, L., Nolan, T., Gutierrez, M., Gardiner, G.E.: An assessment of pathogen removal during composting of the separated solid fraction of pig manure. Biores. Technol. 102(19), 9059–9067 (2011). https://doi.org/10.1016/j.biortech.2011.07.021

    Article  Google Scholar 

  131. Soobhany, N., Mohee, R., Garg, V.K.: Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: a review. Waste Manag. 64, 51–62 (2017). https://doi.org/10.1016/j.wasman.2017.03.003

    Article  Google Scholar 

  132. Farrell, M., Jones, D.L.: Critical evaluation of municipal solid waste composting and potential compost markets. Biores. Technol. 100(19), 4301–4310 (2009). https://doi.org/10.1016/j.biortech.2009.04.029

    Article  Google Scholar 

  133. Sánchez, Ó.J., Ospina, D.A., Montoya, S.: Compost supplementation with nutrients and microorganisms in composting process. Waste Manag. 69, 136–153 (2017). https://doi.org/10.1016/j.wasman.2017.08.012

    Article  Google Scholar 

  134. Soobhany, N.: Preliminary evaluation of pathogenic bacteria loading on organic municipal solid waste compost and vermicompost. J. Environ. Manag. 206, 763–767 (2018). https://doi.org/10.1016/j.jenvman.2017.11.029

    Article  Google Scholar 

  135. International, A.: ASTM C127- 15 (Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate), p. 05. ASTM International, United States (2015)

  136. International, A.: ASTM C128- 15 (Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate), p. 06. ASTM International, United States (2015)

  137. International, A.: ASTM C33/C33M- 18 (Standard Specification for Concrete Aggregates), p. 08. ASTM International, United States (2018)

  138. International, A.: ASTM C29/C29M- 17a (Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate), p. 05. ASTM International, United States (2017)

  139. Standards, B.o.I.: IS: 2386 (Part IV)- 2002 (Methods Of Test For Aggregates For Concrete Part IV Mechanical Properties). In., p. 28. Bureau of Indian Standards, New Delhi, (2002)

  140. International, A.: ASTM C131/C131M- 14 (Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine), p. 05. ASTM International, United States (2014)

  141. Standards, B.o.I.: IS: 2386 (Part-I)—1963 (Methods Of Test For Aggregates For Concrete Part I Particle Size And Shape), p. 17. Bureau of Indian Standards, New Delhi (2002)

  142. International, A.: ASTM D5084- 16a (Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter), p. 24. ASTM International, United States (2016)

  143. International, A.: ASTM D5856-15 (Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter). In., p. 09. ASTM International, United States, (2015)

  144. International, A.: ASTM D7263- 09 (Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens), p. 07. ASTM International, United States (2018)

  145. International, A.: ASTM D2216-19 (Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass), p. 07. ASTM International, United States (2019)

  146. International, A.: ASTM D1067- 16 (Standard Test Methods for Acidity or Alkalinity of Water). In., p. 09. ASTM International, United States, (2016)

  147. Chen, Y., Zhang, H., Ju, Y.: Effect of acid buffering capacity on the remobilization of heavy metals in sewage sludge barrier for tailings. Arch. Environ. Prot. (2018). https://doi.org/10.24425/119704

    Article  Google Scholar 

  148. International, A.: ASTM D4297-15 (Standard Practice for Sampling and Handling Bisphenol A (4,4′-Isopropylidinediphenol)), p. 03. ASTM International, United States (2015)

  149. International, A.: ASTM D2980-17 (Standard Test Method for Saturated Density, Moisture-Holding Capacity, and Porosity of Saturated Peat Materials), p. 04. ASTM International, United States (2017)

  150. International, A.: ASTM D7367-19 (Standard Test Method for Determining Water Holding Capacity of Fiber Mulches for Hydraulic Planting), p. 03. ASTM International, United States (2019)

  151. International, A.: ASTM D425-17 (Standard Test Method for Centrifuge Moisture Equivalent of Soils). In., p. 05. ASTM International, United States, (2017)

  152. International, A.: ASTM D4646-16 (Standard Test Method for 24-h Batch-Type Measurement of Contaminant Sorption by Soils and Sediments), p. 05. ASTM International, United States (2016)

  153. International, A.: ASTM D3282-15 (Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes), p. 06. ASTM International, United States (2015)

  154. Jain, P., Kim, H., Townsend, T.G.: Heavy metal content in soil reclaimed from a municipal solid waste landfill. Waste Manag. 25(1), 25–35 (2005). https://doi.org/10.1016/j.wasman.2004.08.009

    Article  Google Scholar 

  155. Agency, E. P.: Guidance Note on Daily and Intermediate Cover at Landfills. Environmental Protection Agency (Ireland) (2014). https://www.epa.ie/pubs/advice/waste/waste/EPA_Guidance_Note_On_Landfill_Daily_And_Intermediate_Cover_Final.pdf

  156. Jani, Y., Hogland, W.: Chemical extraction of trace elements from hazardous fine fraction at an old glasswork dump. Chemosphere 195, 825–830 (2018). https://doi.org/10.1016/j.chemosphere.2017.12.142

    Article  Google Scholar 

  157. Padmakumar, G.P., Srinivas, K., Uday, K.V., Iyer, K.R., Pathak, P., Keshava, S.M., Singh, D.N.: Characterization of aeolian sands from Indian desert. Eng. Geol. 139–140, 38–49 (2012). https://doi.org/10.1016/j.enggeo.2012.04.005

    Article  Google Scholar 

  158. Mondal, S., Sharma, V., Apte, P., Singh, D.N.: Electrical analogy for modelling thermal regime and moisture distribution in sandy soils. Geomech. Geoeng. 13(1), 22–32 (2018). https://doi.org/10.1080/17486025.2017.1309081

    Article  Google Scholar 

  159. Huat, B.B., Asadi, A., Kazemian, S.: Experimental investigation on geomechanical properties of tropical organic soils and peat. Am. J. Eng. Appl. Sci. 2(1), 184–188 (2009). https://doi.org/10.3844/ajeassp.2009.184.188

    Article  Google Scholar 

  160. O’Kelly, B.C.: Consolidation properties of a dewatered municipal sewage sludge. Can. Geotech. J. 42(5), 1350–1358 (2005). https://doi.org/10.1139/t05-054

    Article  Google Scholar 

  161. O’Kelly, B.C.: Geotechnical properties of municipal sewage sludge. Geotech. Geol. Eng. 24(4), 833 (2006). https://doi.org/10.1007/s10706-005-6611-8

    Article  Google Scholar 

  162. Zhou, C., Xu, W., Gong, Z., Fang, W., Cao, A.: Characteristics and fertilizer effects of soil-like materials from landfill mining. CLEAN Soil Air Water 43(6), 940–947 (2015). https://doi.org/10.1002/clen.201400510

    Article  Google Scholar 

Download references

Acknowledgements

The financial support received from the Department of Science and Technology, Technology Development and Transfer Division, India (DST/TDT/WMT/2017/239(G) DT. 14.03.2018) for conducting this study is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Narain Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandana, N., Goli, V.S.N.S., Mohammad, A. et al. Characterization and Utilization of Landfill-Mined-Soil-Like-Fractions (LFMSF) for Sustainable Development: A Critical Appraisal. Waste Biomass Valor 12, 641–662 (2021). https://doi.org/10.1007/s12649-020-01052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01052-y

Keywords

Navigation