Copper Recovery from PCBs by Acidithiobacillus ferrooxidans: Toxicity of Bioleached Metals on Biological Activity

Abstract

The suitability and limits of bioleaching for copper recovery from printed circuits boards has been stated with new strategies and methodologies. The process has been tested using a continuous column reactor simulating those conditions found at industrial scale. The new strategy developed improved the kinetic reaction rate and overcomes transport limitations for the leaching solution, thus improving copper recoveries from 50 to 80% in only 6 h. This drastically reduced the time required by previous studies to achieve the same copper recovery. Inhibition effects of the biological process due to the release of metals from e-waste has been identified by means of microrespirometric monitoring tests. This systematic study allowed identifying that nickel, copper and aluminum impact the microorganisms’ activity, inactivating them in specific scenarios (depending on the concentration and the time exposed). Including the time exposure as variable, this work demonstrated that metal concentrations that have been reported as non-toxic to microorganisms, resulted toxic when the required leaching contact time was considered. Besides high iron concentrations also produce inhibitory effect on the microorganisms’ growth, despite being the energy source for their metabolism.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Cui, J., Forssberg, E.: Mechanical recycling of waste electric and electronic equipment: a review. J. Hazard. Mater. 99, 243–263 (2003)

    Article  Google Scholar 

  2. 2.

    Hsu, E., Barmak, K., West, A.C., Park, A.H.A.: Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies. Green Chem. 21, 919–936 (2019)

    Article  Google Scholar 

  3. 3.

    Hadi, P., Xu, M., Lin, C.S.K., Hui, C.W., McKay, G.: Waste printed circuit board recycling techniques and product utilization. J. Hazard. Mater. 283, 234–243 (2015)

    Article  Google Scholar 

  4. 4.

    Kasper, A.C., Berselli, G.B.T., Freitas, B.D., Tenório, J.A.S., Bernardes, A.M., Veit, H.M.: Printed wiring boards for mobile phones: characterization and recycling of copper. Waste Manag. 31, 2536–2545 (2011). https://doi.org/10.1016/j.wasman.2011.08.013

    Article  Google Scholar 

  5. 5.

    Ogunniyi, I.O., Vermaak, M.K.G., Groot, D.R.: Chemical composition and liberation characterization of printed circuit board comminution fines for beneficiation investigations. Waste Manage. 29, 2140–2146 (2009)

    Article  Google Scholar 

  6. 6.

    Dorado, A.D., Solé, M., Lao, C., Alfonso, P., Gamisans, X.: Effect of pH and Fe(III) ions on chalcopyrite bioleaching by an adapted consortium from biogas sweetening. Miner. Eng. 39, 36–38 (2012)

    Article  Google Scholar 

  7. 7.

    Khatri, B.R., Sodha, A.B., Shah, M.B., Tipre, D.R., Dave, S.R.: Chemical and microbial leaching of base metals from obsolete cell-phone printed circuit boards. Sustain. Environ. Res. 28, 333–339 (2018)

    Article  Google Scholar 

  8. 8.

    Priya, A., Hait, S.: Extraction of metals from high grade waste printed circuit board by conventional and hybrid bioleaching using Acidithiobacillus ferrooxidans. Hydrometallurgy 177, 132–139 (2018)

    Article  Google Scholar 

  9. 9.

    Dorado, A.D., Gamisans, X., Sole, M., Lao, C., Benzal, E.: Método para la recuperación biológica de metales en residuos eléctricos y electrónicos. Patent P201830406 (2018)

  10. 10.

    Brierley, C.L.: Bacterial succession in bioheap leaching. Process Metall. 59, 249–255 (2001)

    Google Scholar 

  11. 11.

    Olson, G.J., Brierley, J.A., Brierley, C.L.: Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 63, 249–257 (2003)

    Article  Google Scholar 

  12. 12.

    Ilyas, S., Lee, J., Chi, R.: Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy 131–132, 138–143 (2013)

    Article  Google Scholar 

  13. 13.

    Muñoz, J.A., Blázquez, M.L., Ballester, A., González, F.: A study of the bioleaching of a Spanish uranium ore. Part III: column experiments. Hydrometallurgy 38, 79–97 (1995)

    Article  Google Scholar 

  14. 14.

    Qiu, G., Li, Q., Yu, R., Sun, Z., Liu, Y., Chen, M., Yin, H., Zhang, Y., Liang, Y., Xu, L., Sun, L., Liu, X.: Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium. Bioresour. Technol. 102, 4697–4702 (2011)

    Article  Google Scholar 

  15. 15.

    Chen, S., Yang, Y., Liu, C., Dong, F., Liu, B.: Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere 141, 162–168 (2015). https://doi.org/10.1016/j.chemosphere.2015.06.082

    Article  Google Scholar 

  16. 16.

    Ilyas, S., Ruan, C., Bhatti, H.N., Ghauri, M.A., Anwar, M.A.: Column bioleaching of metals from electronic scrap. Hydrometallurgy 101, 135–140 (2010)

    Article  Google Scholar 

  17. 17.

    Valix, M.: Bioleaching of electronic waste: milestones and challenges. In: Wong, J., Tyagi, R., Pandey, A. (eds.) Current Developments in Biotechnology and Bioengineering, pp. 407–442. Elsevier, Amsterdam (2017)

    Chapter  Google Scholar 

  18. 18.

    Priya, A., Hait, S.: Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ. Sci. Pollut. Res. 24, 6989–7008 (2017)

    Article  Google Scholar 

  19. 19.

    Hagelüken, C., Corti, C.: Recycling of gold from electronics: Cost-effective use through 'design for recycling'. Gold Bull. 43, 209–220 (2010)

    Article  Google Scholar 

  20. 20.

    Cho, K.S., Ryu, H.W., Choi, H.M.: Toxicity evaluation of complex metal mixtures using reduced metal concentrations: application to iron oxidation by Acidithiobacillus ferrooxidans. J. Microbiol. Biotechnol. 18, 1298–1307 (2008)

    Google Scholar 

  21. 21.

    Joshi, V., Shah, N., Wakte, P., Dhakephalkar, P., Dhakephalkar, A., Khobragade, R., Naphade, B., Shaikh, S., Deshmukh, A., Adhapure, N.: Comparative bioleaching of metals from pulverized and non-pulverized PCBs of cell phone charger: advantages of non-pulverized PCBs. Environ. Sci. Pollut. Res. 24, 28277–28286 (2017)

    Article  Google Scholar 

  22. 22.

    Mrážiková, A., Kaduková, J., Marcinčáková, R., Willner, J., Fornalczyk, A., Saternus, M.: The effect of specific conditions on Cu, Ni, Zn and Al recovery from pcbs waste using acidophilic bacterial strains. Arch. Metall. Mater. 61, 261–264 (2016)

    Article  Google Scholar 

  23. 23.

    Willner, J., Fornalczyk, A.: Extraction of metals from electronic waste by bacterial leaching. Environ. Prot. Eng. 39, 197–207 (2013)

    Google Scholar 

  24. 24.

    Zhan, Y., Yang, M., Zhang, S., Zhao, D., Duan, J., Wang, W., Yan, L.: Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans. World J. Microbiol. Biotechnol. 35, 1–12 (2019)

    Article  Google Scholar 

  25. 25.

    Barron, J.L., Luecking, D.R.: Growth and maintenance of Thiobacillus ferrooxidans cells. Appl. Environ. Microbiol. 56, 2801–2806 (1990)

    Article  Google Scholar 

  26. 26.

    Okereket, A., Stevens, S.E.: ferrooxidans Kinetics of Iron Oxidation by Thiobacillus ferrooxidans. Appl. Microbiol. Biotechnol. 57, 1052–1056 (1991)

    Google Scholar 

  27. 27.

    Kelly, D.P., Jones, C.A.: Factors affecting metabolism and ferrous iron oxidation in suspensions and batch cultures of Thiobacillus ferrooxidans: relevance to ferric iron leach solution regeneration. Metallurgical applications of bacteria leaching and related microbiological phenomena. pp. 19–44 (1978)

  28. 28.

    Nemati, M., Harrison, S.T.L., Hansford, G.S., Webb, C.: Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochem. Eng. J. 1, 171–190 (1998). https://doi.org/10.1016/S1369-703X(98)00006-0

    Article  Google Scholar 

  29. 29.

    Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., Eisen, J.A., Holmes, D.S.: Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genom. 9, 597 (2008)

    Article  Google Scholar 

  30. 30.

    Leduc, L.G., Ferroni, G.D., Trevors, J.T.: Resistance to heavy metals in different strains of Thiobacillus ferrooxidans. World J. Microbiol. Biotechnol. 13, 453–455 (1997)

    Article  Google Scholar 

  31. 31.

    Braunschweig, J., Bosch, J., Heister, K., Kuebeck, C., Meckenstock, R.U.: Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology. J. Microbiol. Methods. 89, 41–48 (2012)

    Article  Google Scholar 

  32. 32.

    Adhapure, N.N., Dhakephalkar, P.K., Dhakephalkar, A.P., Tembhurkar, V.R., Rajgure, A.V., Deshmukh, A.M.: Use of large pieces of printed circuit boards for bioleaching to avoid 'precipitate contamination problem' and to simplify overall metal recovery. MethodsX. 1, 181–186 (2014)

    Article  Google Scholar 

  33. 33.

    Giebner, F., Kaschabek, S., Schopf, S., Schlömann, M.: Three adapted methods to quantify biomass and activity of microbial leaching cultures. Miner. Eng. 79, 169–175 (2015)

    Article  Google Scholar 

  34. 34.

    Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C.: Vogel’s Textbook of Quantitative Chemical Analysis, 5th edn. Longman Scientific & Technical, Harlow (1989)

    Google Scholar 

  35. 35.

    Magnin, J., Bailet, F., Boyer, A., Zlatev, R., Luca, M., Cheruy, A., Ozil, P.: Augmentation, par régéneration électrochimique du substrat, de la production d’une biomasse (Thiobacillus ferrooxidans DSM 583) pour un procédé biologique de récupération de métaux. Can. J. Chem. Eng. 76, 978–984 (1998)

    Article  Google Scholar 

  36. 36.

    Chen, Y., Chen, M., Li, Y., Wang, B., Chen, S., Xu, Z.: Impact of technological innovation and regulation development on e-waste toxicity: a case study of waste mobile phones. Sci. Rep. 8, 1–9 (2018)

    Article  Google Scholar 

  37. 37.

    Khaliq, A., Rhamdhani, M.A., Brooks, G., Masood, S.: Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources. 3, 152–179 (2014)

    Article  Google Scholar 

  38. 38.

    Jagannath, A., Vidya Shetty, K., Saidutta, M.B.: Bioleaching of copper from electronic waste using Acinetobacter sp. Cr B2 in a pulsed plate column operated in batch and sequential batch mode. J. Environ. Chem. Eng. 5, 1599–1607 (2017)

    Article  Google Scholar 

  39. 39.

    Brandl, H., Bosshard, R., Wegmann, M.: Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59, 319–326 (2001)

    Article  Google Scholar 

  40. 40.

    David, D.J., Pradhan, D., Das, T.: Evaluation of iron oxidation rate of Acidithiobacillus ferrooxidans in presence of heavy metal ions. Miner. Process. Extr. Metall. 117, 56–61 (2008)

    Article  Google Scholar 

  41. 41.

    Fischer, J., Quentmeier, A., Gansel, S., Sabados, V., Friedrich, C.G.: Inducible aluminum resistance of Acidiphilium cryptum and aluminum tolerance of other acidophilic bacteria. Arch. Microbiol. 178, 554–558 (2002)

    Article  Google Scholar 

  42. 42.

    Pagnanelli, F., Luigi, M., Mainelli, S., Toro, L.: Use of natural materials for the inhibition of iron oxidizing bacteria involved in the generation of acid mine drainage. Hydrometallurgy 87, 27–35 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been founded by the Project 2016LLAV00034 and 2018PROD00097 founded by AGAUR and FEDER funds. Eva Benzal gratefully acknowledges a FPU-2014 predoctoral scholarship from Ministerio de Educación, Cultura y Deporte (Spain) and co-financed by FEDER funds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. D. Dorado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benzal, E., Cano, A., Solé, M. et al. Copper Recovery from PCBs by Acidithiobacillus ferrooxidans: Toxicity of Bioleached Metals on Biological Activity. Waste Biomass Valor 11, 5483–5492 (2020). https://doi.org/10.1007/s12649-020-01036-y

Download citation

Keywords

  • Biological leaching
  • Electronic waste
  • Printed circuit boards
  • Valorisation
  • Column
  • Respirometry