Abstract
This study describes a new algal biofuel process that integrates sugarcane biorefinery wastewater treatment by nutrient removal with algae into bioethanol. The process is free of common industrial problems, including algal contamination, nutrients and fresh water usage, carbohydrate extraction, liquefaction, and saccharification. Cultivation and fermentation were conducted in one step by turning the light-air on and off, respectively. Three series of experiments with Chlamydomonas reinhardtii CC-1093 cultivation and fermentation were performed in anaerobically digested vinasse. Control experiments were a reference to compare the influence of chloride and ammonium-sulfate stress conditions on ethanol yield. Experimental results showed: (1) algal biomass can be successfully cultured within biorefinery wastewater (1129 mg·L−1·day−1); (2) relatively high bioremediation was achieved (26.1%–83.5%); (3) obtained ethanol yield was (maximum 68.3% of the theoretical yield) in one process step; and (4) the chloride stress condition influences on algae to synthesize extracellular polysaccharides as add-in product (120 mg/L).
Graphic Abstract

This is a preview of subscription content, access via your institution.



References
Silkina, A., Zacharof, M.P., Ginnever, N.E., Gerardo, M., Lovitt, R.W.: Testing the waste based biorefinery concept: pilot scale cultivation of microalgal species on spent anaerobic digestate fluids. Waste Biomass Valor. (2019). https://doi.org/10.1007/s12649-019-00766-y
Longati, A.A., Lino, A.R.A., Giordano, R.C., Furlan, F.F., Cruz, A.J.G.: Biogas production from anaerobic digestion of vinasse in sugarcane biorefinery: a techno-economic and environmental analysis. Waste Biomass Valor. (2019). https://doi.org/10.1007/s12649-019-00811-w
Dias, M.O. de S., Maciel Filho, R., Mantelatto, P.E., Cavalett, O., Rossell, C.E.V., Bonomi, A., Leal, M.R.L.V.: Sugarcane processing for ethanol and sugar in Brazil. Environ. Dev. 15, 35–51 (2015). doi:10.1016/j.envdev.2015.03.004
Cavalett, O., Junqueira, T.L., Dias, M.O.S., Jesus, C.D.F., Mantelatto, P.E., Cunha, M.P., Franco, H.C.J., Cardoso, T.F., Maciel Filho, R., Rossell, C.E.V., Bonomi, A.: Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technol. Environ. Policy. 14, 399–410 (2012). https://doi.org/10.1007/s10098-011-0424-7
Souza, M.E., Fuzaro, G., Polegato, A.R.: Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Water Sci. Technol. 25, 213–222 (1992)
Moraes, B.S., Junqueira, T.L., Pavanello, L.G., Cavalett, O., Mantelatto, P.E., Bonomi, A., Zaiat, M.: Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Appl. Energy. 113, 825–835 (2014). https://doi.org/10.1016/j.apenergy.2013.07.018
Colling Klein, B., Bonomi, A., Maciel Filho, R.: Integration of microalgae production with industrial biofuel facilities: a critical review. Renew. Sustain. Energy Rev. 82, 1376–1392 (2018). https://doi.org/10.1016/J.RSER.2017.04.063
Budiyono, I.S., Sumardiono, S., Sasongko, S.B.: Production of Spirulina platensis biomass using digested vinasse as cultivation medium. Trends Appl. Sci. Res. 9, 93–102 (2014). https://doi.org/10.3923/tasr.2014.93.102
Candido, C., Lombardi, A.T.: Growth of Chlorella vulgaris in treated conventional and biodigested vinasses. J. Appl. Phycol. 29, 45–53 (2017). https://doi.org/10.1007/s10811-016-0940-2
Olguín, E.J., Dorantes, E., Castillo, O.S., Hernández-Landa, V.J.: Anaerobic digestates from vinasse promote growth and lipid enrichment in Neochloris oleoabundans cultures. J. Appl. Phycol. (2015). https://doi.org/10.1007/s10811-015-0540-6
Srinivasan, R.: Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv. Mater. Sci. Eng. 2011, 1–17 (2011). https://doi.org/10.1155/2011/872531
Molina-Sabio, M., González, J., Rodrı́guez-Reinoso, F.: Adsorption of NH3 and H2S on activated carbon and activated carbon–sepiolite pellets. Carbon N. Y. 42, 448–450 (2004). https://doi.org/10.1016/J.CARBON.2003.11.009
de Souza Noel Simas Barbosa, L., Hytönen, E., Vainikka, P.: Carbon balance evaluation in sugarcane biorefineries in Brazil for carbon capture and utilisation purposes. In: Neo-Carbon 4th Researchers’ Seminar. pp. 1–24 (2015)
Marques, S.S.I., Nascimento, I.A., de Almeida, P.F., Chinalia, F.A.: Growth of Chlorella vulgaris on sugarcane vinasse: the effect of anaerobic digestion pretreatment. Appl. Biochem. Biotechnol. 171, 1933–1943 (2013). https://doi.org/10.1007/s12010-013-0481-y
Yang, L., Tan, X., Li, D., Chu, H., Zhou, X., Zhang, Y., Yu, H.: Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Bioresour. Technol. 181, 54–61 (2015). https://doi.org/10.1016/j.biortech.2015.01.043
Tan, X.B., Zhao, X.C., Zhang, Y.L., Zhou, Y.Y., Yang, L.B., Zhang, W.W.: Enhanced lipid and biomass production using alcohol wastewater as carbon source for Chlorella pyrenoidosa cultivation in anaerobically digested starch wastewater in outdoors. Bioresour. Technol. 247, 784–793 (2018). https://doi.org/10.1016/J.BIORTECH.2017.09.152
Moheimani, N.R., Cord-Ruwisch, R., Raes, E., Borowitzka, M.A.: Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). J. Appl. Phycol. 25, 1653–1661 (2013). https://doi.org/10.1007/s10811-013-0012-9
Hirano, A., Ueda, R., Hirayama, S., Ogushi, Y.: CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22, 137–142 (1997). https://doi.org/10.1016/S0360-5442(96)00123-5
Hirayama, S., Ueda, R., Ogushi, Y., Hirano, A., Samejima, Y., Hon-Nami, K., Kunito, S.: Ethanol production from carbon dioxide by fermentative microalgae. Stud. Surf. Sci. Catal. 114, 657–660 (1998). https://doi.org/10.1016/S0167-2991(98)80845-8
Kosourov, S., Seibert, M., Ghirardi, M.L.: Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol. 44, 146–155 (2003)
Kreuzberg, K.: Starch fermentation via a formate producing pathway in Chlamydomonas reinhardii, Chlorogonium elongatum and Chlorella fusca. Physiol. Plant. 61, 87–94 (1984). https://doi.org/10.1111/j.1399-3054.1984.tb06105.x
James, G.O., Hocart, C.H., Hillier, W., Chen, H., Kordbacheh, F., Price, G.D., Djordjevic, M.A.: Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour. Technol. 102, 3343–3351 (2011). https://doi.org/10.1016/J.BIORTECH.2010.11.051
Khona, D.K., Shirolikar, S.M., Gawde, K.K., Hom, E., Deodhar, M.A., D’Souza, J.S.: Characterization of salt stress-induced palmelloids in the green alga Chlamydomonas reinhardtii. Algal Res. 16, 434–448 (2016). https://doi.org/10.1016/J.ALGAL.2016.03.035
Nguyen, M.T., Choi, S.P., Lee, J., Lee, J.H., Sim, S.J.: Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. 19, 161–166 (2009)
Choi, S.P., Nguyen, M.T., Sim, S.J.: Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101, 5330–5336 (2010). https://doi.org/10.1016/J.BIORTECH.2010.02.026
Scholz, M.J., Riley, M.R., Cuello, J.L.: Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass Bioenerg. 48, 59–65 (2013). https://doi.org/10.1016/J.BIOMBIOE.2012.10.026
Asada, C., Doi, K., Sasaki, C., Nakamura, Y.: Efficient extraction of starch from microalgae using ultrasonic homogenizer and its conversion into ethanol by simultaneous saccharification and fermentation. Nat. Resour. 3, 175–179 (2012). https://doi.org/10.4236/nr.2012.34023
Kadioǧlu, A., Algur, Ö.F.: Tests of media with vinasse for Chlamydomonas reinhardii for possible reduction in vinasse pollution. Bioresour. Technol. 42, 1–5 (1992). https://doi.org/10.1016/0960-8524(92)90080-H
Williamson, K.L., Masters, K.M.: Macroscale and microscale organic experiments. Brooks/Cole (2011)
Bunyakiat, T., Khuwijitjaru, P.: Decolorization of hydrolysate of coconut meal using activated carbon after subcritical water treatment. Food Appl. Biosci. J. 4, 151–160 (2016). https://doi.org/10.14456/FABJ.2016.14
Lombardi, A.T., Salgueiro De Lima, M.I., Candido, C., Ferro Garzon, M.: Processo de tratamento de vinhaça, vinhaça tratada e uso da mesma, (2017)
Home - Chlamydomonas Resource Center, https://www.chlamycollection.org/
DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). https://doi.org/10.1021/ac60111a017
Moheimani, N.R., Borowitzka, M.A., Isdepsky, A., Sing, S.F.: Standard methods for measuring growth of algae and their composition. Algae for Biofuels and Energy, pp. 265–284. Springer, Dordrecht (2013)
Haydel, S.E., Remenih, C.M., Williams, L.B.: Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J. Antimicrob. Chemother. 61, 353–361 (2007). https://doi.org/10.1093/jac/dkm468
Williams, L.B., Metge, D.W., Eberl, D.D., Harvey, R.W., Turner, A.G., Prapaipong, P., Poret-Peterson, A.T.: What makes a natural clay antibacterial? Environ. Sci. Technol. 45, 3768–3773 (2011). https://doi.org/10.1021/es1040688
Li, L., Quinlivan, P.A., Knappe, D.R.U.: Predicting adsorption isotherms for aqueous organic micropollutants from activated carbon and pollutant properties. Environ. Sci. Technol. (2005). https://doi.org/10.1021/ES048816D
Galan, E.: Properties and applications of palygorskite-sepiolite clays. Clay Miner. 31, 443–453 (1996). https://doi.org/10.1180/claymin.1996.031.4.01
Vejrazka, C., Janssen, M., Benvenuti, G., Streefland, M., Wijffels, R.H.: Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light. Appl. Microbiol. Biotechnol. 97, 1523–1532 (2013). https://doi.org/10.1007/s00253-012-4390-8
Kim, M.S., Baek, J.S., Yun, Y.S., Jun Sim, S., Park, S., Kim, S.C.: Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int. J. Hydrog. Energy. 31, 812–816 (2006). https://doi.org/10.1016/J.IJHYDENE.2005.06.009
Kong, Q., Li, L., Martinez, B., Chen, P., Ruan, R.: Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl. Biochem. Biotechnol. 160, 9–18 (2010). https://doi.org/10.1007/s12010-009-8670-4
Serejo, M.L., Posadas, E., Boncz, M.A., Blanco, S., García-Encina, P., Muñoz, R.: Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environ. Sci. Technol. 49, 3228–3236 (2015). https://doi.org/10.1021/es5056116
Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylidès, C., Li-Beisson, Y., Peltier, G.: Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 11, 7 (2011). https://doi.org/10.1186/1472-6750-11-7
Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., Hu, Q.: Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab. Eng. 12, 387–391 (2010). https://doi.org/10.1016/J.YMBEN.2010.02.002
Wang, Z.T., Ullrich, N., Joo, S., Waffenschmidt, S., Goodenough, U.: Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell. 8, 1856–1868 (2009). https://doi.org/10.1128/EC.00272-09
Crayton, M.A.: A comparative cytochemical study of volvocacean matrix polysaccharides. J. Phycol. 18, 336–344 (1982). https://doi.org/10.1111/j.1529-8817.1982.tb03193.x
Ueno, Y., Kurano, N., Miyachi, S.: Ethanol production by dark fermentation in the marine green alga Chlorococcum littorale. J. Ferment. Bioeng. 86, 38–43 (1998). https://doi.org/10.1016/S0922-338X(98)80031-7
Wang, W.: Cassava production for industrial utilization in China – present and future perspective. In: Cassava Research and Development in Asia: Exploring New Opportunities for an Ancient Crop. pp. 33–38. Seventh Regional Cassava Workshop, October 28–November 1, Bangkok, Thailand (2002)
Moreira, J.R., Goldemberg, J.: The alcohol program. Energy Policy 27, 229–245 (1999). https://doi.org/10.1016/S0301-4215(99)00005-1
Berg, C.: World Fuel Ethanol—Analysis and Outlook. Kent, England (2004)
Kadam, K.L., McMillan, J.D.: Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour. Technol. 88, 17–25 (2003). https://doi.org/10.1016/S0960-8524(02)00269-9
Acknowledgements
This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP (grant numbers 17/14056-9 and 15/20630-4). Authors are also thankful for the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project III 45001); Prof. Dr. Telma Teixeira Franco (LEBBPOR, FEQ, UNICAMP, São Paulo, Brazil), who permitted the use of TOC-VCSN Analyzer (Shimadzu, Kyoto, Japan); Prof. Dr. Ljubica Tasic and Dr. Danijela Stanisic (Institute of Chemistry, UNICAMP, São Paulo, Brazil), who kindly provided rotary shaker. Special acknowledgments belong to the following individuals from LOPCA (FEQ, UNICAMP, São Paulo, Brazil), who provided the technical and logistics support during the research: Luisa Fernanda Rios Pinto, Gabriela Filipini Ferreira, Jean Felipe Leal Silva and Renato Sano Coelho.
Author information
Authors and Affiliations
Contributions
MBT performed the fermentations, acquisition, analysis, and interpretation of data, design conception and drafting of the article. AJB was involved in the acquisition, analysis, and interpretation of GC data. MIRBS was involved in the acquisition and interpretation of absorbents data. BCK was involved in the acquisition, analysis, and interpretation of ADV data. VBV participated in design conception and drafting of the article. RMF participated in the design of this study as well as coordination and supervision of the work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tasic, M.B., Bonon, A., Rocha Barbosa Schiavon, M. et al. Cultivation of Chlamydomonas reinhardtii in Anaerobically Digested Vinasse for Bioethanol Production. Waste Biomass Valor 12, 857–865 (2021). https://doi.org/10.1007/s12649-020-01034-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-020-01034-0
Keywords
- Chlamydomonas reinhardtii
- Anaerobically digested vinasse
- Adsorption
- Ethanol
- Stress
- Fermentation