Skip to main content

Advertisement

Log in

Harvesting of Microalgae Chlorella pyrenoidosa by Bio-flocculation with Bacteria and Filamentous Fungi

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The high cost of oleaginous microalgae harvesting is a major factor limiting the industrialization of microalgae biodiesel. In order to obtain an efficient, environmentally friendly and cost-effective method for harvesting microalgae, this study used Citrobacter freundii (No. W4) and Mucor circinelloides for the harvest of oil-bearing microalgae Chlorella pyrenoidosa. The effects of flocculation conditions, including the initial pH, bacterial dosage, fungal dosage and glucose dosage were investigated, respectively. According to the results of response surface optimization, when the initial pH was 7.0, bacteria: microalgae ratio was 1.6:1, microalgae: fungi ratio was 333:1, the glucose concentration was 1.47 g/L, the flocculation efficiency of the actual sewage cultured C. pyrenoidosa attained 97.45%. The results showed that bacteria and fungi had a good potential for the harvest of microalgae.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nur, M.M.A., Buma, A.G.J.: Opportunities and challenges of microalgal cultivation on wastewater, with special focus on palm oil mill effluent and the production of high value compounds. Waste Biomass Valoriz. 10(8), 2079–2097 (2018). https://doi.org/10.1007/s12649-018-0256-3

    Article  Google Scholar 

  2. Arvindnarayan, S., Shobana, S., Dharmaraja, J., Nguyen, D.D., Chang, S.W., Atabani, A.E., Kumar, G., Prabhu, K.K.S.: Spectral, in vitro biological, engine and emission performances of biodiesel production from Chlorella protothecoides: a sustainable renewable energy source. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-019-00888-3

    Article  Google Scholar 

  3. Prabakaran, P., Pradeepa, V., Selvakumar, G., David Ravindran, A.: Efficacy of enzymatic transesterification of Chlorococcum sp. algal oils for biodiesel production. Waste Biomass Valoriz. 10(7), 1873–1881 (2018). https://doi.org/10.1007/s12649-018-0211-3

    Article  Google Scholar 

  4. Weschler, M.K., Barr, W.J., Harper, W.F., Landis, A.E.: Process energy comparison for the production and harvesting oof algal biomass as a biofuel feedstock. Bioresour. Technol. 153, 108–115 (2014). https://doi.org/10.1016/J.Biortech.2013.11.008

    Article  Google Scholar 

  5. Maeda, Y., Tateishi, T., Niwa, Y., Muto, M., Yoshino, T., Kisailus, D., Tanaka, T.: Peptide-mediated microalgae harvesting method for efficient biofuel production. Biotechnol. Biofuels 9, 10 (2016). https://doi.org/10.1186/S13068-015-0406-9

    Article  Google Scholar 

  6. Assemany, P., de Paula Marques, I., Calijuri, M.L., Reis, A.: Complementarity of substrates in anaerobic digestion of wastewater grown algal biomass. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-019-00875-8

    Article  Google Scholar 

  7. Hu, Z., Qi, Y., Zhao, L., Chen, G.: Interactions between microalgae and microorganisms for wastewater remediation and biofuel production. Waste Biomass Valoriz. 10(12), 3907–3919 (2018). https://doi.org/10.1007/s12649-018-0325-7

    Article  Google Scholar 

  8. Zittelli, G.C., Rodolfi, L., Biondi, N., Tredici, M.R.: Productivity and photosynthetic efficiency of outdoor cultures of tetraselmis suecica in annular columns. Aquaculture 261(3), 932–943 (2006). https://doi.org/10.1016/J.Aquaculture.2006.08.011

    Article  Google Scholar 

  9. Horiuchi, J.I., Ohba, I., Tada, K., Kobayashi, M., Kanno, T., Kishimoto, M.: Effective cell harvesting of the halotolerant microalga dunaliella tertiolecta with pH control. J. Biosci. Bioeng. 95(4), 412–415 (2003). https://doi.org/10.1263/jbb.95.412

    Article  Google Scholar 

  10. Mubarak, M., Shaija, A., Suchithra, T.V.: Cost effective approach for production of Chlorella pyrenoidosa: a rsm based study. Waste Biomass Valoriz. 10(11), 3307–3319 (2018). https://doi.org/10.1007/s12649-018-0330-x

    Article  Google Scholar 

  11. Ndikubwimana, T., Zeng, X., Liu, Y., Chang, J.-S., Lu, Y.: Harvesting of microalgae Desmodesmus sp. f51 by bioflocculation with bacterial bioflocculant. Algal Res. 6, 186–193 (2014). https://doi.org/10.1016/j.Algal.2014.09.004

    Article  Google Scholar 

  12. Singh, R., Kumar, A., Sharma, Y.C.: Evaluation of various lipid extraction techniques for microalgae and their effect on biochemical components. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-019-00601-4

    Article  Google Scholar 

  13. Jakob, G., Stephens, E., Feller, R., Oey, M., Hankamer, B., Ross, I.L.: Triggered exocytosis of the protozoan tetrahymena as a source of bioflocculation and a controllable dewatering method for efficient harvest of microalgal cultures. Algal Res. 13, 148–158 (2016). https://doi.org/10.1016/J.Algal.2015.11.011

    Article  Google Scholar 

  14. Zhang, X., Hu, Q., Sommerfeld, M., Puruhito, E., Chen, Y.: Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour. Technol. 101(14), 5297–5304 (2010). https://doi.org/10.1016/j.biortech.2010.02.007

    Article  Google Scholar 

  15. Cerff, M., Morweiser, M., Dillschneider, R., Michel, A., Menzel, K., Posten, C.: Harvesting fresh water and marine algaeby magnetic separation: screening of separation parameters and high gradient magnetic filtration. Bioresour. Technol. 118, 289–295 (2012). https://doi.org/10.1016/j.biortech.2012.05.020

    Article  Google Scholar 

  16. Rwehumbiza, V.M., Harrison, R., Thomsen, L.: Alum-induced flocculation of preconcentrated nannochloropsis salina: residual aluminium in the biomass, fames and its effects on microalgae growth upon media recycling. Chem. Eng. J. 200, 168–175 (2012). https://doi.org/10.1016/j.cej.2012.06.008

    Article  Google Scholar 

  17. Zamalloa, C., Boon, N., Verstraete, W.: Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour. Technol. 130, 152–160 (2013). https://doi.org/10.1016/j.biortech.2012.11.128

    Article  Google Scholar 

  18. Powell, R.J., Hill, R.T.: Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp strain rp1137. Appl. Environ. Microbiol. 79(19), 6093–6101 (2013). https://doi.org/10.1128/aem.01496-13

    Article  Google Scholar 

  19. Amin, S.A., Parker, M.S., Armbrust, E.V.: Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76(3), 667 (2012). https://doi.org/10.1128/mmbr.00007-12

    Article  Google Scholar 

  20. Zhou, W., Min, M., Hu, B., Ma, X., Liu, Y., Wang, Q., Shi, J., Chen, P., Ruan, R.: Filamentous fungi assisted bio-flocculation: a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Sep. Purif. Technol. 107, 158–165 (2013). https://doi.org/10.1016/j.seppur.2013.01.030

    Article  Google Scholar 

  21. Choi, Y.-N., Cho, H.U., Utomo, J.C., Shin, D.Y., Kim, H.K., Park, J.M.: Efficient harvesting of Synechocystis sp pcc 6803 with filamentous fungal pellets. J. Appl. Phycol. 28(4), 2225–2231 (2016). https://doi.org/10.1007/s10811-015-0787-y

    Article  Google Scholar 

  22. Pan, J., Zhao, Z., Wu, L., Zhang, W., Xu, J., Chen, Y., Fu, Z.: Concentration prediction of Chlorella Vulgaris beij by visible spectrophotometer. J. Anhui Agric. Sci. 42(25), 8504–8505 (2014)

    Google Scholar 

  23. Bruckner, C.G., Kroth, P.G.: Protocols for the removal of bacteria from freshwater benthic diatom cultures. J. Phycol. 45(4), 981–986 (2009). https://doi.org/10.1111/j.1529-8817.2009.00708.x

    Article  Google Scholar 

  24. Wang, B.F., Zhao, L.X., Ye, J., Gan, X.H., Tang, X.Y.: The research development of aseptic purification technique of microalgaes. Microbiol. China 02, 363 (2007). https://doi.org/10.13344/j.microbiol.china.2007.02.039

    Article  Google Scholar 

  25. Gu, Q., Jin, W.B., Chen, Y.Q., Guo, S.D., Wan, C.F.: Filamentous fungi assisted bio-flocculation: a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Sep. Purif. Technol. 38(02), 688–696 (2017)

    Google Scholar 

  26. Hori, K., Okamoto, J., Tanji, Y., Unno, H.: Formation, sedimentation and germination properties of anabaena akinetes. Biochem. Eng. J. 14(1), 67–73 (2003). https://doi.org/10.1016/s1369-703x(02)00136-5

    Article  Google Scholar 

  27. Pandhal, J., Choon, W.L., Kapoore, R.V., Russo, D.A., Hanotu, J., Wilson, I.A.G., Desai, P., Bailey, M., Zimmerman, W.J., Ferguson, A.S.: Harvesting environmental microalgal blooms for remediation and resource recovery: a laboratory scale investigation with economic and microbial community impact assessment. Biology 7(1), 4 (2017). https://doi.org/10.3390/biology7010004

    Article  Google Scholar 

  28. Bian, X.: Study on high efficiency harvesting of microalgae in sewage by auto-flocculation combined with microbial flocculation. (Maste Thesis) Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China (2017).

  29. Gultom, S.O., Hu, B.: Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies 6(11), 5921–5939 (2013). https://doi.org/10.3390/en6115921

    Article  Google Scholar 

  30. Henderson, R.K., Parsons, S.A., Jefferson, B.: Successful removal of algae through the control of zeta potential. Sep. Purif. Technol. 43(7), 1653–1666 (2008). https://doi.org/10.1080/01496390801973771

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51878215), China Postdoctoral Science Foundation (2019M661265), Natural Science Foundation of Guangdong Province, China (2018A030313185) and Shenzhen Science and Technology Innovation Project (KJYY20171011144235970, JCYJ20170307150223308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Jin, W., Tu, R. et al. Harvesting of Microalgae Chlorella pyrenoidosa by Bio-flocculation with Bacteria and Filamentous Fungi. Waste Biomass Valor 12, 145–154 (2021). https://doi.org/10.1007/s12649-020-00979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-00979-6

Keywords

Navigation