Evaluation of Wild-Type Microalgae Species Biomass as Carbon Dioxide Sink and Renewable Energy Resource


In this study, wild-type microalgae species isolated from Porsuk river (Central Anatolia, Turkey) investigated as energy production feedstock and carbon dioxide sink. The obtained experimental data have been used for energy evaluation of the whole process and size estimation of large scale microalgae plant. Growth rate, CO2 mitigation rate, lipid, carbohydrate and protein content and natural settling behavior of the isolated species were investigated. The microalgae Gleocystis ampula had the highest growth rate equal to 0.138 ± 0.008 g l−1 d−1 which also was observed to fix carbon dioxide with the highest rate of 0.281 ± 0.025 g l−1 d−1. The highest measured lipid content of 47.32 ± 0.40 wt% belonged to Scenedesmus quadricauda (I) with an estimated lipid production rate of 51.9 ± 0.4 mg l−1 d−1. The species Kirchneriella lunaris showed the highest carbohydrate proportion being 72.43 ± 6.40 and Micrococcus sp. had the highest protein content of 58.11 ± 8.5 wt%. Promising large scale application of microalgae was concluded for biodiesel production and carbon dioxide mitigation just when efficiency of processes improved substantially. An Energy Efficiency of 1.62 was estimated following an ideally designed cultivation and dewatering approach.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Sydney, E.B., Sturm, W., de Carvalho, J.C., Thomaz-Soccol, V., Larroche, C., Pandey, A., Soccol, C.R.: Potential carbon dioxide fixation by industrially important microalgae. Biores. Technol. 101(15), 5892–5896 (2010). https://doi.org/10.1016/j.biortech.2010.02.088

    Article  Google Scholar 

  2. 2.

    Wang, B., Li, Y., Wu, N., Lan, C.Q.: CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79(5), 707–718 (2008)

    Article  Google Scholar 

  3. 3.

    Gouveia, L.: Microalgae as a feedstock for biofuels, pp. 1–69. Springer, Berlin (2011).

  4. 4.

    Singh, A., Nigam, P.S., Murphy, J.D.: Renewable fuels from algae: an answer to debatable land based fuels. Biores. Technol. 102(1), 10–16 (2011)

    Article  Google Scholar 

  5. 5.

    Muylaert, K., Bastiaens, L., Vandamme, D., Gouveia, L.: 5—harvesting of microalgae: overview of process options and their strengths and drawbacks A2—Gonzalez-Fernandez, Cristina. In: Muñoz, R. (ed.) Microalgae-based biofuels and bioproducts, pp. 113–132. Woodhead Publishing, Sawston (2017)

    Google Scholar 

  6. 6.

    Derakhshandeh, M., Tezcan-Un, U.: Optimization of microalgae Scenedesmus SP growth rate using a central composite design statistical approach. Biomass Bioenergy 122, 211–220 (2019). https://doi.org/10.1016/j.biombioe.2019.01.022

    Article  Google Scholar 

  7. 7.

    Arenas, E., Palacio, R., Juantorena, A., Fernando, S., Sebastian, P.: Microalgae as a potential source for biodiesel production: techniques, methods, and other challenges. Int J Energy Res 41(6), 761–789 (2017)

    Article  Google Scholar 

  8. 8.

    Duran, S.K., Kumar, P., Sandhu, S.S.: A review on microalgae strains, cultivation, harvesting, biodiesel conversion and engine implementation. Biofuels. (2018). https://doi.org/10.1080/17597269.2018.1457314

    Article  Google Scholar 

  9. 9.

    Derakhshandeh, M., Atici, T., Un, U.T.: Lipid extraction from microalgae Chlorella and Synechocystis sp. using glass microparticles as disruption enhancer. Energy Environ. (2019). https://doi.org/10.1177/0958305X1983746310.1177/0958305X19837463.

    Article  Google Scholar 

  10. 10.

    Velazquez-Lucio, J., Rodríguez-Jasso, R.M., Colla, L.M., Sáenz-Galindo, A., Cervantes-Cisneros, D.E., Aguilar, C.N., Fernandes, B.D., Ruiz, H.A.: Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res. J. 17, 780–791 (2018)

    Article  Google Scholar 

  11. 11.

    Brooks, A.N., Turkarslan, S., Beer, K.D., Yin Lo, F., Baliga, N.S.: Adaptation of cells to new environments. Wiley Interdiscip. Rev. Syst. Biol. Med. 3(5), 544–561 (2011)

    Article  Google Scholar 

  12. 12.

    Sriswasdi, S., Yang, C.-C., Iwasaki, W.: Generalist species drive microbial dispersion and evolution. Nat. Commun. 8(1), 1162 (2017)

    Article  Google Scholar 

  13. 13.

    Pandit, S.N., Kolasa, J., Cottenie, K.: Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90(8), 2253–2262 (2009)

    Article  Google Scholar 

  14. 14.

    Acién, F., Molina, E., Reis, A., Torzillo, G., Zittelli, G., Sepúlveda, C., Masojídek, J.: Photobioreactors for the production of microalgae. In: Muñoz, R., Gonzalez-Fernandez, C. (eds.) Microalgae-based biofuels and bioproducts, pp. 1–44. Woodhead Publishing, Sawston (2018)

    Google Scholar 

  15. 15.

    Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., Chang, J.-S.: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Biores. Technol. 102(1), 71–81 (2011)

    Article  Google Scholar 

  16. 16.

    Jorquera, O., Kiperstok, A., Sales, E.A., Embiruçu, M., Ghirardi, M.L.: Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Biores. Technol. 101(4), 1406–1413 (2010). https://doi.org/10.1016/j.biortech.2009.09.038

    Article  Google Scholar 

  17. 17.

    Negoro, M., Shioji, N., Miyamoto, K., Micira, Y.: Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl. Biochem. Biotechnol. 28(1), 877 (1991)

    Article  Google Scholar 

  18. 18.

    Gonçalves, A.L., Rodrigues, C.M., Pires, J.C.M., Simões, M.: The effect of increasing CO2 concentrations on its capture, biomass production and wastewater bioremediation by microalgae and cyanobacteria. Algal Res 14, 127–136 (2016). https://doi.org/10.1016/j.algal.2016.01.008

    Article  Google Scholar 

  19. 19.

    Yun, H.-S., Lee, H., Park, Y.-T., Ji, M.-K., Kabra, A.N., Jeon, C., Jeon, B.-H., Choi, J.: Isolation of novel microalgae from acid mine drainage and its potential application for biodiesel production. Appl. Biochem. Biotechnol. 173(8), 2054–2064 (2014). https://doi.org/10.1007/s12010-014-1002-3

    Article  Google Scholar 

  20. 20.

    Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, S.A., Druzian, J.I., de Souza, C.O., Vich, D.V., de Carvalho, G.C., Nascimento, M.A.: Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. BioEnergy Res. 6(1), 1–13 (2013). https://doi.org/10.1007/s12155-012-9222-2

    Article  Google Scholar 

  21. 21.

    Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.Y.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1), 1–61 (1979)

    Article  Google Scholar 

  22. 22.

    Elsey, D., Jameson, D., Raleigh, B., Cooney, M.J.: Fluorescent measurement of microalgal neutral lipids. J. Microbiol. Methods 68(3), 639–642 (2007)

    Article  Google Scholar 

  23. 23.

    Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959)

    Article  Google Scholar 

  24. 24.

    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956)

    Article  Google Scholar 

  25. 25.

    Lourenço, S.O., Barbarino, E., Lavín, P.L., Lanfer Marquez, U.M., Aidar, E.: Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39(1), 17–32 (2004)

    Article  Google Scholar 

  26. 26.

    Atıcı, T., Tokatlı, C.: Algal diversity and water quality assessment with cluster analysis of four freshwater lakes (Mogan, Abant, Karagöl and Poyrazlar) of Turkey. Wulfenia 21(4), 155–169 (2014)

    Google Scholar 

  27. 27.

    Atıcı, T., Alaş, A.: A study on the trophic status and phytoplanktonic algae of Mamasin Dam Lake (Aksaray-Turkey). Turk. J. Fish. Aquat. Sci. 12(3), 595–601 (2012)

    Article  Google Scholar 

  28. 28.

    Zutshi, D., Subla, B., Khan, M., Wanganeo, A.: Comparative limnology of nine lakes of Jammu and Kashmir Himalayas. Hydrobiologia 72(1–2), 101–112 (1980)

    Article  Google Scholar 

  29. 29.

    Bellinger, E.G., Sigee, D.C.: Freshwater Algae: Identification and Use as Bioindicators. Wiley, New York (2015)

    Google Scholar 

  30. 30.

    Graham, L.E., Graham, J.M., Wilcox, L.W.: Algae. Benjamin Cummings, San Francisco (2009)

    Google Scholar 

  31. 31.

    Wehr, J.D., Sheath, R.G., Kociolek, J.P.: Freshwater Algae of North America: Ecology and Classification. Elsevier, Amsterdam (2015)

    Google Scholar 

  32. 32.

    John, D.M., Whitton, B.A., Brook, A.J.: The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae, vol. 1. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  33. 33.

    Renaud, S.M., Thinh, L.-V., Lambrinidis, G., Parry, D.L.: Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211(1), 195–214 (2002). https://doi.org/10.1016/S0044-8486(01)00875-4

    Article  Google Scholar 

  34. 34.

    Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A.: Optimization of Nannochloropsis oculata growth using the response surface method. J. Chem. Technol. Biotechnol. 81(6), 1049–1056 (2006)

    Article  Google Scholar 

  35. 35.

    Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Perales, J.A.: Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res. 49, 465–474 (2014). https://doi.org/10.1016/j.watres.2013.10.036

    Article  Google Scholar 

  36. 36.

    Wang, B., Li, Y., Wu, N., Lan, C.Q.: CO 2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79(5), 707–718 (2008)

    Article  Google Scholar 

  37. 37.

    Ho, S.-H., Chen, C.-Y., Lee, D.-J., Chang, J.-S.: Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol. Adv. 29(2), 189–198 (2011)

    Article  Google Scholar 

  38. 38.

    Sayre, R.: Microalgae: the potential for carbon capture. Bioscience 60(9), 722–727 (2010)

    Article  Google Scholar 

  39. 39.

    Yoo, C., Jun, S.-Y., Lee, J.-Y., Ahn, C.-Y., Oh, H.-M.: Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol. 101(1), S71–S74 (2010). https://doi.org/10.1016/j.biortech.2009.03.030

    Article  Google Scholar 

  40. 40.

    Demirbas, A., Demirbas, M.F.: Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 52(1), 163–170 (2011)

    Article  Google Scholar 

  41. 41.

    Zhao, B., Su, Y.: Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew. Sustain. Energy Rev. 31, 121–132 (2014)

    Article  Google Scholar 

  42. 42.

    Posten, C., Schaub, G.: Microalgae and terrestrial biomass as source for fuels—a process view. J. Biotechnol. 142(1), 64–69 (2009)

    Article  Google Scholar 

  43. 43.

    Abo-Shady, A., Mohamed, Y., Lasheen, T.: Chemical composition of the cell wall in some green algae species. Biol. Plant. 35(4), 629–632 (1993)

    Article  Google Scholar 

  44. 44.

    Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., Takriff, M.S.: An overview: biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. Thessalon. 21(1), 6 (2014). https://doi.org/10.1186/2241-5793-21-6

    Article  Google Scholar 

  45. 45.

    Becker, E.W.: Micro-algae as a source of protein. Biotechnol. Adv. 25(2), 207–210 (2007). https://doi.org/10.1016/j.biotechadv.2006.11.002

    Article  Google Scholar 

  46. 46.

    Xu, L., Brilman, D.W.W., Withag, J.A., Brem, G., Kersten, S.: Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Biores. Technol. 102(8), 5113–5122 (2011)

    Article  Google Scholar 

  47. 47.

    Janulis, P.: Reduction of energy consumption in biodiesel fuel life cycle. Renew. Energy 29(6), 861–871 (2004). https://doi.org/10.1016/j.renene.2003.10.004

    Article  Google Scholar 

  48. 48.

    Collotta, M., Busi, L., Champagne, P., Romagnoli, F., Tomasoni, G., Mabee, W., Alberti, M.: Comparative LCA of three alternative technologies for lipid extraction in biodiesel from microalgae production. Energy Procedia 113, 244–250 (2017)

    Article  Google Scholar 

  49. 49.

    Stephenson, A.L., Kazamia, E., Dennis, J.S., Howe, C.J., Scott, S.A., Smith, A.G.: Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24(7), 4062–4077 (2010)

    Article  Google Scholar 

  50. 50.

    Lardon, L., Hélias, A., Sialve, B., Steyer, J.-P., Bernard, O.: Life-cycle assessment of biodiesel production from microalgae. ACS Publications, Washington, DC (2009)

    Google Scholar 

  51. 51.

    Khoo, H.H., Sharratt, P.N., Das, P., Balasubramanian, R.K., Naraharisetti, P.K., Shaik, S.: Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Biores. Technol. 102(10), 5800–5807 (2011). https://doi.org/10.1016/j.biortech.2011.02.055

    Article  Google Scholar 

  52. 52.

    Phukan, M.M., Chutia, R.S., Konwar, B., Kataki, R.: Microalgae Chlorella as a potential bio-energy feedstock. Appl. Energy 88(10), 3307–3312 (2011)

    Article  Google Scholar 

  53. 53.

    Gnaiger, E., Bitterlich, G.: Proximate biochemical composition and caloric content calculated from elemental CHN analysis: a stoichiometric concept. Oecologia 62(3), 289–298 (1984)

    Article  Google Scholar 

  54. 54.

    Kurt, M., Aksoy, A., Sanin, F.D.: Evaluation of solar sludge drying alternatives by costs and area requirements. Water Res 82, 47–57 (2015). https://doi.org/10.1016/j.watres.2015.04.043

    Article  Google Scholar 

  55. 55.

    Shelef, G., Sukenik, A., Green, M.: Microalgae Harvesting and Processing: A Literature Review. Technion Research and Development Foundation Ltd., Haifa (1984)

    Google Scholar 

  56. 56.

    Chen, C.-L., Chang, J.-S., Lee, D.-J.: Dewatering and drying methods for microalgae. Drying Technol. 33(4), 443–454 (2015)

    Article  Google Scholar 

  57. 57.

    Sharma, K.K., Garg, S., Li, Y., Malekizadeh, A., Schenk, P.M.: Critical analysis of current microalgae dewatering techniques. Biofuels 4(4), 397–407 (2013)

    Article  Google Scholar 

  58. 58.

    Rubin, E.S., Chen, C., Rao, A.B.: Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35(9), 4444–4454 (2007). https://doi.org/10.1016/j.enpol.2007.03.009

    Article  Google Scholar 

  59. 59.

    Saudi Aramco Annual Review 2017. Aramco Company (2017)

  60. 60.

    Wahlen, B.D., Willis, R.M., Seefeldt, L.C.: Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Biores. Technol. 102(3), 2724–2730 (2011). https://doi.org/10.1016/j.biortech.2010.11.026

    Article  Google Scholar 

  61. 61.

    Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G.: Biodiesel production by microalgal biotechnology. Appl. Energy 87(1), 38–46 (2010). https://doi.org/10.1016/j.apenergy.2009.06.016

    Article  Google Scholar 

  62. 62.

    Keera, S.T., El Sabagh, S.M., Taman, A.R.: Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst. Fuel 90(1), 42–47 (2011). https://doi.org/10.1016/j.fuel.2010.07.046

    Article  Google Scholar 

  63. 63.

    Leung, D.Y.C., Guo, Y.: Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process. Technol. 87(10), 883–890 (2006). https://doi.org/10.1016/j.fuproc.2006.06.003

    Article  Google Scholar 

  64. 64.

    Onukwuli, D.O., Emembolu, L.N., Ude, C.N., Aliozo, S.O., Menkiti, M.C.: Optimization of biodiesel production from refined cotton seed oil and its characterization. Egypt. J. Pet. 26(1), 103–110 (2017). https://doi.org/10.1016/j.ejpe.2016.02.001

    Article  Google Scholar 

Download references


This project was funded by Anadolu University through scientific research Project No. 1702F050.

Author information



Corresponding author

Correspondence to Masoud Derakhshandeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Derakhshandeh, M., Atici, T. & Tezcan Un, U. Evaluation of Wild-Type Microalgae Species Biomass as Carbon Dioxide Sink and Renewable Energy Resource. Waste Biomass Valor 12, 105–121 (2021). https://doi.org/10.1007/s12649-020-00969-8

Download citation


  • Microalgae biomass
  • Biofuel
  • Energy efficiency
  • Carbon fixation
  • Growth rate
  • Life cycle assessment