Skip to main content

Performance of Anaerobic Co-digestion of Pig Slurry with Pineapple (Ananas comosus) Bio-waste Residues

Abstract

Agro-food industries produce large amounts of bio-waste, challenging innovative valorisation strategies in the framework of circular economy principles. Anaerobic digestion technology is an interesting route to stabilise organic matter and produce biogas as a renewable energy source. This paper aimed to study the optimal performance conditions for anaerobic co-digestion (AcoD) of pig slurry with pineapple (Ananas comosus) peel bio-waste. The anaerobic digestion (AD) trials were performed at lab scale, in a continuous stirred reactor, for 16 days’ hydraulic retention time in mesophilic conditions (37 ± 1 °C). Three hydraulic retention time were performed, one for the reference scenario (T0) and two for AcoD trials (T1, T2). Feeding mixtures (20:80; v:v) of pineapple peel liquor and pig slurry, with an OLR of 1.46 ± 0.04 g TVS L−1reactor day−1 were used during AD/AcoD trials, presenting high values for soluble chemical oxygen demand and C/N ratio. This operational conditions highlight bioenergy recovery up to 0.58 L CH4 g TVSadded−1, in comparison with that obtained with pig slurry substrate (0.31 L CH4 g VSadded−1). The AD performance showed a total volatile solids and chemical oxygen demand removal efficiency of 23% to 47% and 26% to 48%, comparing T0 with the average of T1 and T2, respectively. The digester stability, evaluated by specific energetic loading rate, was below the limit (0.4 day−1) throughout the trials. Pig slurry co-digestion with pineapple peel liquor seems to be a promising approach for potential bioenergy recovery.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AcoD:

Anaerobic co-digestion

AD:

Anaerobic digestion

C/N:

Carbon/nitrogen ratio

GPR:

Gas production rate

HRT:

Hydraulic retention time

IA:

Intermediate alkalinity

OLR:

Organic loading rate

PA:

Partial alkalinity

PPL:

Pineapple peel liquor

PS:

Pig slurry

SCOD:

Soluble chemical oxygen demand

SELR:

Specific energetic loading rate

SGP:

Specific gas production

SMP:

Specific methane production

TA:

Total alkalinity

TCOD:

Total chemical oxygen demand

TKN:

Total Kjeldahl nitrogen

TOC:

Total organic carbon

TS:

Total solids

TVS:

Total volatile solids

TSVS:

Total suspended volatile solids

References

  1. Martinho, D.: The Agricultural Economics of the 21st Century. Springer, Cham (2015)

    Book  Google Scholar 

  2. Zhou, X., Li, Q., Zhang, Y., Gu, Y.: Effect of hidrotermal pretreatment on Miscanthus anaerobic digestor. Bioresource Technol. 224, 721–726 (2017). https://doi.org/10.1016/j.biortech.2016.10.085

    Article  Google Scholar 

  3. Roppa, L.: Revista “Suinicultura”, “Desafios e Oportunidades para a Produção de Carnes nos Próximos 10 Anos”; nº 119 (2018)

  4. Tullo, E., Finzi, A., Guarino, M.: Review: environmental impact of livestock farming and precision livestock farming as a mitigation strategy. Sci. Total Environ. 650, 2751–2760 (2019). https://doi.org/10.1016/j.scitotenv.2018.10.018

    Article  Google Scholar 

  5. Giongo, A., Bortoli, M., De Prá, M.C., Veruck, M., Kunz, A.: Swine wastewater nitrogen removal at different C/N ratios using the modified Ludzack-Ettinger process. Eng. Agric. 4430, 968–977 (2018). https://doi.org/10.1590/1809-4430-eng.agric.v38n6p968-977/2018

    Article  Google Scholar 

  6. Zhang, J.S., Liu, J., Ming, R.: Genomic analyses of the CAM plant pineapple. J. Exp. Bot. 65, 3395–3404 (2014). https://doi.org/10.1093/jxb/eru101

    Article  Google Scholar 

  7. Ming, R., Van Buren, R., Wai, C.M., Tang, H.B., Schatz, M.C., Bowers, J.E., Lyons, E., Wang, M.L., Chen, J., Biggers, E., Zhang, J.S., Huang, L.X., Zhang, L.M., Miao, W.J., Zhang, J., Ye, Z.Y., Miao, C.Y., Lin, Z.C., Wang, H., Zhou, H.Y., Yim, W.C., Priest, H.D., Zheng, C.F., Woodhouse, M., Edger, P.P., Guyot, R., Guo, H.B., Guo, H., Zheng, G.Y., Singh, R., Sharma, A., Min, X.J., Zheng, Y., Lee, H.Y., Gurtowski, J., Sedlazeck, F.J., Harkess, A., McKain, M.R., Liao, Z.Y., Fang, J.P., Liu, J., Zhang, X.D., Zhang, Q., Hu, W.C., Qin, Y., Wang, K., Chen, L.Y., Shirley, N., Lin, Y.R., Liu, L.Y., Hernandez, A.G., Wright, C.L., Bulone, V., Tuskan, G.A., Heath, K., Zee, F., Moore, P.H., Sunkar, R., Leebens-Mack, J.H., Mockler, T., Bennetzen, J.L., Freeling, M., Sankoff, D., Paterson, A.H., Zhu, X.G., Yang, X.H., Smith, J.A.C., Cushman, J.C., Paull, R.E., Yu, Q.Y.: The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47, 1435–1442 (2015). https://doi.org/10.1038/ng.3435

    Article  Google Scholar 

  8. Bauer, F., Hulteberg, C., Persson, T., Tamm, D.: Biogas upgrading—review of commercial technologies (2013)

  9. Ryckebosch, E., Drouillon, M., Vervaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenerg. 35, 1633–1645 (2011). https://doi.org/10.1016/j.biombioe.2011.02.033

    Article  Google Scholar 

  10. Patterson, T., Esteves, S., Dinsdale, R., Guwy, A.: An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energ. Policy 39, 1806–1816 (2011). https://doi.org/10.1016/j.enpol.2011.01.017

    Article  Google Scholar 

  11. Baciocchi, R., Carnevale, E., Costa, G., Gavasci, R., Lombardi, L., Olivieri, T., Zanchi, L., Zingaretti, D.: Performance of a biogas upgrading process based on alkali absorption with regeneration using air pollution control residues. Waste Manag. 33(12), 2694–2705 (2013). https://doi.org/10.1016/j.wasman.2013.08.022

    Article  Google Scholar 

  12. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L.: The anaerobic digestion of solid organic waste. Waste Manag. 31, 1737–1744 (2011). https://doi.org/10.1016/j.wasman.2011.03.021

    Article  Google Scholar 

  13. Martínez-Ruano, J.A., Caballero-Galván, A.S., Restrepo-Serna, D.L., Cardona, C.A.: Techno-economic and environmental assessment of biogas production from banana peel (Musa paradisiaca) in a biorefinery concept. Environ. Sci. Pollut. R 25, 35971–35980 (2018). https://doi.org/10.1007/s11356-018-1848-y

    Article  Google Scholar 

  14. Martínez, E.J., Rosas, J.G., Sotres, A., Moran, A., Cara, J., Sánchez, M.E., Xiomar, G.: Codigestion of sludge and citrus peel wastes: Evaluating the effect of biochar addition on microbial communities. Biochem. Eng. J. 137, 314–325 (2018). https://doi.org/10.1016/j.bej.2018.06.010

    Article  Google Scholar 

  15. Oliveira, I., Gominho, J., Diberardino, S., Duarte, E.: Characterization of Cynara cardunculus L stalks and their suitability for biogas production. Ind. Crops Prod. 40, 318–323 (2012). https://doi.org/10.1016/j.indcrop.2012.03.029

    Article  Google Scholar 

  16. Carvalho, A.R., Fragoso, R., Gominho, J., Saraiva, A., Costa, R., Duarte, E.: Water-energy nexus: anaerobic co-digestion with elephant grass hydrolyzate. J. Environ. Manag. 181, 48–53 (2016). https://doi.org/10.1016/j.jenvman.2016.06.012

    Article  Google Scholar 

  17. Tasnim, F., Iqbal, S.A., Chowdhury, A.R.: Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth. Renew. Energ. 109, 434–439 (2017). https://doi.org/10.1016/j.renene.2017.03.044

    Article  Google Scholar 

  18. Rani, D.S., Nand, K.: Ensilage of pineapple processing waste for methane generation. Waste manag. 24, 523–528 (2004). https://doi.org/10.1016/j.wasman.2003.10.010

    Article  Google Scholar 

  19. Henard, C.A., Smith, H.K., Guarnieri, M.T.: Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Metab. Eng. 41, 152–158 (2017). https://doi.org/10.1016/j.ymben.2017.03.007

    Article  Google Scholar 

  20. Rowell, R.M.: Handbook of Wood Chemistry and Wood Composites, 2nd edn. CRC Press, Florida (2012)

    Book  Google Scholar 

  21. APHA: Standard Methods for the Examination of Water and Wastewater, 2nd ed. Washington, DC (2012)

  22. Cuetos, M.J., Fernández, C., Gómez, X., Morán, A.: Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioproc. Eng. 16(5), 1044–1052 (2011). https://doi.org/10.1007/s12257-011-0117-4

    Article  Google Scholar 

  23. Astals, S., Nolla-Ardèvol, V., Mata-Alvarez, J.: Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresource Technol. 110, 63–70 (2012). https://doi.org/10.1016/j.biortech.2012.01.080

    Article  Google Scholar 

  24. Evans, P.J., Nelsen, D.A., Amador, J.C., Mcpherson, C., Parry, D.L., Stensel, H.D.: Energy recovery from food waste via anaerobic digestion. In: World Congress on Water, Climate and Energy, pp. 1–4 (2012)

  25. Romelle, F.D., Ashwini, R.P., Manohar, R.S.: Chemical composition of some selected fruit peels. Eur. J. Food Sci. Technol. 4, 12–21 (2016)

    Google Scholar 

  26. Pardo, M.E.S., Cassellis, M.E.R., Escobedo, R.M., García, E.J.: Chemical characterisation of the industrial residues of the pineapple (Ananas comosus). J. Agric. Chem. Environ. 03, 53–56 (2014). https://doi.org/10.4236/jacen.2014.32B009

    Article  Google Scholar 

  27. Lukitawesa, W.R., Millati, R., Taherzadeh, M.J., Niklasson, C.: Effect of effluent recirculation on biogas production using two-stage anaerobic digestion of citrus waste. Molecules 23, 3380 (2018). https://doi.org/10.3390/molecules23123380

    Article  Google Scholar 

  28. Morais, D.R., Rotta, E.M., Sargi, S.C., Bonafe, E.G., Suzuki, R.M., Souza, N.E., Matsushita, M., Visentainer, J.V.: Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J. Brazil Chem. Soc. 28, 308–318 (2016). https://doi.org/10.5935/0103-5053.20160178

    Article  Google Scholar 

  29. Charbel, A.T., Trinchero, B.D., Morais, D.D., Mesquita, H., Birchal, V.S.: Evaluation of the potential of fruit peel biomass after conventional and microwave drying for use as solid fuel. Appl. Mech. Mater. 798, 480–485 (2015). https://doi.org/10.4028/www.scientific.net/AMM.798.480

    Article  Google Scholar 

  30. Carvalho, A., Fragoso, R., Gominho, J., Duarte, E.: Effect of minimizing d-Limonene compound on anaerobic co-digestion feeding mixtures to improve methane yield. Waste Biomass Valorization 10(1), 75–83 (2019). https://doi.org/10.1007/s12649-017-0048-1

    Article  Google Scholar 

  31. Dias, T., Fragoso, R., Duarte, E.: Anaerobic co-digestion of dairy cattle manure and pear waste. Bioresource Technol. 164, 420–423 (2014). https://doi.org/10.1016/j.biortech.2014.04.110

    Article  Google Scholar 

  32. Ning, J., Zhou, M., Pan, X., Lic, C., Lv, N., Wang, T., Cai, G., Wang, R., Li, J., Zhu, G.: Simultaneous biogas and biogas slurry production from co-digestion of pig manure and corn straw: performance optimization and microbial community shift. Bioresource. Technol. 282, 37–47 (2019). https://doi.org/10.1016/j.biortech.2019.02.122

    Article  Google Scholar 

  33. Lemmer, A., Merkle, W., Baer, K., Graf, F.: Effects of high-pressure anaerobic digestion up to 30 bar on pH value, production kinetics and specific methane yield. Energy 138, 659–667 (2017). https://doi.org/10.1016/j.energy.2017.07.095

    Article  Google Scholar 

  34. Ma, Y., Liu, Y.: Turning food waste to energy and resources towards a great environmental and economic sustainability: an innovative integrated biological approach. Biotechnol. Adv. 37, 107414 (2019). https://doi.org/10.1016/j.biotechadv.2019.06.013

    Article  Google Scholar 

  35. Duan, N., Zhang, D., Lin, C., Zhang, Y., Zhao, L., Liu, H., Liu, Z.: Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. J. Environ. Manag. 231, 646–652 (2019). https://doi.org/10.1016/j.jenvman.2018.10.062

    Article  Google Scholar 

  36. Awasthi, M.K., Sarsaiya, S., Wainaina, S., Rajendran, K., Kumar, S., Quan, W., et al.: A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: technological challenges, advancements, innovations, and future perspectives. Renew. Sust. Energ. Rev. 111, 115–131 (2019). https://doi.org/10.1016/j.rser.2019.05.017

    Article  Google Scholar 

  37. Lapa N, Surra E, Esteves IA, Ribeiro R, Mota JPB (2017) Production of Biogas and bioH2—biochemical methods. In: Riazzi MR, Chiaramonti D (eds) Biofuels Production and Process Technology. CRC Press, Taylor & Francis, Boca Raton, pp. 65–84.

  38. Ferrer I, Vázquez F, Font X (2010) Long term operation of a thermophilic anaerobic reactor: process stability and efficiency at decreasing sludge retention time. Bioresource Technol. 101(9), 2972–2980. https://doi.org/10.1016/j.biortech.2009.12.006

Download references

Acknowledgements

Authors acknowledge the national funding FCT (Fundação para a Ciência e Tecnologia, Portugal), for the financial support to the following research units: the Forest Research Center (CEF), under UID/AGR/00239/2019 project, and Linking Landscape, Environment, Agriculture and Food (LEAF), under UID/AGR/04129/2019 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Duarte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azevedo, A., Gominho, J. & Duarte, E. Performance of Anaerobic Co-digestion of Pig Slurry with Pineapple (Ananas comosus) Bio-waste Residues. Waste Biomass Valor 12, 303–311 (2021). https://doi.org/10.1007/s12649-020-00959-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-00959-w

Keywords