Abstract
Agro-food industries produce large amounts of bio-waste, challenging innovative valorisation strategies in the framework of circular economy principles. Anaerobic digestion technology is an interesting route to stabilise organic matter and produce biogas as a renewable energy source. This paper aimed to study the optimal performance conditions for anaerobic co-digestion (AcoD) of pig slurry with pineapple (Ananas comosus) peel bio-waste. The anaerobic digestion (AD) trials were performed at lab scale, in a continuous stirred reactor, for 16 days’ hydraulic retention time in mesophilic conditions (37 ± 1 °C). Three hydraulic retention time were performed, one for the reference scenario (T0) and two for AcoD trials (T1, T2). Feeding mixtures (20:80; v:v) of pineapple peel liquor and pig slurry, with an OLR of 1.46 ± 0.04 g TVS L−1reactor day−1 were used during AD/AcoD trials, presenting high values for soluble chemical oxygen demand and C/N ratio. This operational conditions highlight bioenergy recovery up to 0.58 L CH4 g TVSadded−1, in comparison with that obtained with pig slurry substrate (0.31 L CH4 g VSadded−1). The AD performance showed a total volatile solids and chemical oxygen demand removal efficiency of 23% to 47% and 26% to 48%, comparing T0 with the average of T1 and T2, respectively. The digester stability, evaluated by specific energetic loading rate, was below the limit (0.4 day−1) throughout the trials. Pig slurry co-digestion with pineapple peel liquor seems to be a promising approach for potential bioenergy recovery.
Graphic Abstract

This is a preview of subscription content, access via your institution.



Abbreviations
- AcoD:
-
Anaerobic co-digestion
- AD:
-
Anaerobic digestion
- C/N:
-
Carbon/nitrogen ratio
- GPR:
-
Gas production rate
- HRT:
-
Hydraulic retention time
- IA:
-
Intermediate alkalinity
- OLR:
-
Organic loading rate
- PA:
-
Partial alkalinity
- PPL:
-
Pineapple peel liquor
- PS:
-
Pig slurry
- SCOD:
-
Soluble chemical oxygen demand
- SELR:
-
Specific energetic loading rate
- SGP:
-
Specific gas production
- SMP:
-
Specific methane production
- TA:
-
Total alkalinity
- TCOD:
-
Total chemical oxygen demand
- TKN:
-
Total Kjeldahl nitrogen
- TOC:
-
Total organic carbon
- TS:
-
Total solids
- TVS:
-
Total volatile solids
- TSVS:
-
Total suspended volatile solids
References
Martinho, D.: The Agricultural Economics of the 21st Century. Springer, Cham (2015)
Zhou, X., Li, Q., Zhang, Y., Gu, Y.: Effect of hidrotermal pretreatment on Miscanthus anaerobic digestor. Bioresource Technol. 224, 721–726 (2017). https://doi.org/10.1016/j.biortech.2016.10.085
Roppa, L.: Revista “Suinicultura”, “Desafios e Oportunidades para a Produção de Carnes nos Próximos 10 Anos”; nº 119 (2018)
Tullo, E., Finzi, A., Guarino, M.: Review: environmental impact of livestock farming and precision livestock farming as a mitigation strategy. Sci. Total Environ. 650, 2751–2760 (2019). https://doi.org/10.1016/j.scitotenv.2018.10.018
Giongo, A., Bortoli, M., De Prá, M.C., Veruck, M., Kunz, A.: Swine wastewater nitrogen removal at different C/N ratios using the modified Ludzack-Ettinger process. Eng. Agric. 4430, 968–977 (2018). https://doi.org/10.1590/1809-4430-eng.agric.v38n6p968-977/2018
Zhang, J.S., Liu, J., Ming, R.: Genomic analyses of the CAM plant pineapple. J. Exp. Bot. 65, 3395–3404 (2014). https://doi.org/10.1093/jxb/eru101
Ming, R., Van Buren, R., Wai, C.M., Tang, H.B., Schatz, M.C., Bowers, J.E., Lyons, E., Wang, M.L., Chen, J., Biggers, E., Zhang, J.S., Huang, L.X., Zhang, L.M., Miao, W.J., Zhang, J., Ye, Z.Y., Miao, C.Y., Lin, Z.C., Wang, H., Zhou, H.Y., Yim, W.C., Priest, H.D., Zheng, C.F., Woodhouse, M., Edger, P.P., Guyot, R., Guo, H.B., Guo, H., Zheng, G.Y., Singh, R., Sharma, A., Min, X.J., Zheng, Y., Lee, H.Y., Gurtowski, J., Sedlazeck, F.J., Harkess, A., McKain, M.R., Liao, Z.Y., Fang, J.P., Liu, J., Zhang, X.D., Zhang, Q., Hu, W.C., Qin, Y., Wang, K., Chen, L.Y., Shirley, N., Lin, Y.R., Liu, L.Y., Hernandez, A.G., Wright, C.L., Bulone, V., Tuskan, G.A., Heath, K., Zee, F., Moore, P.H., Sunkar, R., Leebens-Mack, J.H., Mockler, T., Bennetzen, J.L., Freeling, M., Sankoff, D., Paterson, A.H., Zhu, X.G., Yang, X.H., Smith, J.A.C., Cushman, J.C., Paull, R.E., Yu, Q.Y.: The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47, 1435–1442 (2015). https://doi.org/10.1038/ng.3435
Bauer, F., Hulteberg, C., Persson, T., Tamm, D.: Biogas upgrading—review of commercial technologies (2013)
Ryckebosch, E., Drouillon, M., Vervaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenerg. 35, 1633–1645 (2011). https://doi.org/10.1016/j.biombioe.2011.02.033
Patterson, T., Esteves, S., Dinsdale, R., Guwy, A.: An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energ. Policy 39, 1806–1816 (2011). https://doi.org/10.1016/j.enpol.2011.01.017
Baciocchi, R., Carnevale, E., Costa, G., Gavasci, R., Lombardi, L., Olivieri, T., Zanchi, L., Zingaretti, D.: Performance of a biogas upgrading process based on alkali absorption with regeneration using air pollution control residues. Waste Manag. 33(12), 2694–2705 (2013). https://doi.org/10.1016/j.wasman.2013.08.022
Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L.: The anaerobic digestion of solid organic waste. Waste Manag. 31, 1737–1744 (2011). https://doi.org/10.1016/j.wasman.2011.03.021
Martínez-Ruano, J.A., Caballero-Galván, A.S., Restrepo-Serna, D.L., Cardona, C.A.: Techno-economic and environmental assessment of biogas production from banana peel (Musa paradisiaca) in a biorefinery concept. Environ. Sci. Pollut. R 25, 35971–35980 (2018). https://doi.org/10.1007/s11356-018-1848-y
Martínez, E.J., Rosas, J.G., Sotres, A., Moran, A., Cara, J., Sánchez, M.E., Xiomar, G.: Codigestion of sludge and citrus peel wastes: Evaluating the effect of biochar addition on microbial communities. Biochem. Eng. J. 137, 314–325 (2018). https://doi.org/10.1016/j.bej.2018.06.010
Oliveira, I., Gominho, J., Diberardino, S., Duarte, E.: Characterization of Cynara cardunculus L stalks and their suitability for biogas production. Ind. Crops Prod. 40, 318–323 (2012). https://doi.org/10.1016/j.indcrop.2012.03.029
Carvalho, A.R., Fragoso, R., Gominho, J., Saraiva, A., Costa, R., Duarte, E.: Water-energy nexus: anaerobic co-digestion with elephant grass hydrolyzate. J. Environ. Manag. 181, 48–53 (2016). https://doi.org/10.1016/j.jenvman.2016.06.012
Tasnim, F., Iqbal, S.A., Chowdhury, A.R.: Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth. Renew. Energ. 109, 434–439 (2017). https://doi.org/10.1016/j.renene.2017.03.044
Rani, D.S., Nand, K.: Ensilage of pineapple processing waste for methane generation. Waste manag. 24, 523–528 (2004). https://doi.org/10.1016/j.wasman.2003.10.010
Henard, C.A., Smith, H.K., Guarnieri, M.T.: Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Metab. Eng. 41, 152–158 (2017). https://doi.org/10.1016/j.ymben.2017.03.007
Rowell, R.M.: Handbook of Wood Chemistry and Wood Composites, 2nd edn. CRC Press, Florida (2012)
APHA: Standard Methods for the Examination of Water and Wastewater, 2nd ed. Washington, DC (2012)
Cuetos, M.J., Fernández, C., Gómez, X., Morán, A.: Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioproc. Eng. 16(5), 1044–1052 (2011). https://doi.org/10.1007/s12257-011-0117-4
Astals, S., Nolla-Ardèvol, V., Mata-Alvarez, J.: Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresource Technol. 110, 63–70 (2012). https://doi.org/10.1016/j.biortech.2012.01.080
Evans, P.J., Nelsen, D.A., Amador, J.C., Mcpherson, C., Parry, D.L., Stensel, H.D.: Energy recovery from food waste via anaerobic digestion. In: World Congress on Water, Climate and Energy, pp. 1–4 (2012)
Romelle, F.D., Ashwini, R.P., Manohar, R.S.: Chemical composition of some selected fruit peels. Eur. J. Food Sci. Technol. 4, 12–21 (2016)
Pardo, M.E.S., Cassellis, M.E.R., Escobedo, R.M., García, E.J.: Chemical characterisation of the industrial residues of the pineapple (Ananas comosus). J. Agric. Chem. Environ. 03, 53–56 (2014). https://doi.org/10.4236/jacen.2014.32B009
Lukitawesa, W.R., Millati, R., Taherzadeh, M.J., Niklasson, C.: Effect of effluent recirculation on biogas production using two-stage anaerobic digestion of citrus waste. Molecules 23, 3380 (2018). https://doi.org/10.3390/molecules23123380
Morais, D.R., Rotta, E.M., Sargi, S.C., Bonafe, E.G., Suzuki, R.M., Souza, N.E., Matsushita, M., Visentainer, J.V.: Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J. Brazil Chem. Soc. 28, 308–318 (2016). https://doi.org/10.5935/0103-5053.20160178
Charbel, A.T., Trinchero, B.D., Morais, D.D., Mesquita, H., Birchal, V.S.: Evaluation of the potential of fruit peel biomass after conventional and microwave drying for use as solid fuel. Appl. Mech. Mater. 798, 480–485 (2015). https://doi.org/10.4028/www.scientific.net/AMM.798.480
Carvalho, A., Fragoso, R., Gominho, J., Duarte, E.: Effect of minimizing d-Limonene compound on anaerobic co-digestion feeding mixtures to improve methane yield. Waste Biomass Valorization 10(1), 75–83 (2019). https://doi.org/10.1007/s12649-017-0048-1
Dias, T., Fragoso, R., Duarte, E.: Anaerobic co-digestion of dairy cattle manure and pear waste. Bioresource Technol. 164, 420–423 (2014). https://doi.org/10.1016/j.biortech.2014.04.110
Ning, J., Zhou, M., Pan, X., Lic, C., Lv, N., Wang, T., Cai, G., Wang, R., Li, J., Zhu, G.: Simultaneous biogas and biogas slurry production from co-digestion of pig manure and corn straw: performance optimization and microbial community shift. Bioresource. Technol. 282, 37–47 (2019). https://doi.org/10.1016/j.biortech.2019.02.122
Lemmer, A., Merkle, W., Baer, K., Graf, F.: Effects of high-pressure anaerobic digestion up to 30 bar on pH value, production kinetics and specific methane yield. Energy 138, 659–667 (2017). https://doi.org/10.1016/j.energy.2017.07.095
Ma, Y., Liu, Y.: Turning food waste to energy and resources towards a great environmental and economic sustainability: an innovative integrated biological approach. Biotechnol. Adv. 37, 107414 (2019). https://doi.org/10.1016/j.biotechadv.2019.06.013
Duan, N., Zhang, D., Lin, C., Zhang, Y., Zhao, L., Liu, H., Liu, Z.: Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. J. Environ. Manag. 231, 646–652 (2019). https://doi.org/10.1016/j.jenvman.2018.10.062
Awasthi, M.K., Sarsaiya, S., Wainaina, S., Rajendran, K., Kumar, S., Quan, W., et al.: A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: technological challenges, advancements, innovations, and future perspectives. Renew. Sust. Energ. Rev. 111, 115–131 (2019). https://doi.org/10.1016/j.rser.2019.05.017
Lapa N, Surra E, Esteves IA, Ribeiro R, Mota JPB (2017) Production of Biogas and bioH2—biochemical methods. In: Riazzi MR, Chiaramonti D (eds) Biofuels Production and Process Technology. CRC Press, Taylor & Francis, Boca Raton, pp. 65–84.
Ferrer I, Vázquez F, Font X (2010) Long term operation of a thermophilic anaerobic reactor: process stability and efficiency at decreasing sludge retention time. Bioresource Technol. 101(9), 2972–2980. https://doi.org/10.1016/j.biortech.2009.12.006
Acknowledgements
Authors acknowledge the national funding FCT (Fundação para a Ciência e Tecnologia, Portugal), for the financial support to the following research units: the Forest Research Center (CEF), under UID/AGR/00239/2019 project, and Linking Landscape, Environment, Agriculture and Food (LEAF), under UID/AGR/04129/2019 project.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Azevedo, A., Gominho, J. & Duarte, E. Performance of Anaerobic Co-digestion of Pig Slurry with Pineapple (Ananas comosus) Bio-waste Residues. Waste Biomass Valor 12, 303–311 (2021). https://doi.org/10.1007/s12649-020-00959-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-020-00959-w