Skip to main content

Comparison of the Physicochemical Properties and Thermal Stability of Organosolv and Kraft Lignins from Hardwood and Softwood Biomass for Their Potential Valorization

Abstract

The heterogeneity and complexity of lignin necessitate a deep understanding to select the most appropriate lignin valorization and convert it into value-added products. The objective of this research is to investigate the features of organosolv and Kraft lignins, in order to understand the effects of the sources and the isolation treatment, through the comparison of physicochemical and thermal properties. Various techniques have been employed such us Fourier transform infrared spectroscopy (FTIR), carbon solid state nuclear magnetic resonance 13CNMR, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. It was found that lignin produced from the hardwood using the Kraft process provided the greatest yield compared to other combinations. Softwood pretreatments achieve almost higher sugar yield than hardwood treatments. The infrared spectroscopy analysis confirms the existence of different monolignols. Organosolv lignins showed a predominance of guaiacyl and syringyl units. To provide additional information, the principle components analysis, as a powerful chemometric method, has also been applied to evaluate the FTIR data. NMR spectroscopy of lignins demonstrated the presence of essential functional chemical groups. It is also revealed that the nature of the treatment and the source of lignin samples affect the thermal properties. Overall, lignin isolated from Aleppo pine using Kraft process presented better thermal stability than that of organosolv lignin.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., Jeelani, S.: Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 4(1), 26–32 (2015)

    Google Scholar 

  2. Guerriero, G., Hausman, J.F., Strauss, J., Ertan, H., Siddiqui, K.S.: Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng. Life Sci. 16(1), 1–16 (2016)

    Google Scholar 

  3. Wang, H., Pu, Y., Ragauskas, A., Yang, B.: From lignin to valuable products–strategies, challenges, and prospects. Bioresour. Technol. 271, 449–461 (2019)

    Google Scholar 

  4. Trache, D., Hussin, M.H., Haafiz, M.M., Thakur, V.K.: Recent progress in cellulose nanocrystals: sources and production. Nanoscale. 9(5), 1763–1786 (2017)

    Google Scholar 

  5. Trache, D., Hussin, M.H., Chuin, C.T.H., Sabar, S., Fazita, M.N., Taiwo, O.F., Hassan, T., Haafiz, M.M.: Microcrystalline cellulose: isolation, characterization and bio-composites application: a review. Int. J. Biol. Macromol. 93, 789–804 (2016)

    Google Scholar 

  6. Inkrod, C., Raita, M., Champreda, V., Laosiripojana, N.: Characteristics of lignin extracted from different lignocellulosic materials via organosolv fractionation. Bioenergy Res. 11(2), 277–290 (2018)

    Google Scholar 

  7. Thakur, V.K., Thakur, M.K., Raghavan, P., Kessler, M.R.: Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem. Eng. 2(5), 1072–1092 (2014)

    Google Scholar 

  8. Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.-F., Beckham, G., Sels, B.F.: Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47(3), 852–908 (2018)

    Google Scholar 

  9. Boerjan, W., Ralph, J., Baucher, M.: Lignin biosynthesis. Annu. Rev. Plant Biol. 54(1), 519–546 (2003)

    Google Scholar 

  10. Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H.: Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem. Rev. 3(1–2), 29–60 (2004)

    Google Scholar 

  11. Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106(9), 4044–4098 (2006)

    Google Scholar 

  12. Zakzeski, J., Bruijnincx, P.C., Jongerius, A.L., Weckhuysen, B.M.: The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110(6), 3552–3599 (2010)

    Google Scholar 

  13. Zhou, C.-H., Xia, X., Lin, C.-X., Tong, D.-S., Beltramini, J.: Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40(11), 5588–5617 (2011)

    Google Scholar 

  14. Duval, A., Lawoko, M.: A review on lignin-based polymeric, micro-and nano-structured materials. React. Funct. Polym. 85, 78–96 (2014)

    Google Scholar 

  15. Domínguez-Robles, J., Sánchez, R., Díaz-Carrasco, P., Espinosa, E., García-Domínguez, M., Rodríguez, A.: Isolation and characterization of lignins from wheat straw: application as binder in lithium batteries. Int. J. Biol. Macromol. 104, 909–918 (2017)

    Google Scholar 

  16. Chakar, F.S., Ragauskas, A.J.: Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20(2), 131–141 (2004)

    Google Scholar 

  17. Gordobil, O., Herrera, R., Yahyaoui, M., İlk, S., Kaya, M., Labidi, J.: Potential use of kraft and organosolv lignins as a natural additive for healthcare products. RSC Adv. 8(43), 24525–24533 (2018)

    Google Scholar 

  18. Santos, J.I., Fillat, Ú., Martín-Sampedro, R., Eugenio, M.E., Negro, M.J., Ballesteros, I., Rodríguez, A., Ibarra, D.: Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: bioethanol production and alkaline pulping. Int. J. Biol. Macromol. 105, 238–251 (2017)

    Google Scholar 

  19. Florian, T.D.M., Villani, N., Aguedo, M., Jacquet, N., Thomas, H.G., Gerin, P., Magali, D., Richel, A.: Chemical composition analysis and structural features of banana rachis lignin extracted by two organosolv methods. Ind. Crops Prod. 132, 269–274 (2019)

    Google Scholar 

  20. Hussin, M.H., Rahim, A.A., Ibrahim, M.N.M., Perrin, D., Yemloul, M., Brosse, N.: Impact of catalytic oil palm fronds (OPF) pulping on organosolv lignin properties. Polym. Degrad. Stab. 109, 33–39 (2014)

    Google Scholar 

  21. Martín-Sampedro, R., Santos, J.I., Eugenio, M.E., Wicklein, B., Jiménez-López, L., Ibarra, D.: Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis. Int. J. Biol. Macromol. 140, 311–322 (2019)

    Google Scholar 

  22. Zhu, J., Yan, C., Zhang, X., Yang, C., Jiang, M., Zhang, X.: A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors. Prog. Energy Combust. Sci. 76, 100788 (2020)

    Google Scholar 

  23. Faris, A.H., Rahim, A.A., Ibrahim, M.N.M., Hussin, M.H., Alkurdi, A.M., Salehabadi, A.: Investigation of oil palm based Kraft and auto-catalyzed organosolv lignin susceptibility as a green wood adhesives. Int. J. Adhes. Adhes. 74, 115–122 (2017)

    Google Scholar 

  24. Martín-Sampedro, R., Santos, J.I., Fillat, Ú., Wicklein, B., Eugenio, M.E., Ibarra, D.: Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: kraft pulping, organosolv and acid hydrolysis. Int. J. Biol. Macromol. 126, 18–29 (2019)

    Google Scholar 

  25. Lin, S.Y., Dence, C.W.: Methods in lignin chemistry. Springer, Berlin (2012)

    Google Scholar 

  26. Avelino, F., da Silva, K.T., de Souza, M.D.S.M., Mazzetto, S.E., Lomonaco, D.: Microwave-assisted organosolv extraction of coconut shell lignin by Brønsted and Lewis acids catalysts. J. Clean. Prod. 189, 785–796 (2018)

    Google Scholar 

  27. Syverud, K., Chinga-Carrasco, G., Toledo, J., Toledo, P.G.: A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr. Polym. 84(3), 1033–1038 (2011)

    Google Scholar 

  28. Li, C., Sun, L., Simmons, B.A., Singh, S.: Comparing the recalcitrance of eucalyptus, pine, and switchgrass using ionic liquid and dilute acid pretreatments. Bioenergy Res. 6(1), 14–23 (2013)

    Google Scholar 

  29. Yu, Z., Jameel, H., Chang, H.-M., Park, S.: The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour. Technol. 102(19), 9083–9089 (2011)

    Google Scholar 

  30. Brännvall, E.: Overview of pulp and paper processes. In: Ljungberg, M., Brannvall, E. (eds.) The Ljungberg textbook-pulp and paper processes, p. 1. KTH, Stockholm (2009)

    Google Scholar 

  31. Sani, R.K., Krishnaraj, R.N.: Extremophilic enzymatic processing of lignocellulosic feedstocks to bioenergy. Springer, Berlin (2017)

    Google Scholar 

  32. Buzała, K.P., Kalinowska, H., Małachowska, E., Boruszewski, P., Krajewski, K., Przybysz, P.: The effect of lignin content in birch and beech kraft cellulosic pulps on simple sugar yields from the enzymatic hydrolysis of cellulose. Energies. 12(15), 2952 (2019)

    Google Scholar 

  33. Faix, O.: Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45(s1), 21–28 (1991)

    Google Scholar 

  34. Negrão, D.R., Sain, M., Leão, A.L.L.L., Sameni, J., Jeng, R., de Jesus, J.P.F., Monteiro, R.T.R.: Fragmentation of lignin from organosolv black liquor by white rot fungi. BioResources 10(1), 1553–1573 (2015)

    Google Scholar 

  35. Hortling, B., Tamminen, T., Kenttä, E.: Determination of carboxyl and non-conjugated carbonyl groups in dissolved and residual lignins by IR spectroscopy. Holzforschung 51(5), 405–410 (1997)

    Google Scholar 

  36. Nevárez, L.A.M., Casarrubias, L.B., Celzard, A., Fierro, V., Muñoz, V.T., Davila, A.C., Lubian, J.R.T., Sánchez, G.G.: Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films. Sci. Technol. Adv. Mater. 12(4), 045006 (2011)

    Google Scholar 

  37. Cachet, N., Camy, S., Benjelloun-Mlayah, B., Condoret, J.-S., Delmas, M.: Esterification of organosolv lignin under supercritical conditions. Ind. Crops Prod. 58, 287–297 (2014)

    Google Scholar 

  38. Santos, R.B., Capanema, E.A., Balakshin, M.Y., Chang, H.-M., Jameel, H.: Lignin structural variation in hardwood species. J. Agric. Food. Chem. 60(19), 4923–4930 (2012)

    Google Scholar 

  39. Moubarik, A., Barba, F.J., Grimi, N.: Understanding the physicochemical properties of olive kernel to be used as a potential tool in the development of phenol-formaldehyde wood adhesive. Int. J. Adhes. Adhes. 61, 122–126 (2015)

    Google Scholar 

  40. Hussin, M.H., Rahim, A.A., Ibrahim, M.N.M., Brosse, N.: Physicochemical characterization of alkaline and ethanol organosolv lignins from oil palm (Elaeis guineensis) fronds as phenol substitutes for green material applications. Ind. Crops Prod. 49, 23–32 (2013)

    Google Scholar 

  41. Ghaffar, S.H., Fan, M.: Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy. 57, 264–279 (2013)

    Google Scholar 

  42. Gordobil, O., Moriana, R., Zhang, L., Labidi, J., Sevastyanova, O.: Assesment of technical lignins for uses in biofuels and biomaterials: Structure-related properties, proximate analysis and chemical modification. Ind. Crops Prod. 83, 155–165 (2016)

    Google Scholar 

  43. Nadji, H., Diouf, P., Benaboura, A., Bedard, Y., Riedl, B., Stevanovic, T.: Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). Bioresour. Technol. 100(14), 3585–3592 (2009)

    Google Scholar 

  44. Gordobil, O., Delucis, R., Egüés, I., Labidi, J.: Kraft lignin as filler in PLA to improve ductility and thermal properties. Ind. Crops Prod. 72, 46–53 (2015)

    Google Scholar 

  45. Domínguez-Robles, J., Sánchez, R., Espinosa, E., Savy, D., Mazzei, P., Piccolo, A., Rodríguez, A.: Isolation and characterization of gramineae and fabaceae soda lignins. Int. J. Mol. Sci. 18(2), 327 (2017)

    Google Scholar 

  46. Caro, E., Comas, E.: Polyethylene comonomer characterization by using FTIR and a multivariate classification technique. Talanta 163, 48–53 (2017)

    Google Scholar 

  47. Kumar, R., Sharma, V.: Chemometrics in forensic science. Trends Anal. Chem. 105, 191–201 (2018)

    Google Scholar 

  48. Bro, R., Smilde, A.: Principal component analysis. Anal Methods 6(9), 2812–2831 (2014)

    Google Scholar 

  49. Fu, L., McCallum, S.A., Miao, J., Hart, C., Tudryn, G.J., Zhang, F., Linhardt, R.J.: Rapid and accurate determination of the lignin content of lignocellulosic biomass by solid-state NMR. Fuel 141, 39–45 (2015)

    Google Scholar 

  50. Maciel, G., O'Donnell, D., Ackerman, J., Hawkins, B., Bartuska, V.: A 13C NMR study of four lignins in the solid and solution states. Macromol. Chem. Phys. 182(8), 2297–2304 (1981)

    Google Scholar 

  51. del Rıo, J., Gutiérrez, A., Romero, J., Martınez, M., Martınez, A.: Identification of residual lignin markers in eucalypt kraft pulps by Py–GC/MS. J. Anal. Appl. Pyrolysis. 58, 425–439 (2001)

    Google Scholar 

  52. Dababi, I., Gimello, O., Elaloui, E., Quignard, F., Brosse, N.: Organosolv lignin-based wood adhesive influence of the lignin extraction conditions on the adhesive performance. Polymers. 8(9), 340 (2016)

    Google Scholar 

  53. Froass, P.M., Ragauskas, A.J., Jiang, J.-e.: Chemical structure of residual lignin from kraft pulp (1996)

  54. Osman, S., Ahmad, M.: Chemical and thermal characterization of Malaysian bamboo lignin (Beting & Semantan) extracted via soda pulping method. In: AIP Conference Proceedings. AIP Publishing (2018)

  55. Ibrahim, M.N.M., Zakaria, N., Sipaut, C.S., Sulaiman, O., Hashim, R.: Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydr. Polym. 86(1), 112–119 (2011)

    Google Scholar 

  56. Hussin, M.H., Aziz, A.A., Iqbal, A., Ibrahim, M.N.M., Latif, N.H.A.: Development and characterization novel bio-adhesive for wood using kenaf core (Hibiscus cannabinus) lignin and glyoxal. Int. J. Biol. Macromol. 122, 713–722 (2019)

    Google Scholar 

  57. Derkacheva, O.Y.: Estimation of aromatic structure contents in hardwood lignins from IR absorption spectra. J. Appl. Spectrosc. 80(5), 670–676 (2013)

    Google Scholar 

  58. Holtman, K.M., Chang, H.M., Jameel, H., Kadla, J.F.: Quantitative 13C NMR characterization of milled wood lignins isolated by different milling techniques. J. Wood Chem. Technol. 26(1), 21–34 (2006)

    Google Scholar 

  59. Doherty, W.O., Mousavioun, P., Fellows, C.M.: Value-adding to cellulosic ethanol: lignin polymers. Ind. Crops Prod. 33(2), 259–276 (2011)

    Google Scholar 

  60. Tejado, A., Pena, C., Labidi, J., Echeverria, J., Mondragon, I.: Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour. Technol. 98(8), 1655–1663 (2007)

    Google Scholar 

  61. Bernabé, G.A., Kobelnik, M., Almeida, S., Ribeiro, C.A., Crespi, M.S.: Thermal behavior of lignin and cellulose from waste composting process. J. Therm. Anal. Calorim. 111(1), 589–595 (2013)

    Google Scholar 

  62. Bertini, F., Canetti, M., Cacciamani, A., Elegir, G., Orlandi, M., Zoia, L.: Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym. Degrad. Stab. 97(10), 1979–1987 (2012)

    Google Scholar 

  63. Wen, J.L., Xue, B.L., Sun, S.L., Sun, R.C.: Quantitative structural characterization and thermal properties of birch lignins after auto-catalyzed organosolv pretreatment and enzymatic hydrolysis. J. Chem. Technol. Biotechnol. 88(9), 1663–1671 (2013)

    Google Scholar 

  64. Guo, Y., Zhou, J., Wen, J., Sun, G., Sun, Y.: Structural transformations of triploid of Populus tomentosa Carr. lignin during auto-catalyzed ethanol organosolv pretreatment. Ind. Crops Prod. 76, 522–529 (2015)

    Google Scholar 

  65. Peredo, K., Escobar, D., Vega-Lara, J., Berg, A., Pereira, M.: Thermochemical properties of cellulose acetate blends with acetosolv and sawdust lignin: a comparative study. Int. J. Biol. Macromol. 83, 403–409 (2016)

    Google Scholar 

  66. Nimz, H.: Beech lignin: proposal of a constitutional scheme. Angew. Chem. Int. Ed. 13(5), 313–321 (1974)

    Google Scholar 

  67. Ke, J., Singh, D., Yang, X., Chen, S.: Thermal characterization of softwood lignin modification by termite Coptotermes formosanus (Shiraki). Biomass Bioenergy. 35(8), 3617–3626 (2011)

    Google Scholar 

  68. Sahoo, S., Seydibeyoğlu, M., Mohanty, A., Misra, M.: Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy. 35(10), 4230–4237 (2011)

    Google Scholar 

  69. Huijgen, W., Telysheva, G., Arshanitsa, A., Gosselink, R., De Wild, P.: Characteristics of wheat straw lignins from ethanol-based organosolv treatment. Ind. Crops Prod. 59, 85–95 (2014)

    Google Scholar 

  70. Qin, Z., Wang, X.-D., Liu, H.-M., Wang, D.-M., Qin, G.-Y.: Structural characterization of Chinese quince fruit lignin pretreated with enzymatic hydrolysis. Bioresour. Technol. 262, 212–220 (2018)

    Google Scholar 

  71. Zhang, H., Bai, Y., Yu, B., Liu, X., Chen, F.: A practicable process for lignin color reduction: fractionation of lignin using methanol/water as a solvent. Green Chem. 19(21), 5152–5162 (2017)

    Google Scholar 

  72. Panamgama, L.A., Peramune, P.: Coconut coir pith lignin: a physicochemical and thermal characterization. Int. J. Biol. Macromol. 113, 1149–1157 (2018)

    Google Scholar 

  73. Lee, H., Hamid, S.B.A., Zain, S.: Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci. World J. 2014, 631013 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Djalal Trache or Nicolas Brosse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fodil Cherif, M., Trache, D., Brosse, N. et al. Comparison of the Physicochemical Properties and Thermal Stability of Organosolv and Kraft Lignins from Hardwood and Softwood Biomass for Their Potential Valorization. Waste Biomass Valor 11, 6541–6553 (2020). https://doi.org/10.1007/s12649-020-00955-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-00955-0

Keywords

  • Biomass
  • Hardwood
  • Organosolv lignin
  • Kraft lignin
  • Characterization