Co-production of Amylase and Protease by Locally Isolated Thermophilic Bacterium Anoxybacillus rupiensis T2 in Sterile and Non-sterile Media Using Waste Potato Peels as Substrate

Abstract

The present study investigated the potential of thermophilic bacteria isolated from hot springs to simultaneously produce protease and amylase enzymes. Among ten isolates, the strain T2 was found to be more favorable for amylase and protease. This strain was identified as Anoxybacillus rupiensis (GenBank number: MN252572). Potato peel powder (PPP) was used as a substrate for co-production of amylase and protease from A. rupiensis T2. Experiments were performed under sterile and non-sterile culture conditions. The optimal parameters for co-production of these enzymes were a PPP concentration of 60 g/L, temperature of 50 °C, initial pH of 7.0 and incubation time of 48 h. Under these culture conditions, the amylase and protease activities were determined as 64.9 and 26.2 U/mL in sterile medium. Relatively lower amylase (41.1 U/mL) and protease (14.2 U/mL) activities were attained in non-sterile medium.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Salem, R.B., Abbassi, M.S., Cayol, J.L., Bourouis, A., Mahrouki, S., Fardeau, M.L., Belhadj, O.: Thermophilic Bacillus licheniformis rbs 5 isolated from hot tunisian spring co-producing alkaline and thermostable [alpha]-amylase and protease enzymes. J. Microbiol. Biotechnol. Food Sci. 5, 557 (2016)

    Google Scholar 

  2. 2.

    Mala, B., Rao, A.M., Deshpande, V.V.: Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 62, 597–635 (1998)

    Article  Google Scholar 

  3. 3.

    Singh, G., Bhalla, A., Kaur, P., Capalash, N., Sharma, P.: Laccase from prokaryotes: a new source for an old enzyme. Rev. Environ. Sci. Biotechnol. 10, 309–326 (2011)

    Article  Google Scholar 

  4. 4.

    Bhalla, A., Bansal, N., Kumar, S., Bischoff, K.M., Sani, R.K.: Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour. Technol. 128, 751–759 (2013)

    Article  Google Scholar 

  5. 5.

    Dettmer, A., dos Anjos, P.S., Gutterres, M.: Special review paper: Enzymes in the leather industry. J. Am. Leather Chem. Assoc. 108, 146–158 (2013)

    Google Scholar 

  6. 6.

    Bhange, K., Chaturvedi, V., Bhatt, R.: Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste. Biotechnol. Rep. 10, 94–104 (2016)

    Article  Google Scholar 

  7. 7.

    Hmidet, N., Ali, N.E.H., Zouari-Fakhfakh, N., Haddar, A., Nasri, M., Sellemi-Kamoun, A.: Chicken feathers: a complex substrate for the co-production of α-amylase and proteases by B. licheniformis NH1. J. Ind. Microbiol. Biotechnol. 37, 983–990 (2010)

    Article  Google Scholar 

  8. 8.

    Corrêa, T.L.R., Moutinho, S.K.D.S., Martins, M.L.L., Martins, M.A.: Simultaneous α-amylase and protease production by the soil bacterium Bacillus sp. SMIA-2 under submerged culture using whey protein concentrate and corn steep liquor: compatibility of enzymes with commercial detergents. Food Sci. Technol. 31, 843–848 (2011)

    Article  Google Scholar 

  9. 9.

    Qureshi, A.S., Khushk, I., Ali, C.H., Chisti, Y., Ahmad, A., Majeed, H.: Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatal. Agric. Biotechnol. 8, 146–151 (2016)

    Article  Google Scholar 

  10. 10.

    Kavitha, R.: Production of amylase and protease from fruit peels using Bacillus subtilis by solid-state fermentation. IJSRR 7, 652–663 (2018)

    Google Scholar 

  11. 11.

    Mukherjee, R., Paul, T., Soren, J.P., Halder, S.K., Mondal, K.C., Pati, B.R., Mohapatra, P.K.D.: Acidophilic α-amylase production from Aspergillus niger RBP7 using potato peel as substrate: a waste to value added approach. Waste Biomass Valoriz. 10, 851–863 (2019)

    Article  Google Scholar 

  12. 12.

    Singh, S., Bajaj, B.K.: Agroindustrial/forestry residues as substrates for production of thermoactive alkaline protease from Bacillus licheniformis K-3 having multifaceted hydrolytic potential. Waste Biomass Valoriz. 8, 453–462 (2017)

    Article  Google Scholar 

  13. 13.

    Arapoglou, D., Varzakas, T., Vlyssides, A., Israilides, C.: Ethanol production from potato peel waste (PPW). Waste Manag. 30, 1898–1902 (2010)

    Article  Google Scholar 

  14. 14.

    Bretón-Toral, A., Trejo-Estrada, S.R., McDonald, A.G.: Lactic acid production from potato peel waste, spent coffee grounds and almond shells with undefined mixed cultures isolated from coffee mucilage from Coatepec Mexico. Ferment. Technol. 6, 1–6 (2016)

    Article  Google Scholar 

  15. 15.

    Wang, S.L., Chen, Y.H., Wang, C.L., Yen, Y.H., Chern, M.K.: Purification and characterization of a serine protease extracellularly produced by Aspergillus fumigatus in a shrimp and crab shell powder medium. Enzyme Microb. Technol. 36, 660–665 (2005)

    Article  Google Scholar 

  16. 16.

    Khosravi-Darani, K., Falahatpishe, H.R., Jalali, M.: Alkaline protease production on date waste by an alkalophilic Bacillus sp. 2–5 isolated from soil. Afr. J. Biotechnol. 7, 1536–1542 (2008)

    Google Scholar 

  17. 17.

    Bora, L., Kalita, M.: Thermozymes: an area of potential research. Curr. Sci. 93, 593 (2007)

    Google Scholar 

  18. 18.

    Lele, O.H., Deshmukh, P.V.: Isolation and characterization of thermophilic Bacillus sp. with extracellular enzymatic activities from hot spring of Ganeshpuri, Maharashtra. India. Int. J. Appl. Res. 2, 427–430 (2016)

    Google Scholar 

  19. 19.

    Namsaraev, Z.B., Babasanova, O.B., Dunaevsky, Y.E., Akimov, V.N., Barkhutova, D.D., Gorlenko, V.M., Namsaraev, B.B.: Anoxybacillus mongoliensis sp. nov., a novel thermophilic proteinase producing bacterium isolated from alkaline hot spring, central Mongolia. Microbiology 79, 491–499 (2010)

    Article  Google Scholar 

  20. 20.

    Bekler, F.M., Güven, K.: Isolation and production of thermostable α-amylase from thermophilic Anoxybacillus sp. KP1 from Diyadin hot spring in Ağri, Turkey. Biologia 69, 419–427 (2014)

    Google Scholar 

  21. 21.

    Ozdemir, S., Okumus, V., Ulutas, M.S., Dundar, A., Akarsubasi, A.T., Dumonted, S.: Isolation of a novel thermophilic Anoxybacillus flavithermus SO-13, production, characterization and industrial applications of its thermostable [alpha]-amylase. J. Bioprocess Biotech. 5, 1 (2015)

    Google Scholar 

  22. 22.

    Acer, Ö., Bekler, F.M., Pirinççioğlu, H., Güven, R.G., Güven, K.: Purification and characterization of thermostable and detergent-stable α-amylase from Anoxybacillus sp. AH1. Food Technol. Biotechnol. 54, 70 (2016)

    Article  Google Scholar 

  23. 23.

    Mukhtar, H., Ikram-Ul-Haq: Concomitant production of two proteases and alpha-amylase by a novel strain of Bacillus subtilis in a microprocessor controlled bioreactor. Braz. J. Microbiol. 43, 1072–1079 (2012)

    Article  Google Scholar 

  24. 24.

    Chugh, P., Soni, R., Soni, S.K.: Deoiled rice bran: a substrate for co-production of a consortium of hydrolytic enzymes by Aspergillus niger P-19. Waste Biomass Valoriz. 7, 513–525 (2016)

    Article  Google Scholar 

  25. 25.

    Kumar, V., Sankaranarayanan, M., Jae, K.E., Durgapal, M., et al.: Co-production of 3-hydroxypropionic acid and 1, 3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase. Appl. Microbiol. Biotechnol. 96, 373–383 (2012)

    Article  Google Scholar 

  26. 26.

    Ali, S.M., Omar, S.H., Soliman, N.A.: Co-production of cellulase and xylanase enzymes by thermophilic Bacillus subtilis 276NS. Int. J. Biotechnol. Wellness Ind. 2, 65–74 (2013)

    Google Scholar 

  27. 27.

    Liu, D., Chen, Y., Ding, F., Guo, T., et al.: Simultaneous production of butanol and acetoin by metabolically engineered Clostridium acetobutylicum. Metabol. Eng. 27, 107–114 (2015)

    Article  Google Scholar 

  28. 28.

    García-Pérez, T., López, J.C., Passos, F., Lebrero, R., Revah, S., Muñoz, R.: Simultaneous methane abatement and PHB production by Methylocystis hirsuta in a novel gas-recycling bubble column bioreactor. Chem. Eng. J. 334, 691–697 (2018)

    Article  Google Scholar 

  29. 29.

    Taskin, M., Ortucu, S., Unver, Y., Tasar, O.C., Ozdemir, M., Kaymak, H.C.: Invertase production and molasses decolourization by cold-adapted filamentous fungus Cladosporium herbarum ER-25 in non-sterile molasses medium. Process Saf. Environ. Protect. 103, 136–143 (2016)

    Article  Google Scholar 

  30. 30.

    Taskin, M., Ortucu, S., Aydogan, M.N., Arslan, N.P.: Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renew. Energy 99, 198–204 (2016)

    Article  Google Scholar 

  31. 31.

    Adiguzel, A., Ozkan, H., Baris, O., Inan, K., Gulluce, M., Sahin, F.: Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J. Microbiol. Method 79, 321–328 (2009)

    Article  Google Scholar 

  32. 32.

    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  33. 33.

    Takami, H., Akiba, T., Horikoshi, K.: Production of extremely thermostable alkaline protease from Bacillus sp. no. AH-101. Appl. Microbiol. Biotechnol. 30, 120–124 (1989)

    Article  Google Scholar 

  34. 34.

    Erdal, S., Taskin, M.: Production of alpha-amylase by Penicillium expansum MT-1 in solid-state fermentation using waste Loquat (Eriobotrya japonica Lindley) kernels as substrate. Romanian Biotechnol. Lett. 15, 5342–5350 (2010)

    Google Scholar 

  35. 35.

    Mohammad, B.T., Al Daghistani, H.I., Jaouani, A., Abdel-Latif, S., Kennes, C.: Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int. J. Microbiol. (2017). https://doi.org/10.1155/2017/6943952

    Article  Google Scholar 

  36. 36.

    Taskin, M., Saghafian, A., Aydogan, M.N., Arslan, N.P.: Microbial lipid production by cold-adapted oleaginous yeast Yarrowia lipolytica B9 in non-sterile whey medium. Biofuels Bioprod. Bioref. 9, 595–605 (2015)

    Article  Google Scholar 

  37. 37.

    Tasar, O.C., Erdal, S., Taskin, M.: Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions. Int. J. Biol. Macromol. 89, 428–433 (2016)

    Article  Google Scholar 

  38. 38.

    Smerilli, M., Neureiter, M., Wurz, S., Haas, C., Frühauf, S., Fuchs, W.: Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions. J. Chem. Technol. Biotechnol. 90, 648–657 (2015)

    Article  Google Scholar 

  39. 39.

    Kivistö, A., Santala, V., Karp, M.: Non-sterile process for biohydrogen and 1, 3-propanediol production from raw glycerol. Int. J. Hydrog. Energy 38, 11749–11755 (2013)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hakan Ozkan.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tuysuz, E., Gonul-Baltaci, N., Omeroglu, M.A. et al. Co-production of Amylase and Protease by Locally Isolated Thermophilic Bacterium Anoxybacillus rupiensis T2 in Sterile and Non-sterile Media Using Waste Potato Peels as Substrate. Waste Biomass Valor 11, 6793–6802 (2020). https://doi.org/10.1007/s12649-020-00936-3

Download citation

Keywords

  • Anoxybacillus rupiensis T2
  • Thermophilic bacteria
  • Potato peel
  • Protease
  • Amylase
  • Co-production