Skip to main content
Log in

Optimization of Conditions for the Higher Level Production of Protease: Characterization of Protease from Geobacillus SBS-4S

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Current study was planned keeping in mind the importance of proteases and their role in industry. In the present study protease was produced using Luria Bertani medium. The LB medium was supplemented with various carbon and nitrogen sources separately for the enhancement of growth of Geobacillus SBS-4S and for protease production. The optimization studies demonstrated the increase in protease production from 10.6 to 24.4 U/mL or 34.5 U/mL when the medium was supplemented with additional 2% yeast extract or 5% wheat bran respectively. Under the optimal conditions we could produce 46.2 U/mL of protease. The protein was purified by column chromatography and the purified protein was utilized for characterization studies. SDS-PAGE analysis confirmed the molecular weight of protease as 37 kDa. The enzyme exhibited its maximal activity at 60 °C and pH 9.0. Presence of Ca2+ and Mn2+ at a final concentration of I mM in the activity assay mixture enhanced protease activity from 100% to 133 and 150% respectively. Protease activity was slightly reduced (92%) in the presence of SDS whereas the presence of non-ionic detergents Triton X-100, Tween-20 and Tween-80 reduced the enzyme activity to 87, 82 and 69% respectively. Thermostability studies demonstrated that the protein was stable with 50% residual activity after an incubation of 2 h and 25 min at 60 °C in the presence of 1 mM Mn2+. The kinetic studies demonstrated the Km and Vmax values of 16.67 mg/mL and 143 U/mL respectively. The stability of protease at wide range of pH and temperature makes this enzyme suitable for its utilization in detergent and poultry feed industry.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ibrahim, A.S.S., Salamah, A.A.A., Elbadawi, Y.B., Tayeb, M.A.E., Ibrahim, S.S.: Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes. Electron. J. Biotechnol. 18, 236–243 (2015)

    Google Scholar 

  2. Rao, M.B., Tanksale, A.M., Ghatge, M.S., Deshpande, V.V.: Molecular and Biotechnological aspects of Microbial proteases. Microbiol. Mol. Biol. Rev. 63, 596–635 (1998)

    Google Scholar 

  3. Gupta, A., Khare, S.K.: Enhanced production and characterization of a solvent stable protease from solvent tolerant Pseudomonas aeruginosa. Enzym. Microbial Technol. 42, 11–16 (2007)

    Google Scholar 

  4. Delia, P.M., Susana, L.G., Balatti, A.: Protease Production using Bacillus subtilis 3411 and amaranth seed meal medium at different aeration rates. Braz. J. Microbiol. 32, 6–9 (2001)

    Google Scholar 

  5. Robinson, E., Mason, H., Iqbal, S., Garrod, A., Evans, G.S., Elms, J.: Enzyme exposure in the British baking industry. Ann. Occup. Hyg. 50, 379–384 (2006)

    Google Scholar 

  6. Ravel, H., Banerjee, S.E.: Effect of enzyme and chemical pretreatments on the properties of silk. J. Text. Assoc. 64, 65–69 (2003)

    Google Scholar 

  7. Shankar, S., More, S.V., Seeta, L.R.: Recovery of silver from waste x-ray film by alkaline protease from conidiobolus coronatus kathmandu. Univ. J. Sci. Eng. Technol. 6, 60–69 (2010)

    Google Scholar 

  8. Feroz, K.: New microbial proteases in leather and detergent industries. Innov. Res. Chem. 1, 1–6 (2013)

    Google Scholar 

  9. Oxenboll, K.M., Pontoppidan, K., Nji, F.F.: Use of a protease in poultry feed offers promising environmental benefits. Int. J. Poult. Sci. 10, 842–848 (2011)

    Google Scholar 

  10. Sugumaran, K.R., Ponnusami, V.: Statistical modeling of pullulan production and its application in pullulan acetate nanoparticles synthesis. Int. J. Biol. Macromol. 81, 867–876 (2015)

    Google Scholar 

  11. Mukhtar, H., Haq, I.: Comparative evaluation of agro-industrial by products for the production of alkaline protease by wild and mutant strains of Bacillus subtilis in submerged solid state fermentation. Sci. World J. 6, 1–6 (2013)

    Google Scholar 

  12. Levine, J.S.: Biomass Burning and Global Change, Remote Sensing and Inventory Development and Biomass Burning in Africa. The MIT Press, Cambridge (1997)

  13. Howard, R.L., Abotsi, E., Jansen, V.R.E.L., Howard, S.: Lignocellulose biotechnology: issues of bioconversion and enzyme production. J. Biotechnol. 2, 602–619 (2003)

    Google Scholar 

  14. Apprich, S., Tirpanalan, O., Hell, J.C.V., Reisinger, M., Bohmdorfer, S., Ehn, S.S., Novalin, S., Kneifel, W.: Wheat bran-based biorefinery 2: valorisation of products. LWT Food Sci. Technol. 56, 222–231 (2014)

    Google Scholar 

  15. Xu, Z.: Purification and antioxidant properties of rice bran γ-oryzanol components, pp. 3–4. Doctoral Dissertation, Louisiana State University, USA (1998)

  16. Wythes, J.R., Wainwright, D.H., Blight, G.W.: Nutrient composition of Queensland molasses. Aust. J. Exp. Agric. Anim. Husb. 18, 629–634 (1978)

    Google Scholar 

  17. Fraser, W., Powell, R.E.: The kinetics of trypsin digestion. J. Biol. Chem. 187(2), 803–820 (1950)

    Google Scholar 

  18. Frank, F., Hohenwarter, O., Katinger, H.: Preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnol. Prog. 16, 688–692 (2000)

    Google Scholar 

  19. Pant, G., Prakash, A., Pavani, J.V.P., Bera, S., Deviram, G.V.N.S., Ajay, K., Mitali, P., Prasuna, R.G.: Production, optimization and partial purification of protease from Bacillus subtilis. J. Taibah Univ. Sci. 9, 50–55 (2014)

    Google Scholar 

  20. Shah, K., Mody, K., Keshri, J., Jha, B.: Purification and characterization of a solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated from the Gulf of Khambhat. J. Mol. Catal. B 67, 85–91 (2010)

    Google Scholar 

  21. Abinaya, R., Ramya, P., Sivakami, V., Ponnusami, V., Sugumaran, V.: Alkaline protease production by Bacillus sp. MTCC 511 from cost effective substrate. J. Chem. Pharm. 10, 488–491 (2017)

    Google Scholar 

  22. Silva, C.R.D., Delatorre, A.B., Martins, M.L.L.: Effect of the culture conditions on the production of an extracellular protease by thermophilic Bacillus sp. and some properties of the enzymatic activity. Braz. J. Microb. 38, 253–258 (2007)

    Google Scholar 

  23. Griffin, P.J., Fogarty, W.M.: Physiochemical properties of the native, zinc and manganese-prepared metalloprotease of Bacillus polymyxa. Appl. Microbiol. 26, 191–195 (1973)

    Google Scholar 

  24. Keay, L., Wildi, B.: Proteases of the genus Bacillus I. neutral proteases. Biotechnol. Bioeng. 12, 179–212 (1970)

    Google Scholar 

  25. Tayyab, M., Rashid, N., Akhtar, M.: Isolation and identification of lipase producing thermophilic Geobacillus sp. SBS-4S: cloning and characterization of the lipase. J. Biosci. Bioeng. 111, 272–278 (2011)

    Google Scholar 

  26. Tayyab, M., Rashid, N., Angkawidjaja, C., Kanaya, S., Akhtar, M.: Highly active metallo-carboxypeptidase from newly isolated Geobacillus strain SBS-4S: cloning and characterization. J. Biosci. Bioeng. 111, 259–265 (2011)

    Google Scholar 

  27. Mansoor, S., Tayyab, M., Jawad, A., Munir, B., Firyal, S., Awan, A.R., Rashid, N., Wasim, M.: Refolding of misfolded inclusion bodies of recombinant α-amylase: Characterization of cobalt activated thermostable α-amylase from Geobacillus SBS-4S. Pak. J. Zool. 50, 1147–1155 (2018)

    Google Scholar 

  28. Basheer, S., Rashid, N., Ashraf, R., Akram, M.S., Siddiqui, M.A., Imanaka, T., Akhtar, M.: Identification of a novel copper-activated and halide-tolerant laccase in Geobacillus thermopakistaniensis. Extremophiles 21, 563–571 (2017)

    Google Scholar 

  29. Catara, G., Ruggiero, G., Cara, L.F., Digilio, F.A., Capasso, A., Rossi, M.A.: Novel extracellular subtilisin-like protease from the hyperthermophile Aeropyrumpernix K1: biochemical properties, cloning, and expression. Extremophiles 7, 391–399 (2003)

    Google Scholar 

  30. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Google Scholar 

  31. Sabir, F., Tayyab, M., Munir, B., Hashmi, A.S., Awan, A.R., Rashid, N., Wasim, M., Firyal, S.: Characterization of recombinant thermostable phytase from Thermotoga naphthophila: a step for the fulfilment of domestic requirement of phytase in Pakistan. Pak. J. Zool. 49, 1945–1951 (2017)

    Google Scholar 

  32. Rani, R., Prasad, N.: Studies on purification of alkaline protease from a mutant Aspergillus flavus AS2. Res. J. Biotechnol. 8, 58–66 (2013)

    Google Scholar 

  33. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680 (1970)

    Google Scholar 

  34. Mushtaq, Z., Irfan, M., Nadeem, M., Naz, M., Syed, Q.: Kinetics study of extracellular detergent stable alkaline protease from Rhizopusoryzae. Braz. Arch. Biol. Technol. 58, 175–184 (2015)

    Google Scholar 

  35. Rajkumar, R., Kothilmozhian, J., Ramasamy, R.: Production and characterization of a novel protease from Bacillis sp. RRM1 under solid state fermentation. J. Microbiol. Biotechnol. 21, 627–636 (2011)

    Google Scholar 

  36. Kalaiarasi, K., Sunitha, P.U.: Optimization of alkaline protease production from Pseudomonas fluorescens isolated from meat waste contaminated soil. Afr. J. Biotechnol. 8, 7035–7041 (2009)

    Google Scholar 

  37. Kaur, S., Sharma, S., Nagi, H.P.S.: Functional properties and anti-nutritional factors in cereal bran. Asian J. Food Agro-Ind. 4, 122–131 (2011)

    Google Scholar 

  38. Sepahy, A.A., Jabalameli, L.: Effect of culture conditions on the production of an extracellular protease by Bacillus sp. isolated from soil sample of Lavizan Jungle Park. Enzym. Res. 2011, 1–7 (2011)

    Google Scholar 

  39. Padmapriya, B., Rajeswari, T., Nandita, R., Raj, F.: Production and purification of alkaline serine protease from marine Bacillus species and its application in detergent industry. Eur. J. Appl. Sci. 4, 21–26 (2012)

    Google Scholar 

  40. Anitha, T.S., Palanivelu, P.: Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expr. Purif. 88, 214–220 (2013)

    Google Scholar 

  41. Lee, S.O., Kato, J., Nakashima, K., Kuroda, A., Ikeda, T., Takiguchi, N., Ohtake, H.: Cloning and characterization of extracellular metal protease gene of the algicidal marine bacterium Pseudoalteromonas sp. strain A28. Biosci. Biotechnol. Biochem. 66, 1366–1369 (2002)

    Google Scholar 

  42. Mazar, F.M., Mohammadi, H.S., Rad, M.E., Gregorian, A., Omidinia, E.: Isolation, purification and characterization of a thermophilic alkaline protease from Bacillus subtilis BP-36. J. Sci. Islam. Repub. Iran 23, 7–13 (2012)

    Google Scholar 

  43. Beg, Q.K., Gupta, R.: Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzym. Microb. Technol. 32, 294–304 (2003)

    Google Scholar 

  44. Razak, C., Samad, M., Basri, M., Yunus, W., Ampon, K., Salleh, A.: Thermostable extracellular protease by B stearothermophilus. World J. Microbiol. Biotechnol. 10, 260–263 (1994)

    Google Scholar 

  45. Salleh, A.B., Basri, M., Razak, C.: The effect of temperature on the protease from Bacillus stearothermophilus strain F1. Malays. J. Biochem. Mol. Biol. 2, 37–41 (1977)

    Google Scholar 

  46. Ghorbel, B., Kamoun, A.S., Nasri, M.: Stability studies of protease from Bacillus cereus BG1. Enzym. Microbiol. Technol. 32, 513–518 (2003)

    Google Scholar 

  47. Yeoman, K.H., Edwards, C.: Purification and characterization of the protease enzymes Streptomyces thermovulgaris grown in rapeseed- derived media. J. Appl. Microbiol. 82, 149–156 (2008)

    Google Scholar 

  48. Seifzadeh, S., Sajedi, R.H., Sariri, R.: Isolation and characterization of thermophilic alkaline proteases, resistant to SDS and EDTA from Bacillus sp. GUS1. Iran. J Biotechnol. 6, 214–221 (2008)

    Google Scholar 

  49. Hawumba, J.F., Theron, J., Brozel, V.S.: Thermophilic protease-producing Geobacillus from Buranga hot springs in Western Uganda. Curr. Microbiol. 45, 144–150 (2002)

    Google Scholar 

  50. Gey, M., Unger, K.: Calculation of the molecular masses of two newly synthesized thermostable enzymes isolated from thermophilic microorganisms. J. Chromatogr. B 166, 188–193 (1995)

    Google Scholar 

  51. Shaheen, M., Shah, A.A., Hameed, A., Hasan, F.: Influence of culture conditions on production and activity of protease from Bacillus subtilis BS1. Pak. J. Bot. 40, 2161–2169 (2008)

    Google Scholar 

  52. Pushpam, P.L., Rajesh, T., Gunasekaran, P.: Identification and characterization of alkaline serine protease from goat skin surface metagenome. AMB Express. 28, 1–10 (2011)

    Google Scholar 

  53. Krishna, S.B.N., Devi, K.L.: Purification and characterization of thermostable alkaline protease, from Bacillus subtilis K-30. J. Pure Appl. Microbiol. 4, 83–90 (2010)

    Google Scholar 

  54. Cui, H., Wang, L., Yu, Y.: Production and characterization of alkaline protease from a high yielding and moderately halophilic strain of SD II marine bacteria. J. Chem. 2015, 1–8 (2015)

    Google Scholar 

  55. Oberoi, R., Beg, Q.K., Puri, S., Saxena, R.K., Gupta, R.: Characterization and wash performance analysis of an SDS-resistant alkaline protease from a Bacillus sp. World J. Microbiol. Biotechnol. 17, 493–497 (2001)

    Google Scholar 

  56. Ahmed, I., Zia, M.A., Iqbal, H.: Purification and kinetic parameters characterization of an alkaline protease produced from Bacillus subtilis through submerged fermentation technique. World Appl. Sci. J. 12, 751–757 (2011)

    Google Scholar 

  57. Park, M.H., Walpola, B.C., Yoon, M.H.: Purification and characterization of protease enzyme from Burkholderia stabilis. Afr. J. Biotechnol. 12, 1408–1418 (2013)

    Google Scholar 

  58. Ibrahim, A.S.S., Elbadawi, Y.B., Tayeb, M.A.E., Maary, K.S.A., Maany, D.A.F., Ibrahim, S.S.S., Elagib, A.A.: Alkaline serine protease from the new halotolerant alkaliphilic Salipaludibacillus agaradhaerens strain AK-R: purification and properties. 3 Biotech. 9, 391 (2019)

    Google Scholar 

  59. Karaboga, M.N.S., Logoglu, E.: Purification of alkaline serine protease from local Bacillus subtilis M33 by two steps: a novel organic solvent and detergent tolerant enzyme. Gazi Univ. J. Sci. 32, 116–129 (2019)

    Google Scholar 

  60. Muthulakshmi, C., Gomathi, D., Kumar, D.G., Ravikumar, G., Kalaiselvi, M., Uma, C.: Production, purification and characterization of protease by Aspergillus flavus under solid state fermentation. Jordan J. Biol. Sci. 4, 137–148 (2011)

    Google Scholar 

  61. Kamran, A., Bibi, Z.: Kinetic parameters analysis and pH stability of protease from a thermophilic Bacillus species. Pak. J. Biochem. Mol. Biol. 48, 66–68 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tayyab.

Ethics declarations

Conflict of interest

There is no conflict of interest from authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, W., Tayyab, M., Aftab, M.N. et al. Optimization of Conditions for the Higher Level Production of Protease: Characterization of Protease from Geobacillus SBS-4S. Waste Biomass Valor 11, 6613–6623 (2020). https://doi.org/10.1007/s12649-020-00935-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-00935-4

Keywords

Navigation