Skip to main content
Log in

Predictive Modelling of Sugar Release from Blended Garden Wastes in a Microwave-Assisted Hot Water Process

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Due to supply difficulties caused by seasonal availability, fuel ethanol production from a single lignocellulosic biomass species is always uneconomical at commercial scale. The utilization of blended biomass offers a potential solution to this problem. In this study, a prediction model was developed to evaluate the sugar release from blended garden wastes in a microwave-assisted hot water (MHW) process. The optimum blending ratio of Bauhinia blakeana Dunn (BB), rice straw (RS) and sugarcane bagasse (SC) was found to be 2:3:5, which promised a high total xylose yield of 67.82% (using a process temperature of 186 °C for 43 min). While the yield of xylose could only reach 52.47% when adopting the single garden waste of BB as feedstock under the same condition. Furthermore, the use of blended materials provided a cost savings of 22.23% as compared with the single RS feedstock, and no significant difference was found in the release of total xylose. The model developed was found to accurately predict the total xylose released from blended garden feedstocks. In addition, a steady supply of lignocellulosic biomass for fuel ethanol production could also be generated.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, D.Y., Gao, D.X., Capareda, S.C., Huang, S.C., Wang, Y.: Effects of hydrochloric acid washing on the microstructure and pyrolysis bio-oil components of sweet sorghum bagasse. Bioresour. Technol. 277, 37–45 (2019). https://doi.org/10.1016/j.biortech.2019.01.023

    Article  Google Scholar 

  2. McIntosh, S., Vancov, T.: Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour. Technol. 101(17), 6718–6727 (2010). https://doi.org/10.1016/j.biortech.2010.03.116

    Article  Google Scholar 

  3. Li, J., Zhang, M., Wang, D.H.: Enhancing delignification and subsequent enzymatic hydrolysis of corn stover by magnesium oxide-ethanol pretreatment. Bioresour. Technol. 279, 124–131 (2019). https://doi.org/10.1016/j.biortech.2019.01.123

    Article  Google Scholar 

  4. Wang, W., Zhuang, X., Yuan, Z., Yu, Q., Qi, W., Wang, Q., Tan, X.: High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresour. Technol. 108, 252–257 (2012). https://doi.org/10.1016/j.biortech.2011.12.092

    Article  Google Scholar 

  5. Roni, M.S., Thompson, D., Hartley, D., Searcy, E., Quang, N.: Optimal blending management of biomass resources used for biochemical conversion. Biofuel. Bioprod. Biorefin. 12(4), 624–648 (2018). https://doi.org/10.1002/bbb.1877

    Article  Google Scholar 

  6. Rentizelas, A.A., Tatsiopoulos, I.P., Tolis, A.: An optimization model for multi-biomass tri-generation energy supply. Biomass Bioenergy 33(2), 223–233 (2009). https://doi.org/10.1016/j.biombioe.2008.05.008

    Article  Google Scholar 

  7. Oke, M.A., Annuar, M.S.M., Simarani, K.: Mixed feedstock approach to lignocellulosic ethanol production-prospects and limitations. Bioenergy Res. 9(4), 1189–1203 (2016). https://doi.org/10.1007/s12155-016-9765-8

    Article  Google Scholar 

  8. Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., Pandey, R.A.: Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuel. Bioprod. Biorefin. 4(1), 77–93 (2010). https://doi.org/10.1002/bbb.188

    Article  Google Scholar 

  9. Baral, N.R., Davis, R., Bradley, T.H.: Supply and value chain analysis of mixed biomass feedstock supply system for lignocellulosic sugar production. Biofuel. Bioprod. Biorefin. 13(3), 635–659 (2019). https://doi.org/10.1002/bbb.1975

    Article  Google Scholar 

  10. Li, C., Aston, J.E., Lacey, J.A., Thompson, V.S., Thompson, D.N.: Impact of feedstock quality and variation on biochemical and thermochemical conversion. Renew. Sustain. Energy Rev. 65, 525–536 (2016). https://doi.org/10.1016/j.rser.2016.06.063

    Article  Google Scholar 

  11. Sun, N., Xu, F., Sathitsuksanoh, N., Thompson, V.S., Cafferty, K., Li, C.L., Tanjore, D., Narani, A., Pray, T.R., Simmons, B.A., Singh, S.: Blending municipal solid waste with corn stover for sugar production using ionic liquid process. Bioresour. Technol. 186, 200–206 (2015). https://doi.org/10.1016/j.biortech.2015.02.087

    Article  Google Scholar 

  12. Erdei, B., Barta, Z., Sipos, B., Reczey, K., Galbe, M., Zacchi, G.: Ethanol production from mixtures of wheat straw and wheat meal. Biotechnol. Biofuels 3, 16 (2010). https://doi.org/10.1186/1754-6834-3-16s

    Article  Google Scholar 

  13. Ji, L., Yu, H., Liu, Z., Jiang, J., Sun, D.: Enhanced ethanol production with mixed lignocellulosic substrates from commercial furfural and cassava residues. BioResources 10(1), 1162–1173 (2015)

    Article  Google Scholar 

  14. Moutta, R.D.O., Ferreira-Leitao, V.S., Da SilvaBon, E.P.: Enzymatic hydrolysis of sugarcane bagasse and straw mixtures pretreated with diluted acid. Biocatal. Biotransform. 32(1), 93–100 (2014). https://doi.org/10.3109/10242422.2013.873795

    Article  Google Scholar 

  15. Luque, R., Herrero-Davila, L., Campelo, J.M., Clark, J.H., Hidalgo, J.M., Luna, D., Marinas, J.M., Romero, A.A.: Biofuels: a technological perspective. Energy Environ. Sci. 1(5), 542–564 (2008). https://doi.org/10.1039/b807094f

    Article  Google Scholar 

  16. Behera, S., Arora, R., Nandhagopal, N., Kumar, S.: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014). https://doi.org/10.1016/j.rser.2014.04.047

    Article  Google Scholar 

  17. Yang, B., Wyman, C.E.: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel. Bioprod. Bior. 2(1), 26–40 (2008). https://doi.org/10.1002/bbb.49

    Article  Google Scholar 

  18. Yu, Q., Zhuang, X., Yuan, Z., Wang, Q., Qi, W., Wang, W., Zhang, Y., Xu, J., Xu, H.: Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 101(13), 4895–4899 (2010). https://doi.org/10.1016/j.biortech.2009.11.051

    Article  Google Scholar 

  19. Cardona, E., Llano, B., Penuela, M., Pena, J., Rios, L.A.: Liquid-hot-water pretreatment of palm-oil residues for ethanol production: an economic approach to the selection of the processing conditions. Energy 160, 441–451 (2018). https://doi.org/10.1016/j.energy.2018.07.045

    Article  Google Scholar 

  20. Yu, Q., Zhuang, X., Wang, W., Qi, W., Wang, Q., Tan, X., Kong, X., Yuan, Z.: Hemicellulose and lignin removal to improve the enzymatic digestibility and ethanol production. Biomass Bioenergy 94, 105–109 (2016). https://doi.org/10.1016/j.biombioe.2016.08.005

    Article  Google Scholar 

  21. Amini, N., Haritos, V.S., Tanksale, A.: Microwave assisted pretreatment of eucalyptus sawdust enhances enzymatic saccharification and maximizes fermentable sugar yield. Renew. Energy 127, 653–660 (2018). https://doi.org/10.1016/j.renene.2018.05.001

    Article  Google Scholar 

  22. Yemis, O., Mazza, G.: Catalytic performances of various solid catalysts and metal halides for microwave-assisted hydrothermal conversion of xylose, xylan, and straw to furfural. Waste Biomass Valoriz 10(5), 1343–1353 (2019). https://doi.org/10.1007/s12649-017-0144-2

    Article  Google Scholar 

  23. Ethaib, S., Omar, R., Mazlina, M.K.S., Radiah, A.B.D., Syafiie, S.: Microwave-assisted dilute acid pretreatment and enzymatic hydrolysis of sago palm bark. BioResources 11(3), 5687–5702 (2016). https://doi.org/10.15376/biores.11.3.5687-5702

    Article  Google Scholar 

  24. Yu, Q., Wang, Y., Qi, W., Wang, W., Wang, Q., Bian, S., Zhu, Y., Zhuang, X., Wang, Z., Yuan, Z.: Phase-exchange solvent pretreatment improves the enzymatic digestibility of cellulose and total sugar recovery from energy Sorghum. ACS Sustain. Chem. Eng. 6(2), 1723–1731 (2018). https://doi.org/10.1021/acssuschemeng.7b02995

    Article  Google Scholar 

  25. Kumar, D., Eswari, A.P., Park, J.-H., Adishkumar, S., Banu, J.R.: Biohydrogen generation from macroalgal biomass, Chaetomorpha antennina through surfactant aided microwave disintegration. Front. Energy Res. 7, 78 (2019). https://doi.org/10.3389/fenrg.2019.00078

    Article  Google Scholar 

  26. Ethaib, S., Omar, R., Mazlina, M., Radiah, A., Syafiie, S., Harun, M.Y.: Effect of microwave-assisted acid or alkali pretreatment on sugar release from Dragon fruit foliage. Int. Food Res. J. 23, S149–S154 (2016)

    Google Scholar 

  27. Ethaib, S., Omar, R., Mazlina, M.K.S., Radiah, A.B.D., Syafiie, S.: Development of a hybrid PSO-ANN model for estimating glucose and xylose yields for microwave-assisted pretreatment and the enzymatic hydrolysis of lignocellulosic biomass. Neural Comput. Appl. 30(4), 1111–1121 (2018). https://doi.org/10.1007/s00521-016-2755-0

    Article  Google Scholar 

  28. Tsegaye, B., Balomajumder, C., Roy, P.: Optimization of microwave and NaOH pretreatments of wheat straw for enhancing biofuel yield. Energy Convers. Manag. 186, 82–92 (2019). https://doi.org/10.1016/j.enconman.2019.02.049

    Article  Google Scholar 

  29. Ethaib, S., Omar, R., Kamal, S.M.M., Biak, D.R.A., Syam, S., Harun, M.Y.: Microwave-assisted pretreatment of sago palm bark. J. Wood Chem. Technol. 37(1), 26–42 (2017). https://doi.org/10.1080/02773813.2016.1224249

    Article  Google Scholar 

  30. Mihiretu, G.T., Brodin, M., Chimphango, A.F., Oyaas, K., Hoff, B.H., Gorgens, J.F.: Single-step microwave-assisted hot water extraction of hemicelluloses from selected lignocellulosic materials—a biorefinery approach. Bioresour. Technol. 241, 669–680 (2017). https://doi.org/10.1016/j.biortech.2017.05.159

    Article  Google Scholar 

  31. Yu, Q., Chen, L., Wang, W., Wang, Q., Bai, R., Zhuang, X., Guo, Y., Qi, W., Yuan, Z.: Impact of blending on hydrolysis and ethanol fermentation of garden wastes. J. Clean. Prod. 190, 36–43 (2018). https://doi.org/10.1016/j.jclepro.2018.04.164

    Article  Google Scholar 

  32. Sluiter, A., Hames,B.,Ruiz,R.,Scarlata,C.,Sluiter,J.,Templeton,D.,Crocker,D.: Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510-42618 (2012).

  33. Narani, A., Coffman, P., Gardner, J., Li, C., Ray, A.E., Hartley, D.S., Stettler, A., Konda, N.V.S.N.M., Simmons, B., Pray, T.R., Tanjore, D.: Predictive modeling to de-risk bio-based manufacturing by adapting to variability in lignocellulosic biomass supply. Bioresour. Technol. 243, 676–685 (2017). https://doi.org/10.1016/j.biortech.2017.06.156

    Article  Google Scholar 

  34. Chin, K.L., Hng, P.S., Wong, L.J., Tey, B.T., Paridah, M.T.: Production of glucose from oil palm trunk and sawdust of rubberwood and mixed hardwood. Appl. Energy 88(11), 4222–4228 (2011). https://doi.org/10.1016/j.apenergy.2011.05.001

    Article  Google Scholar 

  35. Yu, Q., Zhuang, X., Wang, Q., Qi, W., Tan, X., Yuan, Z.: Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Bioresour. Technol. 116, 220–225 (2012). https://doi.org/10.1016/j.biortech.2012.04.031

    Article  Google Scholar 

  36. Kim, Y., Kreke, T., Mosier, N.S., Ladisch, M.R.: Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnol. Bioenergy 111(2), 254–263 (2014). https://doi.org/10.1002/bit.25009

    Article  Google Scholar 

  37. Yu, Q., Qin, L., Liu, Y., Sun, Y., Xu, H., Wang, Z., Yuan, Z.: In situ deep eutectic solvent pretreatment to improve lignin removal from garden wastes and enhance production of bio-methane and microbial lipids. Bioresour. Technol. 271, 210–217 (2019). https://doi.org/10.1016/j.biortech.2018.09.056

    Article  Google Scholar 

  38. Yu, Q., Zhuang, X., Yuan, Z., Wang, W., Qi, W., Wang, Q., Tan, X.: Step-change flow rate liquid hot water pretreatment of sweet sorghum bagasse for enhancement of total sugars recovery. Appl. Energy 88(7), 2472–2479 (2011). https://doi.org/10.1016/j.apenergy.2011.01.031

    Article  Google Scholar 

  39. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  40. Gupta, R., Kumar, S., Gomes, J., Kuhad, R.C.: Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol. Biotechnol. Biofuels 5(1), 16 (2012). https://doi.org/10.1186/1754-6834-5-16

    Article  Google Scholar 

  41. Yu, Q., Zhuang, X., Yuan, Z., Kong, X., Qi, W., Wang, W., Wang, Q., Tan, X.: Influence of lignin level on release of hemicellulose-derived sugars in liquid hot water. Int. J. Biol. Macromol. 82, 967–972 (2016). https://doi.org/10.1016/j.ijbiomac.2015.10.045

    Article  Google Scholar 

  42. Lv, S., Yu, Q., Zhuang, X., Yuan, Z., Wang, W., Wang, Q., Qi, W., Tan, X.: The influence of hemicellulose and lignin removal on the enzymatic digestibility from sugarcane bagasse. Bioenergy Res. 6(4), 1128–1134 (2013). https://doi.org/10.1007/s12155-013-9297-4

    Article  Google Scholar 

  43. Wolfrum, E.J., Nagle, N.J., Ness, R.M., Peterson, D.J., Ray, A.E., Stevens, D.M.: The effect of biomass densification on structural sugar release and yield in biofuel feedstock and feedstock blends. Bioenergy Res. 10(2), 478–487 (2017). https://doi.org/10.1007/s12155-017-9813-z

    Article  Google Scholar 

  44. Li, H., Qu, Y., Yang, Y., Chang, S., Xu, J.: Microwave irradiation—a green and efficient way to pretreat biomass. Bioresour. Technol. 199, 34–41 (2016). https://doi.org/10.1016/j.biortech.2015.08.099

    Article  Google Scholar 

  45. Laluce, C., Roldan, I.U., Pecoraro, E., Igbojionu, L.I., Ribeiro, C.A.: Effects of pretreatment applied to sugarcane bagasse on composition and morphology of cellulosic fractions. Biomass Bioenergy 126, 231–238 (2019). https://doi.org/10.1016/j.biombioe.2019.03.002

    Article  Google Scholar 

  46. Wang, W., Wang, Q., Tan, X., Qi, W., Yu, Q., Zhou, G., Zhuang, X., Yuan, Z.: High conversion of sugarcane bagasse into monosaccharides based on sodium hydroxide pretreatment at low water consumption and wastewater generation. Bioresour. Technol. 218, 1230–1236 (2016). https://doi.org/10.1016/j.biortech.2016.07.074

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Grant Number 51876206), the Natural Science Foundation of Guangdong Province (Grant Number 2018A030313012), Young Top-notch Talent of Guangdong Province, China (Grant Number 2016TQ03N647), Science and Technology Program of Guangzhou, China (Grant Numbers 201803030007, 201610010110), the Strategic Priority Research Program of Chinese Academy of Sciences (Grand Number XDA21050400), the DNL Cooperation Fund, CAS (Grant Number DNL180305), the Open Fund of Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, and the Youth Innovation Promotion Association, CAS (Grant Number 2015289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, R., Wang, W., Yu, Q. et al. Predictive Modelling of Sugar Release from Blended Garden Wastes in a Microwave-Assisted Hot Water Process. Waste Biomass Valor 12, 3009–3018 (2021). https://doi.org/10.1007/s12649-019-00932-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00932-2

Keywords

Navigation