Technoeconomic Evaluation of a Gasification Plant: Modeling, Experiment and Software Development


Thermodynamic and economic feasibility of substituting producer gas for natural gas in a distributed generation platform, located in a car manufacturing factory, is performed. The distributed generation platform is capable of producing both power and heat demand of the factory with the use of biomass gasification. A comprehensive software program is developed in C# programming language, to simulate biomass gasification in an efficient and user-friendly manner. Considered gasification model is realistic with considering representative tar composition in the producer gas. The result of gasification simulation is verified through an experimental setup. The experimental setup is utilized to calibrate the simulation results with the use of appropriate modeling coefficients to get a closer agreement between the simulation and the experimental testing. It is concluded that multiplying equilibrium constants (K1 and K2) by 0.7 yields the best agreement between the simulation results and experimental values. It is also concluded that the gross total efficiency is 11.8% higher and the net total efficiency is 10.7% higher in the producer gas-fueled configuration than the natural gas-fueled configuration. The reasons for higher efficiencies in the producer gas-fueled configuration are mainly the type of the fuel used and the heat integration of the system. The sensitivity analysis shows that increasing the biomass moisture content will decrease CO relative composition and will increase H2 and CH4 relative compositions in the producer gas. Also, biomass fuels with greater levels of moisture content not only increase the required inlet feed to the system but also increase the level of CO2 emission to the atmosphere. Approximately 4,468,300 m3 of natural gas per year can be saved using the proposed system and the period of return of the project is 6.1 years.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20



Annualized cost of system


Cold gas efficiency


Capital recovery factor


Fixed operating and maintenance cost ($/kW-year)


Genetic algorithm


Green house gases


High heating value


Heat recovery steam generator


Levelized cost of product


Lower heating value


Low pressure


Net annual benefit


Operating flow cost


Period of return


Power sale price (cent/kWh)


Root mean square


Spark ignition


Summation of product cost


Heat sale price (cent/kWh)


Net present value


Heat recovery steam generator area (m2)

Ahx :

Heat exchanger area (m2)




Nominal interest rate (%)


Total capital cost (M$)

CB :

Equipment cost with capacity QB (base capacity)

CE :

Equipment cost with capacity Q

Cp :

Specific heat capacity at constant pressure (kJ/kg)


Energy (kJ)


Filter area (m2)

\(G^{0}_{T,i}\) :

Gibbs free energy (kJ/kmol)


Enthalpy (kJ)


Specific enthalpy (kJ/kg)


High pressure


Heat rate (MJ/kWh)

\(\overline{h}\) :

Molar enthalpy (kJ/kmol)

\(h^{0}_{f}\) :

Enthalpy of formation (kJ/kmol)


The mole of sulfide dioxide (per mole of biomass)


Interest rate


The mole of carbon monoxide (per mole of biomass)


The ratio of the specific heat capacity at constant; pressure to the specific heat capacity at constant volume


Equilibrium constant

\(\dot{m}\) :

Mass flow rate (kg/s)

Ma :

Air molecular weight (kg/kmol)

Mf :

Fuel molecular weight (kg/kmol)


Mass flow rate (kg/s)

Qin :

Heat input to the gasifying process (preheating)

Qout :

Heat output of the gasifying process (heat loss)

\(\dot{Q}\) :

The time rate of heat (kJ/s)


Reaction reactants

Ru :

Universal constant of ideal gases


The mole of carbon dioxide (per mole of biomass)


Temperature (°C)


The mole of hydrogen (per mole of biomass)


The mole of methane (per mole of biomass)


The mole of water (per mole of biomass)


Water molar fraction in biomass

\(\dot{W}\) :

The time rate of work or power (kJ/s)


Salt concentration


Ambient air molar composition


The mole of nitrogen (per mole of biomass)


The mole of oxygen (per mole of biomass)






Base case


Cooling water




Dry base






H atoms substitution formula




O atoms substitution formula


Producer gas




N atoms substitution formula


S atoms substitution formula

ηsp :

Pump isentropic efficiency (%)

ηmp :

Pump mechanical efficiency (%)

ηep :

Motor efficiency (%)


The temperature drop per stage (°C)


Differential pressure (kPa)

\(\lambda\) :

Latent heat (kJ/kg)


  1. 1.

    Agency IE.: Good practice guidelines. Bioenergy project development and biomass supply (2007)

  2. 2.

    Basu, P.: Combustion and Gasification in Fluidized Beds. CRC Press, Boca Raton (2006)

    Google Scholar 

  3. 3.

    Boerrigter, H., Rauch, R.: Review of applications of gases from biomass gasification, p. 20. Kolen en Milieuonderzoek, ECN Biomassa (2006)

    Google Scholar 

  4. 4.

    Pang, Y., Shen, S., Chen, Y.: High temperature steam gasification of corn straw pellets in downdraft gasifier: preparation of hydrogen-rich gas. Waste Biomass Valoriz. 10, 1333–1341 (2019)

    Google Scholar 

  5. 5.

    Rodrigues, S., Almeida, A., Ribeiro, A., Neto, P., Ramalho, E., Pilão, R.: Gasification of cork wastes in a fluidized bed reactor. Waste Biomass Valoriz. 1–9 (2018)

  6. 6.

    Samolada, M.C., Zabaniotou, A.A.: Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manag. 34, 411–420 (2014)

    Google Scholar 

  7. 7.

    Prasad, L.: Experimental study on gasification of jatropha shells in a downdraft open top gasifier. Waste Biomass Valoriz. 6, 117–122 (2015)

    Google Scholar 

  8. 8.

    Monir, M.U., Aziz, A.A., Kristanti, R.A., Yousuf, A.: Syngas production from co-gasification of forest residue and charcoal in a pilot scale downdraft reactor. Waste Biomass Valoriz. 1–17 (2018)

  9. 9.

    Madadian, E., Lefsrud, M., Lee, C.P., Roy, Y., Orsat, V.: Gasification of pelletized woody biomass using a downdraft reactor and impact of material bridging. J. Energy Eng. 142, 04016001 (2016)

    Google Scholar 

  10. 10.

    La Villetta, M., Costa, M., Massarotti, N.: Modelling approaches to biomass gasification: a review with emphasis on the stoichiometric method. Renew. Sustain. Energy Rev. 74, 71–88 (2017)

    Google Scholar 

  11. 11.

    Nguyen, T.D.B., Seo, M.W., Lim, Y.-I., Song, B.-H., Kim, S.-D.: CFD simulation with experiments in a dual circulating fluidized bed gasifier. Comput. Chem. Eng. 36, 48–56 (2012)

    Google Scholar 

  12. 12.

    Sommariva, S., Grana, R., Maffei, T., Pierucci, S., Ranzi, E.: A kinetic approach to the mathematical model of fixed bed gasifiers. Comput. Chem. Eng. 35, 928–935 (2011)

    Google Scholar 

  13. 13.

    Wang, M., Liu, G., Hui, C.W.: Optimization of IGCC gasification unit based on the novel simplified equilibrium model. Clean Technol. Environ. Policy 20, 259–269 (2018)

    Google Scholar 

  14. 14.

    Gambarotta, A., Morini, M., Zubani, A.: A non-stoichiometric equilibrium model for the simulation of the biomass gasification process. Appl. Energy 227, 119–127 (2018)

    Google Scholar 

  15. 15.

    Lin, X., Wang, F., Chi, Y., Huang, Q., Yan, J.: Thermodynamic Equilibrium Analysis on Limitation of Moisture and Ash for Optimal Air Gasification of Municipal Solid Waste. Waste Biomass Valoriz. 9, 327–333 (2018)

    Google Scholar 

  16. 16.

    Costaa, M., La Villetta, M., Massarottia, N.: Optimal tuning of a thermo-chemical equilibrium model for downdraft biomass gasifiers. Chem. Eng. 43 (2015)

  17. 17.

    Mendiburu, A.Z., Carvalho Jr., J.A., Coronado, C.J.: Thermochemical equilibrium modeling of biomass downdraft gasifier: stoichiometric models. Energy 66, 189–201 (2014)

    Google Scholar 

  18. 18.

    Simone, M., Barontini, F., Nicolella, C., Tognotti, L.: Assessment of syngas composition variability in a pilot-scale downdraft biomass gasifier by an extended equilibrium model. Biores. Technol. 140, 43–52 (2013)

    Google Scholar 

  19. 19.

    Antonopoulos, I.-S., Karagiannidis, A., Gkouletsos, A., Perkoulidis, G.: Modelling of a downdraft gasifier fed by agricultural residues. Waste Manag. 32, 710–718 (2012)

    Google Scholar 

  20. 20.

    Azzone, E., Morini, M., Pinelli, M.: Development of an equilibrium model for the simulation of thermochemical gasification and application to agricultural residues. Renew. Energy 46, 248–254 (2012)

    Google Scholar 

  21. 21.

    Barman, N.S., Ghosh, S., De, S.: Gasification of biomass in a fixed bed downdraft gasifier–A realistic model including tar. Biores. Technol. 107, 505–511 (2012)

    Google Scholar 

  22. 22.

    Huang, H.-J., Ramaswamy, S.: Modeling biomass gasification using thermodynamic equilibrium approach. Appl. Biochem. Biotechnol. 154, 14–25 (2009)

    Google Scholar 

  23. 23.

    Sharma, A.K.: Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier. Energy Convers. Manag. 49, 832–842 (2008)

    Google Scholar 

  24. 24.

    Gao, N., Li, A.: Modeling and simulation of combined pyrolysis and reduction zone for a downdraft biomass gasifier. Energy Convers. Manag. 49, 3483–3490 (2008)

    Google Scholar 

  25. 25.

    Jarungthammachote, S., Dutta, A.: Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy 32, 1660–1669 (2007)

    Google Scholar 

  26. 26.

    Melgar, A., Pérez, J.F., Laget, H., Horillo, A.: Thermochemical equilibrium modelling of a gasifying process. Energy Convers. Manag. 48, 59–67 (2007)

    Google Scholar 

  27. 27.

    Babu, B.V., Sheth, P.N.: Modeling and simulation of reduction zone of downdraft biomass gasifier: effect of char reactivity factor. Energy Convers. Manag. 47, 2602–2611 (2006)

    Google Scholar 

  28. 28.

    Zainal, Z., Ali, R., Lean, C., Seetharamu, K.: Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers. Manag. 42, 1499–1515 (2001)

    Google Scholar 

  29. 29.

    Loha, C., Chatterjee, P.K., Chattopadhyay, H.: Performance of fluidized bed steam gasification of biomass–modeling and experiment. Energy Convers. Manag. 52, 1583–1588 (2011)

    Google Scholar 

  30. 30.

    Schuster, G., Löffler, G., Weigl, K., Hofbauer, H.: Biomass steam gasification–an extensive parametric modeling study. Biores. Technol. 77, 71–79 (2001)

    Google Scholar 

  31. 31.

    Tinaut, F.V., Melgar, A., Pérez, J.F., Horrillo, A.: Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study. Fuel Process. Technol. 89, 1076–1089 (2008)

    Google Scholar 

  32. 32.

    Segurado, R., Pereira, S., Correia, D., Costa, M.: Techno-economic analysis of a trigeneration system based on biomass gasification. Renew. Sustain. Energy Rev. 103, 501–514 (2019)

    Google Scholar 

  33. 33.

    Ozbas, E.E., Aksu, D., Ongen, A., Aydin, M.A., Ozcan, H.K.: Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms. Int. J. Hydrog. Energy 44(32), 17260–17268 (2019)

    Google Scholar 

  34. 34.

    Yang, K., Zhu, N., Ding, Y., Chang, C., Yuan, T.: Thermoeconomic analysis of an integrated combined cooling heating and power system with biomass gasification. Energy Convers. Manag. 171, 671–682 (2018)

    Google Scholar 

  35. 35.

    Rahimi, M., Hamedi, M.H., Amidpour, M.: Thermodynamic simulation and economic modeling and optimization‎ of a multi generation system partially fed with synthetic gas from‎ gasification plant. Gas Process. 5, 49–68 (2017)

    Google Scholar 

  36. 36.

    Aitken, M.L., Loughlin, D.H., Dodder, R.S., Yelverton, W.H.: Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage. Clean Technol. Environ. Policy 18, 573–581 (2016)

    Google Scholar 

  37. 37.

    Athari, H., Soltani, S., Bölükbaşi, A., Rosen, M.A., Morosuk, T.: Comparative exergoeconomic analyses of the integration of biomass gasification and a gas turbine power plant with and without fogging inlet cooling. Renew. Energy 76, 394–400 (2015)

    Google Scholar 

  38. 38.

    El-Emam, R.S., Dincer, I.: Thermal modeling and efficiency assessment of an integrated biomass gasification and solid oxide fuel cell system. Int. J. Hydrog. Energy 40, 7694–7706 (2015)

    Google Scholar 

  39. 39.

    Puig-Arnavat, M., Bruno, J.C., Coronas, A.: Modeling of trigeneration configurations based on biomass gasification and comparison of performance. Appl. Energy 114, 845–856 (2014)

    Google Scholar 

  40. 40.

    Wang, J.-J., Xu, Z.-L., Jin, H.-G., Shi, G.-H., Fu, C., Yang, K.: Design optimization and analysis of a biomass gasification based BCHP system: a case study in Harbin, China. Renew. Energy 71, 572–583 (2014)

    Google Scholar 

  41. 41.

    Prando, D., Patuzzi, F., Pernigotto, G., Gasparella, A., Baratieri, M.: Biomass gasification systems for residential application: an integrated simulation approach. Appl. Therm. Eng. 71, 152–160 (2014)

    Google Scholar 

  42. 42.

    Vera, D., de Mena, B., Jurado, F., Schories, G.: Study of a downdraft gasifier and gas engine fueled with olive oil industry wastes. Appl. Therm. Eng. 51, 119–129 (2013)

    Google Scholar 

  43. 43.

    Ahrenfeldt, J., Thomsen, T.P., Henriksen, U., Clausen, L.R.: Biomass gasification cogeneration—a review of state of the art technology and near future perspectives. Appl. Therm. Eng. 50, 1407–1417 (2013)

    Google Scholar 

  44. 44.

    Font Palma, C., Martin, A.D.: Model based evaluation of six energy integration schemes applied to a small-scale gasification process for power generation. Biomass Bioenerg. 54, 201–210 (2013)

    Google Scholar 

  45. 45.

    Pellegrini, L.F., de Oliveira, J.S., Burbano, J.C.: Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills. Energy 35, 1172–1180 (2010)

    Google Scholar 

  46. 46.

    Rentizelas, A., Karellas, S., Kakaras, E., Tatsiopoulos, I.: Comparative techno-economic analysis of ORC and gasification for bioenergy applications. Energy Convers. Manag. 50, 674–681 (2009)

    Google Scholar 

  47. 47.

    Bianchi, M., Cherubini, F., De Pascale, A., Peretto, A., Elmegaard, B.: Cogeneration from poultry industry wastes: indirectly fired gas turbine application. Energy 31, 1417–1436 (2006)

    Google Scholar 

  48. 48.

    Sridhar, G., Paul, P., Mukunda, H.: Zero-dimensional modelling of a producer gas-based reciprocating engine. Proc. Inst. Mech. Eng. Part A J. Power Energy 220, 923–931 (2006)

    Google Scholar 

  49. 49.

    Murphy, J.D., McKeogh, E.: Technical, economic and environmental analysis of energy production from municipal solid waste. Renew. Energy 29, 1043–1057 (2004)

    Google Scholar 

  50. 50.

    Arbon, I.: Worldwide use of biomass in power generation and combined heat and power schemes. Proc. Inst. Mech. Eng. Part A J. Power Energy 216, 41–57 (2002)

    Google Scholar 

  51. 51.

    Shuying, L., Guocai, W., DeLaquil, P.: Biomass gasification for combined heat and power in Jilin province, People’s Republic of China. Energy Sustain. Dev. 5, 47–53 (2001)

    Google Scholar 

  52. 52.

    Larson, E.D., Williams, R.H., Leal, M.R.L.: A review of biomass integrated-gasifier/gas turbine combined cycle technology and its application in sugarcane industries, with an analysis for Cuba. Energy Sustain. Dev. 5, 54–76 (2001)

    Google Scholar 

  53. 53.

    Warren, A., El-Halwagi, M.: An economic study for the co-generation of liquid fuel and hydrogen from coal and municipal solid waste. Fuel Process. Technol. 49, 157–166 (1996)

    Google Scholar 

  54. 54.

    Gustavsson, L.: Biomass and district-heating systems. Renew. Energy 5, 838–840 (1994)

    Google Scholar 

  55. 55.

    La Villetta, M., Costa, M., Cirillo, D., Massarotti, N., Vanoli, L.: Performance analysis of a biomass powered micro-cogeneration system based on gasification and syngas conversion in a reciprocating engine. Energy Convers. Manag. 175, 33–48 (2018)

    Google Scholar 

  56. 56.

    Sridhar, G., Paul, P.J., Mukunda, H.S.: Biomass derived producer gas as a reciprocating engine fuel—an experimental analysis. Biomass Bioenerg. 21, 61–72 (2001)

    Google Scholar 

  57. 57.

    Pérez, N.P., Machin, E.B., Pedroso, D.T., Roberts, J.J., Antunes, J.S., Silveira, J.L.: Biomass gasification for combined heat and power generation in the Cuban context: Energetic and economic analysis. Appl. Therm. Eng. 90, 1–12 (2015)

    Google Scholar 

  58. 58.

    Chang, C.T., Costa, M., La Villetta, M., Macaluso, A., Piazzullo, D., Vanoli, L.: Thermo-economic analyses of a Taiwanese combined CHP system fuelled with syngas from rice husk gasification. Energy 167, 766–780 (2019)

    Google Scholar 

  59. 59.

    Rahimi, M., Hamedi, M., Amidpour, M.: Thermodynamic and economic evaluation of a novel configuration for sustainable production of power and freshwater based on biomass gasification. Energy Syst. 1–46 (2019)

  60. 60.

    Prando, D., Patuzzi, F., Baggio, P., Baratieri, M.: CHP gasification systems fed by torrefied biomass: assessment of the energy performance. Waste Biomass Valoriz. 5, 147–155 (2014)

    Google Scholar 

  61. 61.

    Madadian, E., Amiri, L., Lefsrud, M.: Thermodynamic analysis of wood pellet gasification in a downdraft reactor for advanced biofuel production. Waste Biomass Valoriz. 1–12 (2019)

  62. 62.

    Technical Specification of MTU AE 20V4000 motor

  63. 63.

    Iran SCo. Energy and water cost report (2018)

  64. 64.

    Salimi, M., Amidpour, M.: Modeling, simulation, parametric study and economic assessment of reciprocating internal combustion engine integrated with multi-effect desalination unit. Energy Convers. Manag. 138, 299–311 (2017)

    Google Scholar 

  65. 65.

    Meratizaman, M., Monadizadeh, S., Amidpour, M.: Introduction of an efficient small-scale freshwater-power generation cycle (SOFC–GT–MED), simulation, parametric study and economic assessment. Desalination 351, 43–58 (2014)

    Google Scholar 

  66. 66.

    Bejan, A.T.G., Moran, M.: Thermal Design and Optimization. Wiley, New York (1996)

    MATH  Google Scholar 

  67. 67.

    Statistical report on availibility of agricultural products in Iran. Ministry of Agriculture (2010)

  68. 68.

    Ranzi, E., Dente, M., Goldaniga, A., Bozzano, G., Faravelli, T.: Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Prog. Energy Combust. Sci. 27, 99–139 (2001)

    Google Scholar 

  69. 69.

    Rodrigues, R., Secchi, A.R., Marcílio, N.R., Godinho, M.: Modeling of biomass gasification applied to a combined gasifier-combustor unit: equilibrium and kinetic approaches. Comput. Aided Chem. Eng. 27, 657–662 (2009)

    Google Scholar 

  70. 70.

    Yamazaki, T., Kozu, H., Yamagata, S., Murao, N., Ohta, S., Shiya, S., et al.: Effect of superficial velocity on tar from downdraft gasification of biomass. Energy Fuels 19, 1186–1191 (2005)

    Google Scholar 

  71. 71.

    Basu, P.: Biomass Gasification and Pyrolysis: Practical Design and Theory. Academic Press, Cambridge (2010)

    Google Scholar 

  72. 72.

    Çengel, Y.A., Boles, M.A.: Thermodynamics: An Engineering Approach. McGraw-Hill, New York (2002)

    Google Scholar 

  73. 73.

    Chase, M.: NIST—JANAF Thermochemical Tables (Journal of Physical and Chemical Reference Data Monograph No. 9). American Institute of Physics, College Park (1998)

  74. 74.

    Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  75. 75.

    Kalina, J.: Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC. Appl. Therm. Eng. 31, 2829–2840 (2011)

    Google Scholar 

  76. 76.

    Sonntag, R.E., Borgnakke, C., Van Wylen, G.J., Van Wyk, S.: Fundamentals of Thermodynamics. Wiley, New York (1998)

    Google Scholar 

  77. 77.

    Yassin, L., Lettieri, P., Simons, S.J.R., Germanà, A.: Techno-economic performance of energy-from-waste fluidized bed combustion and gasification processes in the UK context. Chem. Eng. J. 146, 315–327 (2009)

    Google Scholar 

  78. 78.

    Bridgwater, A.V., Toft, A.J., Brammer, J.G.: A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew. Sustain. Energy Rev. 6, 181–246 (2002)

    Google Scholar 

  79. 79.

    Sayyaadi, H., Mehrabipour, R.: Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger. Energy 38, 362–375 (2012)

    Google Scholar 

  80. 80.

    Kalina, J., Skorek, J.: CHP plants for distributed generation-equipment sizing and system performance evaluation. In: Proceeding of ECOS. Berlin, Germany (2002)

  81. 81.

    Carapellucci, R., Giordano, L.: A comparison between exergetic and economic criteria for optimizing the heat recovery steam generators of gas-steam power plants. Energy 58, 458–472 (2013)

    Google Scholar 

  82. 82.

    Smith, R.: Chemical Process Design and Integration. Wiley, New York (2005)

    Google Scholar 

  83. 83.

    Ghorbani, B., Mehrpooya, M., Hamedi, M.-H., Amidpour, M.: Exergoeconomic analysis of integrated natural gas liquids (NGL) and liquefied natural gas (LNG) processes. Appl. Therm. Eng. 113, 1483–1495 (2017)

    Google Scholar 

  84. 84.

    Statistics Published by Central Bank of the Islamic Republic of Iran

  85. 85.

    Ngan, M.S., Tan, C.W.: Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular Malaysia. Renew. Sustain. Energy Rev. 16, 634–647 (2012)

    Google Scholar 

  86. 86.

    Channiwala, S., Parikh, P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81, 1051–1063 (2002)

    Google Scholar 

  87. 87.

    Jayah, T., Aye, L., Fuller, R.J., Stewart, D.: Computer simulation of a downdraft wood gasifier for tea drying. Biomass Bioenerg. 25, 459–469 (2003)

    Google Scholar 

  88. 88.

    Bomprezzi, L., Pierpaoli, P., Raffaelli, R.: The heating value of gas obtained from biomass gasification: a new method for its calculation or prediction. Proc. Inst. Mech. Eng. Part A J. Power Energy 216, 447–452 (2002)

    Google Scholar 

  89. 89.

    Altafini, C.R., Wander, P.R., Barreto, R.M.: Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energy Convers. Manag. 44, 2763–2777 (2003)

    Google Scholar 

  90. 90.

    Srinivas, T., Gupta, A., Reddy, B.: Thermodynamic equilibrium model and exergy analysis of a biomass gasifier. J. Energy Res. Technol. 131, 031801 (2009)

    Google Scholar 

  91. 91.

    Loha, C., Gu, S., De Wilde, J., Mahanta, P., Chatterjee, P.K.: Advances in mathematical modeling of fluidized bed gasification. Renew. Sustain. Energy Rev. 40, 688–715 (2014)

    Google Scholar 

  92. 92.

    Čuček, L., Martín, M., Grossmann, I.E., Kravanja, Z.: Energy, water and process technologies integration for the simultaneous production of ethanol and food from the entire corn plant. Comput. Chem. Eng. 35, 1547–1557 (2011)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohammad Hossein Hamedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahimi, M.J., Hamedi, M.H., Amidpour, M. et al. Technoeconomic Evaluation of a Gasification Plant: Modeling, Experiment and Software Development. Waste Biomass Valor 11, 6815–6840 (2020).

Download citation


  • Biomass gasification
  • Thermodynamic
  • Economic
  • Simulation
  • C# programming