Recovery of Nitrogen and Phosphorus Nutrition from Anaerobic Digestate by Natural Superabsorbent Fiber-Based Adsorbent and Reusing as an Environmentally Friendly Slow-Release Fertilizer for Horticultural Plants

Abstract

Purpose

To help minimize the negative impact of chemical fertilizers on the environment, recycle nitrogen and phosphorus nutrients of anaerobic digestate and reduce loss of nutrients via leaching, an eco-friendly slow-release fertilizer was prepared through recovery of nitrogen and phosphorus nutrition from digestate using superabsorbent fibers extracted from soybean curd residue as an adsorbent.

Methods

The preparation method was proposed, and the fiber composite-based adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscope (SEM) techniques.

Results

The successful incorporation of N and P into the fiber composite-based adsorbent via adsorption was confirmed by results of these analyses. The prepared fertilizer showed a relatively high N content (3.65 wt%) and a limited P content (0.14 wt%). Also, the swelling capacity as well as water retention capability of the obtained fiber composite-based adsorbent were evaluated. The release behavior of N and P from impregnated fiber composites was examined and was found to be partially in good accordance with the standard of the Committee of European Normalization, showing good slow-release and water-retention properties. Furthermore, in order to assess the fertilizer quality of the prepared materials, the effects of different fertilizers (commercially available fertilizer and prepared slow-release fertilizer) on tomato plant growth and soil microbial communities were investigated.

Conclusions

The obtained results demonstrated the potential of fiber composite-based slow-release fertilizer system for recycling N and P nutrition from digestate, improving the effectiveness of fertilizer as well as protecting the environment.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Cao, X., Mengyang, W., Rui, S., La, Z., Dan, C., Guangcheng, S., Xiangping, G., Weiguang, W., Shuhai, T.: Water footprint assessment for crop production based on field measurements: a case study of irrigated paddy rice in East China. Sci. Total Environ. 610, 84–93 (2018)

    Google Scholar 

  2. 2.

    Rivera, X.C.S., Bacenetti, J., Fusi, A., Niero, M.: The influence of fertiliser and pesticide emissions model on life cycle assessment of agricultural products: the case of Danish and Italian barley. Sci. Total Environ. 592, 745–757 (2017)

    Google Scholar 

  3. 3.

    Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S.: Agricultural sustainability and intensive production practices. Nature 418(6898), 671 (2002)

    Google Scholar 

  4. 4.

    Chen, S., Yang, M., Ba, C., Yu, S., Jiang, Y., Zou, H., Zhang, Y.: Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Sci. Total Environ. 615, 431–437 (2018)

    Google Scholar 

  5. 5.

    Qiao, D., Liu, H., Yu, L., Bao, X., Simon, G.P., Petinakis, E., Chen, L.: Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr. Polym. 147, 146–154 (2016)

    Google Scholar 

  6. 6.

    Azeem, B., KuShaari, K., Man, Z.B., Basit, A., Thanh, T.H.: Review on materials & methods to produce controlled release coated urea fertilizer. J. Control Release. 181, 11–21 (2014)

    Google Scholar 

  7. 7.

    Chen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., Liu, M.: Environmentally friendly fertilizers: a review of materials used and their effects on the environment. Sci. Total Environ. 613, 829–839 (2018)

    Google Scholar 

  8. 8.

    De Vries, W., Kros, J., Kroeze, C., Seitzinger, S.P.: Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5(3–4), 392–402 (2013)

    Google Scholar 

  9. 9.

    Olad, A., Zebhi, H., Salari, D., Mirmohseni, A., Tabar, A.R.: Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Mater. Sci. Eng. C 90, 333–340 (2018)

    Google Scholar 

  10. 10.

    França, D., Medina, Â.F., Messa, L.L., Souza, C.F., Faez, R.: Chitosan spray-dried microcapsule and microsphere as fertilizer host for swellable-controlled release materials. Carbohydr. Polym. 196, 47–55 (2018). https://doi.org/10.1016/j.carbpol.2018.05.014

    Article  Google Scholar 

  11. 11.

    dos Santos, B.R., Bacalhau, F.B., dos Santos Pereira, T., Souza, C.F., Faez, R.: Chitosan-montmorillonite microspheres: a sustainable fertilizer delivery system. Carbohydr. Polym. 127, 340–346 (2015)

    Google Scholar 

  12. 12.

    Kenawy, E.R., Azaam, M.M., El-nshar, E.M.: Preparation of carboxymethyl cellulose-g-poly (acrylamide)/montmorillonite superabsorbent composite as a slow-release urea fertilizer. Polym. Adv. Technol. 29(7), 2072–2079 (2018)

    Google Scholar 

  13. 13.

    Khan, M.A., Mingzhi, W., Lim, B.-K., Lee, J.-Y.: Utilization of waste paper for an environmentally friendly slow-release fertilizer. J. Wood. Sci. 54(2), 158–161 (2008)

    Google Scholar 

  14. 14.

    Wang, X., Lü, S., Gao, C., Feng, C., Xu, X., Bai, X., Gao, N., Yang, J., Liu, M., Wu, L.: Recovery of ammonium and phosphate from wastewater by wheat straw-based amphoteric adsorbent and reusing as a multifunctional slow-release compound fertilizer. ACS Sustain. Chem. Eng. 4, 2068–2079 (2016)

    Google Scholar 

  15. 15.

    González, M., Cea, M., Medina, J., González, A., Diez, M., Cartes, P., Monreal, C., Navia, R.: Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci. Total Environ. 505, 446–453 (2015)

    Google Scholar 

  16. 16.

    Li, S., Chen, Y., Li, K., Lei, Z., Zhang, Z.: Characterization of physicochemical properties of fermented soybean curd residue by Morchella esculenta. Int. Biodeterior. Biodegradation 109, 113–118 (2016)

    Google Scholar 

  17. 17.

    Li, S., Zhu, D., Li, K., Yang, Y., Lei, Z., Zhang, Z.: Soybean curd residue: composition, utilization, and related limiting factors. ISRN Ind. Eng. (2013). https://doi.org/10.1155/2013/423590

    Article  Google Scholar 

  18. 18.

    Li, B., Qiao, M., Lu, F.: Composition, nutrition, and utilization of okara (soybean residue). Food Rev. Int. 28(3), 231–252 (2012)

    Google Scholar 

  19. 19.

    O’Toole, D.K.: Characteristics and use of okara, the soybean residue from soy milk production a review. J. Agric. Food Chem. 47(2), 363–371 (1999)

    Google Scholar 

  20. 20.

    Gao, J., Liu, J., Peng, H., Wang, Y., Cheng, S., Lei, Z.: Preparation of a low-cost and eco-friendly superabsorbent composite based on wheat bran and laterite for potential application in Chinese herbal medicine growth. R. Soc. Open. Sci. 5(5), 180007 (2018)

    Google Scholar 

  21. 21.

    Ma, J., Li, X., Bao, Y.: Advances in cellulose-based superabsorbent hydrogels. RSC Adv. 5(73), 59745–59757 (2015)

    Google Scholar 

  22. 22.

    Monfet, E., Aubry, G., Ramirez, A.A.: Nutrient removal and recovery from digestate: a review of the technology. Biofuels 9(2), 247–262 (2018)

    Google Scholar 

  23. 23.

    Gienau, T., Brüß, U., Kraume, M., Rosenberger, S.: Nutrient recovery from biogas digestate by optimised membrane treatment. Waste Biomass Valorization 9(12), 2337–2347 (2018)

    Google Scholar 

  24. 24.

    Vaneeckhaute, C., Lebuf, V., Michels, E., Belia, E., Vanrolleghem, P.A., Tack, F.M., Meers, E.: Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valorization 8(1), 21–40 (2017)

    Google Scholar 

  25. 25.

    Lukehurst, C.T., Frost, P., Al Seadi, T.: Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy 2010, 1–36 (2010)

    Google Scholar 

  26. 26.

    Koszel, M., Lorencowicz, E.: Agricultural use of biogas digestate as a replacement fertilizers. Agric. Agric. Sci. 7, 119–124 (2015)

    Google Scholar 

  27. 27.

    Hong, S.M., Park, J.K., Teeradej, N., Lee, Y.O., Cho, Y.K., Park, C.H.: Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance. Water Environ. Res. 78(1), 76–83 (2006)

    Google Scholar 

  28. 28.

    Atelge, M.R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D.D., Chang, S.W., Atabani, A.E., Al-Muhtaseb, A.H., Unalan, S.: Biogas production from organic waste: recent progress and perspectives. Waste Biomass Valorization (2018). https://doi.org/10.1007/s12649-018-00546-0

    Article  Google Scholar 

  29. 29.

    Wu, L., Liu, M., Liang, R.: Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour. Technol. 99(3), 547–554 (2008)

    Google Scholar 

  30. 30.

    Trenkel, M.E.: Controlled-Release and Stabilized Fertilizers in Agriculture, vol. 11. International Fertilizer Industry Association, Paris (1997)

    Google Scholar 

  31. 31.

    Zhang, L., Zhang, J., Loh, K.-C.: Activated carbon enhanced anaerobic digestion of food waste–Laboratory-scale and Pilot-scale operation. Waste Manag. 75, 270–279 (2018)

    Google Scholar 

  32. 32.

    Van Soest, P.V., Robertson, J., Lewis, B.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991)

    Google Scholar 

  33. 33.

    Zhang, L., Loh, K.-C., Zhang, J.: Food waste enhanced anaerobic digestion of biologically pretreated yard waste: analysis of cellulose crystallinity and microbial communities. Waste Manag. 79, 109–119 (2018). https://doi.org/10.1016/j.wasman.2018.07.036

    Article  Google Scholar 

  34. 34.

    Zhang, J., Mao, L., Zhang, L., Loh, K.-C., Dai, Y., Tong, Y.W.: Metagenomic insight into the microbial networks and metabolic mechanism in anaerobic digesters for food waste by incorporating activated carbon. Sci. Rep. 7(1), 11293 (2017). https://doi.org/10.1038/s41598-017-11826-5

    Article  Google Scholar 

  35. 35.

    Zhang, J., Zhang, L., Loh, K.-C., Dai, Y., Tong, Y.W.: Enhanced anaerobic digestion of food waste by adding activated carbon: fate of bacterial pathogens and antibiotic resistance genes. Biochem. Eng. Sci. 128, 19–25 (2017)

    Google Scholar 

  36. 36.

    Bürck, J., Aras, O., Bertinetti, L., Ilhan, C.A., Ermeydan, M.A., Schneider, R., Ulrich, A.S., Kazanci, M.: Observation of triple helix motif on electrospun collagen nanofibers and its effect on the physical and structural properties. J. Mol. Struct. 1151, 73–80 (2018)

    Google Scholar 

  37. 37.

    Olad, A., Zebhi, H., Salari, D., Mirmohseni, A., Tabar, A.R.: Water retention and slow release studies of a salep-based hydrogel nanocomposite reinforced with montmorillonite clay. New J. Chem. 42(4), 2758–2766 (2018)

    Google Scholar 

  38. 38.

    Ju, X., Bowden, M., Brown, E.E., Zhang, X.: An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr. Polym. 123, 476–481 (2015)

    Google Scholar 

  39. 39.

    Zhang, J., Chen, M., Sui, Q., Wang, R., Tong, J., Wei, Y.: Fate of antibiotic resistance genes and its drivers during anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour. Technol. 217, 28–36 (2016)

    Google Scholar 

  40. 40.

    Tong, J., Liu, J., Zheng, X., Zhang, J., Ni, X., Chen, M., Wei, Y.: Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. Bioresour. Technol. 217, 37–43 (2016)

    Google Scholar 

  41. 41.

    Smith, I.: Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16(3), 463–496 (2003)

    Google Scholar 

  42. 42.

    Helgason, E., Økstad, O.A., Caugant, D.A., Johansen, H.A., Fouet, A., Mock, M.L., Hegna, I., Kolstø, A.-B.: Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66(6), 2627–2630 (2000)

    Google Scholar 

  43. 43.

    Zeng, J., Liu, X., Song, L., Lin, X., Zhang, H., Shen, C., Chu, H.: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016)

    Google Scholar 

  44. 44.

    Luo, G., Rensing, C., Chen, H., Liu, M., Wang, M., Guo, S., Ling, N., Shen, Q.: Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management. Funct. Ecol. 32(4), 1103–1116 (2018)

    Google Scholar 

  45. 45.

    Francioli, D., Schulz, E., Lentendu, G., Wubet, T., Buscot, F., Reitz, T.: Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446 (2016)

    Google Scholar 

  46. 46.

    Janssen, P.H.: Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72(3), 1719–1728 (2006)

    Google Scholar 

  47. 47.

    Joa, J.H., Weon, H.Y., Hyun, H.N., Jeun, Y.C., Koh, S.W.: Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash. J. Microbiol. 52(12), 995–1001 (2014)

    Google Scholar 

  48. 48.

    Youssef, N.H., Elshahed, M.S.: Diversity rankings among bacterial lineages in soil. ISME J. 3(3), 305 (2009)

    Google Scholar 

  49. 49.

    Lee, J., Han, G., Shin, S.G., Koo, T., Cho, K., Kim, W., Hwang, S.: Seasonal monitoring of bacteria and archaea in a full-scale thermophilic anaerobic digester treating food waste-recycling wastewater: correlations between microbial community characteristics and process variables. Chem. Eng. Sci. 300, 291–299 (2016)

    Google Scholar 

  50. 50.

    Harbison, A.B., Price, L.E., Flythe, M.D., Bräuer, S.L.: Micropepsis pineolensis gen. nov., sp. nov., a mildly acidophilic alphaproteobacterium isolated from a poor fen, and proposal of Micropepsaceae fam. nov. within Micropepsales ord. nov. Int. J. Syst. Evol. Microbiol. 67(4), 839–844 (2017)

    Google Scholar 

  51. 51.

    Kostka, J.E., Green, S.J., Rishishwar, L., Prakash, O., Katz, L.S., Mariño-Ramírez, L., Jordan, I.K., Munk, C., Ivanova, N., Mikhailova, N.: Genome sequences for six Rhodanobacter strains, isolated from soils and the terrestrial subsurface, with variable denitrification capabilities. Int. Am. Soc. Microbiol. 194, 4461–4462 (2012)

    Google Scholar 

  52. 52.

    Prakash, O., Green, S.J., Jasrotia, P., Overholt, W.A., Canion, A., Watson, D.B., Brooks, S.C., Kostka, J.E.: Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. Int. J. Syst. Evol. Microbiol. 62(10), 2457–2462 (2012)

    Google Scholar 

  53. 53.

    Mohr, K.I., Garcia, R.O., Gerth, K., Irschik, H., Müller, R.: Sandaracinus amylolyticus gen. nov., sp. nov., a starch-degrading soil myxobacterium, and description of Sandaracinaceae fam. nov. Int. J. Syst. Evol. Microbiol. 62(5), 1191–1198 (2012)

    Google Scholar 

  54. 54.

    Sharma, G., Khatri, I., Subramanian, S.: Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol. Evol. 8(8), 2520–2529 (2016)

    Google Scholar 

  55. 55.

    Asaf, S., Khan, M.A., Khan, A.L., Waqas, M., Shahzad, R., Kim, A.-Y., Kang, S.-M., Lee, I.-J.: Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. J. Plant Interact. 12(1), 31–38 (2017)

    Google Scholar 

  56. 56.

    Chen, B., Zhang, Y., Rafiq, M.T., Khan, K.Y., Pan, F., Yang, X., Feng, Y.: Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117, 367–373 (2014)

    Google Scholar 

Download references

Acknowledgements

This research project was funded by the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Programme.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kai-Chee Loh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 289 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Loh, KC., Sarvanantharajah, S. et al. Recovery of Nitrogen and Phosphorus Nutrition from Anaerobic Digestate by Natural Superabsorbent Fiber-Based Adsorbent and Reusing as an Environmentally Friendly Slow-Release Fertilizer for Horticultural Plants. Waste Biomass Valor 11, 5223–5237 (2020). https://doi.org/10.1007/s12649-019-00915-3

Download citation

Keywords

  • Resource recovery
  • Bio-fertilizer
  • Water absorbency
  • Impregnation
  • Soil microbial communities
  • Pyrosequencing