Skip to main content
Log in

TEMPO-Functionalized Silica as an Efficient and Recyclable Oxidation Catalyst for Conversion of a Lignin Model Compound to Value-Added Products

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Catalytic oxidation of a lignin model compound, vanillyl alcohol (VAL), to vanillin (VN), is a promising process for valorizing lignin-based biomass. As research interests in oxidation of alcohols are concentrated on direct usage of O2, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) has been developed as an oxidation catalyst which can be mediated by O2 to cyclically oxidize alcohols. However, as recover of homogeneous TEMPO from reaction media could be an issue, it is necessary to develop a recyclable heterogeneous TEMPO for VAL oxidation. In the present study, a particular heterogeneous TEMPO is fabricated via a simple condensation of OH-TEMPO and tetraethyl orthosilicate to insert TEMPO functional groups into SiO2 matrices. The resulting composite of TEMPO@SiO2 is then employed for the first time for oxidation of VAL to VN. By incorporation with a co-catalyst, Cu+, TEMPO@SiO2/Cu+ successfully and selectively converts VAL to VN, and the corresponding conversion efficiency reaches CVAL = 96% with SVN = 96.5 and YVN = 92.6%. Such a superior conversion efficiency is achieved conveniently at ambient temperature within 30 min, demonstrating that TEMPO@SiO2 is not only a highly active catalyst but also a sustainable oxidation catalyst. The optimum condition of TEMPO@SiO2/Cu+ is 7.5 g/L of TEMPO@SiO2 and 5 g/L of Cu salt. TEMPO@SiO2 can be also reused over multiple cycles for VAL conversion to VN with a stably high selectivity for VN. These features validate that TEMPO@SiO2 is indeed a promising, highly-selective and efficient heterogeneous catalyst for valorization of VAL, the lignin model compound, to the target product, VN.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C.: Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply, in: DTIC Document (2005)

  2. Behling, R., Valange, S., Chatel, G.: Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem. 18, 1839–1854 (2016)

    Google Scholar 

  3. Lange, H., Decina, S., Crestini, C.: Oxidative upgrade of lignin—recent routes reviewed. Eur. Polym. J. 49, 1151–1173 (2013)

    Google Scholar 

  4. Azarpira, A., Ralph, J., Lu, F.: Catalytic alkaline oxidation of lignin and its model compounds: a pathway to aromatic biochemicals. BioEnergy Res. 7, 78–86 (2014)

    Google Scholar 

  5. Dai, J., Patti, A.F., Saito, K.: Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids. Tetrahedron Lett. 57, 4945–4951 (2016)

    Google Scholar 

  6. Pan, J., Fu, J., Lu, X.: Microwave-assisted oxidative degradation of lignin model compounds with metal salts. Energy Fuels 29, 4503–4509 (2015)

    Google Scholar 

  7. Liu, W.J., Jiang, H., Yu, H.Q.: Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem. 17, 4888–4907 (2015)

    Google Scholar 

  8. Gharehkhani, S., Zhang, Y., Fatehi, P.: Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Prog. Energy Combust. Sci. 72, 59–89 (2019)

    Google Scholar 

  9. Jha, A., Patil, K.R., Rode, C.V.: Mixed Co–Mn oxide-catalysed selective aerobic oxidation of vanillyl alcohol to vanillin in base-free conditions. ChemPlusChem 78, 1384–1392 (2013)

    Google Scholar 

  10. Jha, A., Rode, C.V.: Highly selective liquid-phase aerobic oxidation of vanillyl alcohol to vanillin on cobalt oxide (Co3O4) nanoparticles. New J. Chem. 37, 2669–2674 (2013)

    Google Scholar 

  11. Saha, S., Hamid, S.B.A., Ali, T.H.: Catalytic evaluation on liquid phase oxidation of vanillyl alcohol using air and H2O2 over mesoporous Cu–Ti composite oxide. Appl. Surf. Sci. 394, 205–218 (2017)

    Google Scholar 

  12. Jha, A., Mhamane, D., Suryawanshi, A., Joshi, S.M., Shaikh, P., Biradar, N., Ogale, S., Rode, C.V.: Triple nanocomposites of CoMn2O4, Co3O4 and reduced graphene oxide for oxidation of aromatic alcohols. Catal. Sci. Technol. 4, 1771–1778 (2014)

    Google Scholar 

  13. Yuan, Z., Chen, S., Liu, B.: Nitrogen-doped reduced graphene oxide-supported Mn3O4: an efficient heterogeneous catalyst for the oxidation of vanillyl alcohol to vanillin. J. Mater. Sci. 52, 164–172 (2017)

    Google Scholar 

  14. Tarasov, A.L., Kustov, L.M., Bogolyubov, A.A., Kiselyov, A.S., Semenov, V.V.: New and efficient procedure for the oxidation of dioxybenzylic alcohols into aldehydes with Pt and Pd-based catalysts under flow reactor conditions. Appl. Catal. A 366, 227–231 (2009)

    Google Scholar 

  15. Ramana, S., Rao, B.G., Venkataswamy, P., Rangaswamy, A., Reddy, B.M.: Nanostructured Mn-doped ceria solid solutions for efficient oxidation of vanillyl alcohol. J. Mol. Catal. A 415, 113–121 (2016)

    Google Scholar 

  16. Silveira, J.A.G.D., Rabelo, É.M.L., Lima, P.C.S., Chaves, B.N., Ribeiro, M.F.B.: Post-mortem hemoparasite detection in free-living Brazilian brown brocket deer (Mazama gouazoubira, Fischer 1814). Rev.Bras. de Parasitol. Vet. 23, 206–215 (2014)

    Google Scholar 

  17. Deng, W., Zhang, H., Wu, X., Li, R., Zhang, Q., Wang, Y.: Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chem. 17, 5009–5018 (2015)

    Google Scholar 

  18. Yepez, R., Garcia, S., Schachat, P., Sanchez-Sanchez, M., Gonzalez-Estefan, J.H., Gonzalez-Zamora, E., Ibarra, I.A., Aguilar-Pliego, J.: Catalytic activity of HKUST-1 in the oxidation of trans-ferulic acid to vanillin. New J. Chem. 39, 5112–5115 (2015)

    Google Scholar 

  19. Behling, R., Chatel, G., Valange, S.: Sonochemical oxidation of vanillyl alcohol to vanillin in the presence of a cobalt oxide catalyst under mild conditions. Ultrason. Sonochem. 36, 27–35 (2017)

    Google Scholar 

  20. Fache, M., Boutevin, B., Caillol, S.: Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46 (2016)

    Google Scholar 

  21. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W.: Lignin biosynthesis and structure. Plant Physiol. 153, 895–905 (2010)

    Google Scholar 

  22. Strassberger, Z., Alberts, A.H., Louwerse, M.J., Tanase, S., Rothenberg, G.: Catalytic cleavage of lignin β-O-4 link mimics using copper on alumina and magnesia–alumina. Green Chem. 15, 768–774 (2013)

    Google Scholar 

  23. Lin, K.-Y.A., Lai, H.-K., Chen, Z.-Y.: Selective generation of vanillin from catalytic oxidation of a lignin model compound using ZIF-derived carbon-supported cobalt nanocomposite. J. Taiwan Inst. Chem. Eng. 78, 337 (2017)

    Google Scholar 

  24. Lai, H.-K., Chou, Y.-Z., Lee, M.-H., Lin, K.-Y.A.: Coordination polymer-derived cobalt nanoparticle-embedded carbon nanocomposite as a magnetic multi-functional catalyst for energy generation and biomass conversion. Chem. Eng. J. 332, 717–726 (2018)

    Google Scholar 

  25. Lin, J.-Y., Lai, H.-K., Lin, K.-Y.A.: Rapid microwave-hydrothermal conversion of lignin model compounds to value-added products via catalytic oxidation using metal organic frameworks. Chem. Pap. 2, 2315 (2018)

    Google Scholar 

  26. Saha, S., Abd Hamid, S.B.: Nanosized spinel Cu-Mn mixed oxide catalyst prepared via solvent evaporation for liquid phase oxidation of vanillyl alcohol using air and H2O2. RSC Adv. 6, 96314–96326 (2016)

    Google Scholar 

  27. Shilpy, M., Ehsan, M.A., Ali, T.H., Abd-Hamid, S.B., Ali, M.E.: Performance of cobalt titanate towards H2O2 based catalytic oxidation of lignin model compound. RSC Adv. 5, 79644–79653 (2015)

    Google Scholar 

  28. Hoover, J.M., Stahl, S.S.: Highly practical Copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols. J. Am. Chem. Soc. 133, 16901–16910 (2011)

    Google Scholar 

  29. Hill, N.J., Hoover, J.M., Stahl, S.S.: Aerobic alcohol oxidation using a Copper(I)/TEMPO catalyst system: a green, catalytic oxidation reaction for the undergraduate organic chemistry laboratory. J. Chem. Educ. 90, 102–105 (2013)

    Google Scholar 

  30. Hoover, J.M., Ryland, B.L., Stahl, S.S.: Mechanism of Copper(I)/TEMPO-catalyzed aerobic alcohol oxidation. J. Am. Chem. Soc. 135, 2357–2367 (2013)

    Google Scholar 

  31. Hansen, T.S., Sádaba, I., García-Suárez, E.J., Riisager, A.: Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions. Appl. Catal. A 456, 44–50 (2013)

    Google Scholar 

  32. Kubota, S.R., Choi, K.S.: Electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic Acid (FDCA) in acidic media enabling spontaneous FDCA separation. ChemSusChem 11, 2138–2145 (2018)

    Google Scholar 

  33. Lin, J.-Y., Yuan, M.-H., Lin, K.-Y.A., Lin, C.-H.: Selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by Cu-based metal organic frameworks with 2,2,6,6-tetramethylpiperidin-oxyl. J. Taiwan Inst. Chem. Eng. 102, 242–249 (2019)

    Google Scholar 

  34. Li, M., Zeng, L., Chen, Y., Zhuang, L., Wang, X., Shen, H.: Realization of colored multicrystalline silicon solar cells with SiO2/SiNx: H double layer antireflection coatings. Int. J. Photoenergy (2013). https://doi.org/10.1155/2013/352473

    Article  Google Scholar 

  35. Kim, H.J., Bae, I.-S., Cho, S.-J., Boo, J.-H., Lee, B.-C., Heo, J., Chung, I., Hong, B.: Synthesis and characteristics of NH2-functionalized polymer films to align and immobilize DNA molecules. Nanoscale Res. Lett. 7, 30 (2012)

    Google Scholar 

  36. Ahmed, M.H., Byrne, J.A., McLaughlin, J., Ahmed, W.: Study of human serum albumin adsorption and conformational change on DLC and silicon doped DLC using XPS and FTIR spectroscopy. J. Biomater. Nanobiotechnol. 04(02), 10 (2013)

    Google Scholar 

  37. Niedziałkowski, P., Ossowski, T., Zięba, P., Cirocka, A., Rochowski, P., Pogorzelski, S.J., Ryl, J., Sobaszek, M., Bogdanowicz, R.: Poly-l-lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases. J. Electroanal. Chem. 756, 84–93 (2015)

    Google Scholar 

  38. Wäckerlin, C., Chylarecka, D., Kleibert, A., Müller, K., Iacovita, C., Nolting, F., Jung, T.A., Ballav, N.: Controlling spins in adsorbed molecules by a chemical switch. Nat. Commun. 1, 61 (2010)

    Google Scholar 

  39. Gozdziewska, M., Cichowicz, G., Markowska, K., Zawada, K., Megiel, E.: Nitroxide-coated silver nanoparticles: synthesis, surface physicochemistry and antibacterial activity. RSC Adv. 5, 58403–58415 (2015)

    Google Scholar 

  40. Methaapanon, R., Bent, S.F.: Comparative study of titanium dioxide atomic layer deposition on silicon dioxide and hydrogen-terminated silicon. J. Phys. Chem. C 114, 10498–10504 (2010)

    Google Scholar 

  41. Zatsepin, A.F., Zatsepin, D.A., Boukhvalov, D.W., Gavrilov, N.V., Shur, V.Y., Esin, A.A.: The MRO-accompanied modes of Re-implantation into SiO2-host matrix: XPS and DFT based scenarios. J. Alloy. Compd. 728, 759–766 (2017)

    Google Scholar 

  42. Jiatao, Y., Jian, X., Ming, L.: Copper-catalyzed highly efficient aerobic oxidative synthesis of benzimidazoles, benzoxazoles and benzothiazoles from aromatic alcohols under solvent-free conditions in open air at room temperature. Appl. Organomet. Chem. 27, 606–610 (2013)

    Google Scholar 

  43. Lin, K.-Y.A., Lai, H.-K., Chen, Z.-Y.: Selective generation of vanillin from catalytic oxidation of a lignin model compound using ZIF-derived carbon-supported cobalt nanocomposite. J. Taiwan Inst. Chem. Eng. 78, 337–343 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun-Yi Andrew Lin or Chia-Hua Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, MW., Lin, KY.A. & Lin, CH. TEMPO-Functionalized Silica as an Efficient and Recyclable Oxidation Catalyst for Conversion of a Lignin Model Compound to Value-Added Products. Waste Biomass Valor 11, 6917–6928 (2020). https://doi.org/10.1007/s12649-019-00910-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00910-8

Keywords

Navigation