Abstract
Lignin has been widely named as a sustainable and renewable bioresource of energy, fuels, chemicals and materials, particularly phenolic chemicals production on Earth. These bio-derived compounds are in great potential need of biorefinery to valorize complete plant biomass. Lignin depolymerization showed a great promise approach to convert into low molecular aromatic products. In this report, high molecular weight (54,000 Da) lignin depolymerization into maximum yields (87%), (≥ 95 ± 6% mass balance) using a formic acid along with dual (–SO3H) functionalized imidazole-based recyclable (4 times) Brønsted acidic ionic liquids (BAILs) as catalysts have been investigated in H2O–CH3OH (1:5, v/v) at 120 °C for 1 h. The structural correlations between the lignin and aromatic products were studied by bulk (CHNS, GPC, etc.) and molecular (UV–Vis, FT-IR, NMR (1D/2D) levels experimental techniques. Additionally, the identification of aromatic products was carried out by applying HPLC, GC and GC–MS techniques.
Graphic Abstract
Addition of a formic acid into Brønsted acidic ionic liquids improved the catalytic efficiency significantly for lignin depolymerization into 87% low molecular weight aromatic products.







Similar content being viewed by others
References
Navarro, R.M., Peña, M.A., Fierro, J.L.G.: Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem. Rev. 107(10), 3952–3991 (2007). https://doi.org/10.1021/cr0501994
Levi, P.G., Cullen, J.M.: Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. Environ. Sci. Technol. 52(4), 1725–1734 (2018). https://doi.org/10.1021/acs.est.7b04573
Clark, J., Farmer, T., Hunt, A., Sherwood, J.: Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int. J. Mol. Sci. 16(8), 17101 (2015)
Bhaumik, P., Dhepe, P.L.: Solid acid catalyzed synthesis of furans from carbohydrates. Catal. Rev. 58(1), 36–112 (2016). https://doi.org/10.1080/01614940.2015.1099894
Sahu, R., Dhepe, P.L.: A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts. ChemSusChem 5(4), 751–761 (2012). https://doi.org/10.1002/cssc.201100448
Stocker, M.: Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed. 47(48), 9200–9211 (2008). https://doi.org/10.1002/anie.200801476
Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106(9), 4044–4098 (2006). https://doi.org/10.1021/cr068360d
Corma, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107(6), 2411–2502 (2007). https://doi.org/10.1021/cr050989d
Gallezot, P.: Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41(4), 1538–1558 (2012). https://doi.org/10.1039/C1CS15147A
Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T.: The path forward for biofuels and biomaterials. Science 311(5760), 484–489 (2006). https://doi.org/10.1126/science.1114736
Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813), 804–807 (2007). https://doi.org/10.1126/science.1137016
Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., Poliakoff, M.: Valorization of biomass: deriving more value from waste. Science 337(6095), 695–699 (2012). https://doi.org/10.1126/science.1218930
Nanayakkara, S., Patti, A.F., Saito, K.: Chemical depolymerization of lignin involving the redistribution mechanism with phenols and repolymerization of depolymerized products. Green Chem. 16(4), 1897–1903 (2014). https://doi.org/10.1039/C3GC41708E
Nimz, H.: Beech lignin—proposal of a constitutional scheme. Angew. Chem. Int. Ed. Engl. 13(5), 313–321 (1974). https://doi.org/10.1002/anie.197403131
Vanholme, R., De Meester, B., Ralph, J., Boerjan, W.: Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 56, 230–239 (2019). https://doi.org/10.1016/j.copbio.2019.02.018
Stärk, K., Taccardi, N., Bösmann, A., Wasserscheid, P.: Oxidative depolymerization of lignin in ionic liquids. ChemSusChem 3(6), 719–723 (2010). https://doi.org/10.1002/cssc.200900242
Singh, S.K., Dhepe, P.L.: Isolation of lignin by organosolv process from different varieties of rice husk: understanding their physical and chemical properties. Bioresour. Technol. 221, 310–317 (2016). https://doi.org/10.1016/j.biortech.2016.09.042
Singh, S.K., Dhepe, P.L.: Experimental evidences for existence of varying moieties and functional groups in assorted crop waste derived organosolv lignins. Ind. Crops Prod. 119, 144–151 (2018). https://doi.org/10.1016/j.indcrop.2018.04.002
Bär, J., Phongpreecha, T., Singh, S.K., Kral Yilmaz, M., Foster, C.E., Crowe, J.D., Hodge, D.B.: Deconstruction of hybrid poplar to monomeric sugars and aromatics using ethanol organosolv fractionation. Biomass Convers. Biorefinery 8(4), 813–824 (2018). https://doi.org/10.1007/s13399-018-0330-x
Lippach, A.K.W., Krämer, R., Hansen, M.R., Roos, S., Stöwe, K., Stommel, M., Wenz, G., Maier, W.F.: Synthesis and mechanical properties of organic-inorganic hybrid materials from lignin and polysiloxanes. ChemSusChem 5(9), 1778–1786 (2012). https://doi.org/10.1002/cssc.201200095
Boerjan, W., Ralph, J., Baucher, M.: Lignin biosynthesis. Annu. Rev. Plant Biol. 54(1), 519–546 (2003). https://doi.org/10.1146/annurev.arplant.54.031902.134938
Rahimi, A., Azarpira, A., Kim, H., Ralph, J., Stahl, S.S.: Chemoselective metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 135(17), 6415–6418 (2013). https://doi.org/10.1021/ja401793n
Sergeev, A.G., Hartwig, J.F.: Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 332(6028), 439–443 (2011). https://doi.org/10.1126/science.1200437
Li, C., Zheng, M., Wang, A., Zhang, T.: One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ. Sci. 5(4), 6383–6390 (2012). https://doi.org/10.1039/C1EE02684D
Hasegawa, I., Inoue, Y., Muranaka, Y., Yasukawa, T., Mae, K.: Selective Production of organic acids and depolymerization of lignin by hydrothermal oxidation with diluted hydrogen peroxide. Energy Fuels 25(2), 791–796 (2011). https://doi.org/10.1021/ef101477d
Erdocia, X., Prado, R., Corcuera, M.Á., Labidi, J.: Influence of reaction conditions on lignin hydrothermal treatment. Front Energy Res 2, 1–7 (2014). https://doi.org/10.3389/fenrg.2014.00013
Hill Bembenic, M.A., Burgess Clifford, C.E.: Subcritical water reactions of a hardwood derived organosolv lignin with nitrogen, hydrogen, carbon monoxide, and carbon dioxide gases. Energy Fuels 26(7), 4540–4549 (2012). https://doi.org/10.1021/ef300446s
Onwudili, J.A., Williams, P.T.: Catalytic depolymerization of alkali lignin in subcritical water: influence of formic acid and Pd/C catalyst on the yields of liquid monomeric aromatic products. Green Chem. 16(11), 4740–4748 (2014). https://doi.org/10.1039/C4GC00854E
Laskar, D.D., Tucker, M.P., Chen, X., Helms, G.L., Yang, B.: Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons. Green Chem. 16(2), 897–910 (2014). https://doi.org/10.1039/C3GC42041H
Sturgeon, M.R., O’Brien, M.H., Ciesielski, P.N., Katahira, R., Kruger, J.S., Chmely, S.C., Hamlin, J., Lawrence, K., Hunsinger, G.B., Foust, T.D., Baldwin, R.M., Biddy, M.J., Beckham, G.T.: Lignin depolymerisation by nickel supported layered-double hydroxide catalysts. Green Chem. 16(2), 824–835 (2014). https://doi.org/10.1039/c3gc42138d
Deepa, A.K., Dhepe, P.L.: Function of metals and supports on the hydrodeoxygenation of phenolic compounds. ChemPlusChem 79(11), 1573–1583 (2014). https://doi.org/10.1002/cplu.201402145
Deepa, A.K., Dhepe, P.L.: Solid acid catalyzed depolymerization of lignin into value added aromatic monomers. RSC Adv 4(25), 12625–12629 (2014). https://doi.org/10.1039/c3ra47818a
Ma, Z., Troussard, E., van Bokhoven, J.A.: Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl. Catal. A 423–424, 130–136 (2012). https://doi.org/10.1016/j.apcata.2012.02.027
Roberts, V.M., Stein, V., Reiner, T., Lemonidou, A., Li, X., Lercher, J.A.: Towards quantitative catalytic lignin depolymerization. Chem. Eur. J. 17(21), 5939–5948 (2011). https://doi.org/10.1002/chem.201002438
Chaudhary, R., Dhepe, P.L.: Solid base catalyzed depolymerization of lignin into low molecular weight products. Green Chem. 19(3), 778–788 (2017). https://doi.org/10.1039/C6GC02701F
Deepa, A.K., Dhepe, P.L.: Lignin depolymerization into aromatic monomers over solid acid catalysts. ACS Catal 5(1), 365–379 (2015). https://doi.org/10.1021/cs501371q
Singh, S.K., Dhepe, P.L.: Novel synthesis of immobilized brønsted- acidic ionic liquid: application in lignin depolymerization. ChemistrySelect 3(19), 5461–5470 (2018). https://doi.org/10.1002/slct.201703050
Janesko, B.G.: Acid-catalyzed hydrolysis of lignin [small beta]-O-4 linkages in ionic liquid solvents: a computational mechanistic study. Phys. Chem. Chem. Phys. 16(11), 5423–5433 (2014). https://doi.org/10.1039/C3CP53836B
Cox, B.J., Jia, S., Zhang, Z.C., Ekerdt, J.G.: Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids: hammett acidity and anion effects. Polym. Degrad. Stab. 96(4), 426–431 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.01.011
Singh, S.K., Banerjee, S., Vanka, K., Dhepe, P.L.: Understanding interactions between lignin and ionic liquids with experimental and theoretical studies during catalytic depolymerisation. Catal. Today 309, 98–108 (2018). https://doi.org/10.1016/j.cattod.2017.09.050
De Gregorio, G.F., Weber, C.C., Grasvik, J., Welton, T., Brandt, A., Hallett, J.P.: Mechanistic insights into lignin depolymerisation in acidic ionic liquids. Green Chem. 18(20), 5456–5465 (2016). https://doi.org/10.1039/C6GC01295G
Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37(1), 123–150 (2008). https://doi.org/10.1039/B006677J
Hallett, J.P., Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111(5), 3508–3576 (2011). https://doi.org/10.1021/cr1003248
Singh, S.K.: Solubility of lignin and chitin in ionic liquids and their biomedical applications. Int. J. Biol. Macromol. 132, 265–277 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.182
Zakzeski, J., Jongerius, A.L., Weckhuysen, B.M.: Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem. 12(7), 1225–1236 (2010). https://doi.org/10.1039/c001389g
Nanayakkara, S., Patti, A.F., Saito, K.: Lignin depolymerization with phenol via redistribution mechanism in ionic liquids. ACS Sustain. Chem Eng 2(9), 2159–2164 (2014). https://doi.org/10.1021/sc5003424
Seddon, K.R.: Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68(4), 351–356 (1997)
Rahimi, A., Ulbrich, A., Coon, J.J., Stahl, S.S.: Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515(7526), 249 (2014). https://doi.org/10.1038/nature13867
Singh, S.K., Dhepe, P.L.: Effect of structural properties of organosolv lignins isolated from different rice husks on their liquefaction using acidic ionic liquids. Clean Technol. Environ. Policy 20(4), 739–750 (2018). https://doi.org/10.1007/s10098-017-1435-9
Singh, S.K., Dhepe, P.L.: Ionic liquids catalyzed lignin liquefaction: mechanistic studies using TPO-MS, FT-IR, RAMAN and 1D, 2D-HSQC/NOESY NMR. Green Chem. 18(14), 4098–4108 (2016). https://doi.org/10.1039/C6GC00771F
Dier, T.K.F., Rauber, D., Durneata, D., Hempelmann, R., Volmer, D.A.: Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Sci. Rep. 7(1), 5041 (2017). https://doi.org/10.1038/s41598-017-05316-x
Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T.: Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115(21), 11559–11624 (2015). https://doi.org/10.1021/acs.chemrev.5b00155
Phongpreecha, T., Hool, N.C., Stoklosa, R.J., Klett, A.S., Foster, C.E., Bhalla, A., Holmes, D., Thies, M.C., Hodge, D.B.: Predicting lignin depolymerization yields from quantifiable properties using fractionated biorefinery lignins. Green Chem. 19(21), 5131–5143 (2017). https://doi.org/10.1039/C7GC02023F
Ferrini, P., Rinaldi, R.: Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions. Angew. Chem. Int. Ed. 53(33), 8634–8639 (2014). https://doi.org/10.1002/anie.201403747
Foston, M., Samuel, R., He, J., Ragauskas, A.J.: A review of whole cell wall NMR by the direct-dissolution of biomass. Green Chem. 18(3), 608–621 (2016). https://doi.org/10.1039/C5GC02828K
Bai, Y.-Y., Xiao, L.-P., Shi, Z.-J., Sun, R.-C.: Structural variation of bamboo lignin before and after ethanol organosolv pretreatment. Int. J. Mol. Sci. 14(11), 21394–21413 (2013). https://doi.org/10.3390/ijms141121394
Yukiko, T., Ruben, V., Yuki, T., Yasuyuki, I., FC, E., Naofumi, K., Shojiro, H., Saki, H., Amiu, S., Hirofumi, H., Kanna, S.I., Paula, O., Geert G, Geert, G., Kris, M., Jun, K., Toshiyuki, T., Masao, F., Yoshihiro, K., Wout, B., John, R., Eiji, M., Shinya, K.: Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6. Plant Biotechnol. J. 13(6), 821–832 (2015). https://doi.org/10.1111/pbi.12316
van Erven, G., de Visser, R., Merkx, D.W.H., Strolenberg, W., de Gijsel, P., Gruppen, H., Kabel, M.A.: Quantification of lignin and its structural features in plant biomass using 13C lignin as internal standard for pyrolysis-GC-SIM-MS. Anal. Chem. 89(20), 10907–10916 (2017). https://doi.org/10.1021/acs.analchem.7b02632
Singh, S.K., Singh, A.: Effect of acidity of ionic liquids on hydrogen bonding interaction between ionic liquids and lignin monomers. ChemistrySelect 3(12), 3570–3574 (2018). https://doi.org/10.1002/slct.201800037
Sturgeon, M.R., Kim, S., Lawrence, K., Paton, R.S., Chmely, S.C., Nimlos, M., Foust, T.D., Beckham, G.T.: A Mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain. Chem. Eng. 2(3), 472–485 (2014). https://doi.org/10.1021/sc400384w
Acknowledgements
SKS thanks Council of Scientific and Industrial Research (CSIR), India for Senior Research Fellowship (SRF).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
12649_2019_896_MOESM1_ESM.docx
Synthesis and characterization of BAILs, lignin depolymerization, work-up procedure, aromatic products recovery, analytical methods used for the identification of aromatic products. (DOCX 1715 kb)
Rights and permissions
About this article
Cite this article
Singh, S.K., Dhepe, P.L. Formic-Acid-Induced using Recyclable-Ionic Liquids as Catalysts for Lignin Conversion into Aromatic Co-Products. Waste Biomass Valor 11, 6261–6272 (2020). https://doi.org/10.1007/s12649-019-00896-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-019-00896-3

