Skip to main content
Log in

Formic-Acid-Induced using Recyclable-Ionic Liquids as Catalysts for Lignin Conversion into Aromatic Co-Products

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Lignin has been widely named as a sustainable and renewable bioresource of energy, fuels, chemicals and materials, particularly phenolic chemicals production on Earth. These bio-derived compounds are in great potential need of biorefinery to valorize complete plant biomass. Lignin depolymerization showed a great promise approach to convert into low molecular aromatic products. In this report, high molecular weight (54,000 Da) lignin depolymerization into maximum yields (87%), (≥ 95 ± 6% mass balance) using a formic acid along with dual (–SO3H) functionalized imidazole-based recyclable (4 times) Brønsted acidic ionic liquids (BAILs) as catalysts have been investigated in H2O–CH3OH (1:5, v/v) at 120 °C for 1 h. The structural correlations between the lignin and aromatic products were studied by bulk (CHNS, GPC, etc.) and molecular (UV–Vis, FT-IR, NMR (1D/2D) levels experimental techniques. Additionally, the identification of aromatic products was carried out by applying HPLC, GC and GC–MS techniques.

Graphic Abstract

Addition of a formic acid into Brønsted acidic ionic liquids improved the catalytic efficiency significantly for lignin depolymerization into 87% low molecular weight aromatic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Navarro, R.M., Peña, M.A., Fierro, J.L.G.: Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem. Rev. 107(10), 3952–3991 (2007). https://doi.org/10.1021/cr0501994

    Article  Google Scholar 

  2. Levi, P.G., Cullen, J.M.: Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. Environ. Sci. Technol. 52(4), 1725–1734 (2018). https://doi.org/10.1021/acs.est.7b04573

    Article  Google Scholar 

  3. Clark, J., Farmer, T., Hunt, A., Sherwood, J.: Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int. J. Mol. Sci. 16(8), 17101 (2015)

    Article  Google Scholar 

  4. Bhaumik, P., Dhepe, P.L.: Solid acid catalyzed synthesis of furans from carbohydrates. Catal. Rev. 58(1), 36–112 (2016). https://doi.org/10.1080/01614940.2015.1099894

    Article  Google Scholar 

  5. Sahu, R., Dhepe, P.L.: A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts. ChemSusChem 5(4), 751–761 (2012). https://doi.org/10.1002/cssc.201100448

    Article  Google Scholar 

  6. Stocker, M.: Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed. 47(48), 9200–9211 (2008). https://doi.org/10.1002/anie.200801476

    Article  Google Scholar 

  7. Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106(9), 4044–4098 (2006). https://doi.org/10.1021/cr068360d

    Article  Google Scholar 

  8. Corma, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107(6), 2411–2502 (2007). https://doi.org/10.1021/cr050989d

    Article  Google Scholar 

  9. Gallezot, P.: Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41(4), 1538–1558 (2012). https://doi.org/10.1039/C1CS15147A

    Article  Google Scholar 

  10. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T.: The path forward for biofuels and biomaterials. Science 311(5760), 484–489 (2006). https://doi.org/10.1126/science.1114736

    Article  Google Scholar 

  11. Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813), 804–807 (2007). https://doi.org/10.1126/science.1137016

    Article  Google Scholar 

  12. Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., Poliakoff, M.: Valorization of biomass: deriving more value from waste. Science 337(6095), 695–699 (2012). https://doi.org/10.1126/science.1218930

    Article  Google Scholar 

  13. Nanayakkara, S., Patti, A.F., Saito, K.: Chemical depolymerization of lignin involving the redistribution mechanism with phenols and repolymerization of depolymerized products. Green Chem. 16(4), 1897–1903 (2014). https://doi.org/10.1039/C3GC41708E

    Article  Google Scholar 

  14. Nimz, H.: Beech lignin—proposal of a constitutional scheme. Angew. Chem. Int. Ed. Engl. 13(5), 313–321 (1974). https://doi.org/10.1002/anie.197403131

    Article  Google Scholar 

  15. Vanholme, R., De Meester, B., Ralph, J., Boerjan, W.: Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 56, 230–239 (2019). https://doi.org/10.1016/j.copbio.2019.02.018

    Article  Google Scholar 

  16. Stärk, K., Taccardi, N., Bösmann, A., Wasserscheid, P.: Oxidative depolymerization of lignin in ionic liquids. ChemSusChem 3(6), 719–723 (2010). https://doi.org/10.1002/cssc.200900242

    Article  Google Scholar 

  17. Singh, S.K., Dhepe, P.L.: Isolation of lignin by organosolv process from different varieties of rice husk: understanding their physical and chemical properties. Bioresour. Technol. 221, 310–317 (2016). https://doi.org/10.1016/j.biortech.2016.09.042

    Article  Google Scholar 

  18. Singh, S.K., Dhepe, P.L.: Experimental evidences for existence of varying moieties and functional groups in assorted crop waste derived organosolv lignins. Ind. Crops Prod. 119, 144–151 (2018). https://doi.org/10.1016/j.indcrop.2018.04.002

    Article  Google Scholar 

  19. Bär, J., Phongpreecha, T., Singh, S.K., Kral Yilmaz, M., Foster, C.E., Crowe, J.D., Hodge, D.B.: Deconstruction of hybrid poplar to monomeric sugars and aromatics using ethanol organosolv fractionation. Biomass Convers. Biorefinery 8(4), 813–824 (2018). https://doi.org/10.1007/s13399-018-0330-x

    Article  Google Scholar 

  20. Lippach, A.K.W., Krämer, R., Hansen, M.R., Roos, S., Stöwe, K., Stommel, M., Wenz, G., Maier, W.F.: Synthesis and mechanical properties of organic-inorganic hybrid materials from lignin and polysiloxanes. ChemSusChem 5(9), 1778–1786 (2012). https://doi.org/10.1002/cssc.201200095

    Article  Google Scholar 

  21. Boerjan, W., Ralph, J., Baucher, M.: Lignin biosynthesis. Annu. Rev. Plant Biol. 54(1), 519–546 (2003). https://doi.org/10.1146/annurev.arplant.54.031902.134938

    Article  Google Scholar 

  22. Rahimi, A., Azarpira, A., Kim, H., Ralph, J., Stahl, S.S.: Chemoselective metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 135(17), 6415–6418 (2013). https://doi.org/10.1021/ja401793n

    Article  Google Scholar 

  23. Sergeev, A.G., Hartwig, J.F.: Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 332(6028), 439–443 (2011). https://doi.org/10.1126/science.1200437

    Article  Google Scholar 

  24. Li, C., Zheng, M., Wang, A., Zhang, T.: One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ. Sci. 5(4), 6383–6390 (2012). https://doi.org/10.1039/C1EE02684D

    Article  Google Scholar 

  25. Hasegawa, I., Inoue, Y., Muranaka, Y., Yasukawa, T., Mae, K.: Selective Production of organic acids and depolymerization of lignin by hydrothermal oxidation with diluted hydrogen peroxide. Energy Fuels 25(2), 791–796 (2011). https://doi.org/10.1021/ef101477d

    Article  Google Scholar 

  26. Erdocia, X., Prado, R., Corcuera, M.Á., Labidi, J.: Influence of reaction conditions on lignin hydrothermal treatment. Front Energy Res 2, 1–7 (2014). https://doi.org/10.3389/fenrg.2014.00013

    Article  Google Scholar 

  27. Hill Bembenic, M.A., Burgess Clifford, C.E.: Subcritical water reactions of a hardwood derived organosolv lignin with nitrogen, hydrogen, carbon monoxide, and carbon dioxide gases. Energy Fuels 26(7), 4540–4549 (2012). https://doi.org/10.1021/ef300446s

    Article  Google Scholar 

  28. Onwudili, J.A., Williams, P.T.: Catalytic depolymerization of alkali lignin in subcritical water: influence of formic acid and Pd/C catalyst on the yields of liquid monomeric aromatic products. Green Chem. 16(11), 4740–4748 (2014). https://doi.org/10.1039/C4GC00854E

    Article  Google Scholar 

  29. Laskar, D.D., Tucker, M.P., Chen, X., Helms, G.L., Yang, B.: Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons. Green Chem. 16(2), 897–910 (2014). https://doi.org/10.1039/C3GC42041H

    Article  Google Scholar 

  30. Sturgeon, M.R., O’Brien, M.H., Ciesielski, P.N., Katahira, R., Kruger, J.S., Chmely, S.C., Hamlin, J., Lawrence, K., Hunsinger, G.B., Foust, T.D., Baldwin, R.M., Biddy, M.J., Beckham, G.T.: Lignin depolymerisation by nickel supported layered-double hydroxide catalysts. Green Chem. 16(2), 824–835 (2014). https://doi.org/10.1039/c3gc42138d

    Article  Google Scholar 

  31. Deepa, A.K., Dhepe, P.L.: Function of metals and supports on the hydrodeoxygenation of phenolic compounds. ChemPlusChem 79(11), 1573–1583 (2014). https://doi.org/10.1002/cplu.201402145

    Article  Google Scholar 

  32. Deepa, A.K., Dhepe, P.L.: Solid acid catalyzed depolymerization of lignin into value added aromatic monomers. RSC Adv 4(25), 12625–12629 (2014). https://doi.org/10.1039/c3ra47818a

    Article  Google Scholar 

  33. Ma, Z., Troussard, E., van Bokhoven, J.A.: Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl. Catal. A 423–424, 130–136 (2012). https://doi.org/10.1016/j.apcata.2012.02.027

    Article  Google Scholar 

  34. Roberts, V.M., Stein, V., Reiner, T., Lemonidou, A., Li, X., Lercher, J.A.: Towards quantitative catalytic lignin depolymerization. Chem. Eur. J. 17(21), 5939–5948 (2011). https://doi.org/10.1002/chem.201002438

    Article  Google Scholar 

  35. Chaudhary, R., Dhepe, P.L.: Solid base catalyzed depolymerization of lignin into low molecular weight products. Green Chem. 19(3), 778–788 (2017). https://doi.org/10.1039/C6GC02701F

    Article  Google Scholar 

  36. Deepa, A.K., Dhepe, P.L.: Lignin depolymerization into aromatic monomers over solid acid catalysts. ACS Catal 5(1), 365–379 (2015). https://doi.org/10.1021/cs501371q

    Article  Google Scholar 

  37. Singh, S.K., Dhepe, P.L.: Novel synthesis of immobilized brønsted- acidic ionic liquid: application in lignin depolymerization. ChemistrySelect 3(19), 5461–5470 (2018). https://doi.org/10.1002/slct.201703050

    Article  Google Scholar 

  38. Janesko, B.G.: Acid-catalyzed hydrolysis of lignin [small beta]-O-4 linkages in ionic liquid solvents: a computational mechanistic study. Phys. Chem. Chem. Phys. 16(11), 5423–5433 (2014). https://doi.org/10.1039/C3CP53836B

    Article  Google Scholar 

  39. Cox, B.J., Jia, S., Zhang, Z.C., Ekerdt, J.G.: Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids: hammett acidity and anion effects. Polym. Degrad. Stab. 96(4), 426–431 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.01.011

    Article  Google Scholar 

  40. Singh, S.K., Banerjee, S., Vanka, K., Dhepe, P.L.: Understanding interactions between lignin and ionic liquids with experimental and theoretical studies during catalytic depolymerisation. Catal. Today 309, 98–108 (2018). https://doi.org/10.1016/j.cattod.2017.09.050

    Article  Google Scholar 

  41. De Gregorio, G.F., Weber, C.C., Grasvik, J., Welton, T., Brandt, A., Hallett, J.P.: Mechanistic insights into lignin depolymerisation in acidic ionic liquids. Green Chem. 18(20), 5456–5465 (2016). https://doi.org/10.1039/C6GC01295G

    Article  Google Scholar 

  42. Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37(1), 123–150 (2008). https://doi.org/10.1039/B006677J

    Article  Google Scholar 

  43. Hallett, J.P., Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111(5), 3508–3576 (2011). https://doi.org/10.1021/cr1003248

    Article  Google Scholar 

  44. Singh, S.K.: Solubility of lignin and chitin in ionic liquids and their biomedical applications. Int. J. Biol. Macromol. 132, 265–277 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.182

    Article  Google Scholar 

  45. Zakzeski, J., Jongerius, A.L., Weckhuysen, B.M.: Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem. 12(7), 1225–1236 (2010). https://doi.org/10.1039/c001389g

    Article  Google Scholar 

  46. Nanayakkara, S., Patti, A.F., Saito, K.: Lignin depolymerization with phenol via redistribution mechanism in ionic liquids. ACS Sustain. Chem Eng 2(9), 2159–2164 (2014). https://doi.org/10.1021/sc5003424

    Article  Google Scholar 

  47. Seddon, K.R.: Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68(4), 351–356 (1997)

    Article  Google Scholar 

  48. Rahimi, A., Ulbrich, A., Coon, J.J., Stahl, S.S.: Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515(7526), 249 (2014). https://doi.org/10.1038/nature13867

    Article  Google Scholar 

  49. Singh, S.K., Dhepe, P.L.: Effect of structural properties of organosolv lignins isolated from different rice husks on their liquefaction using acidic ionic liquids. Clean Technol. Environ. Policy 20(4), 739–750 (2018). https://doi.org/10.1007/s10098-017-1435-9

    Article  Google Scholar 

  50. Singh, S.K., Dhepe, P.L.: Ionic liquids catalyzed lignin liquefaction: mechanistic studies using TPO-MS, FT-IR, RAMAN and 1D, 2D-HSQC/NOESY NMR. Green Chem. 18(14), 4098–4108 (2016). https://doi.org/10.1039/C6GC00771F

    Article  Google Scholar 

  51. Dier, T.K.F., Rauber, D., Durneata, D., Hempelmann, R., Volmer, D.A.: Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Sci. Rep. 7(1), 5041 (2017). https://doi.org/10.1038/s41598-017-05316-x

    Article  Google Scholar 

  52. Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T.: Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115(21), 11559–11624 (2015). https://doi.org/10.1021/acs.chemrev.5b00155

    Article  Google Scholar 

  53. Phongpreecha, T., Hool, N.C., Stoklosa, R.J., Klett, A.S., Foster, C.E., Bhalla, A., Holmes, D., Thies, M.C., Hodge, D.B.: Predicting lignin depolymerization yields from quantifiable properties using fractionated biorefinery lignins. Green Chem. 19(21), 5131–5143 (2017). https://doi.org/10.1039/C7GC02023F

    Article  Google Scholar 

  54. Ferrini, P., Rinaldi, R.: Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions. Angew. Chem. Int. Ed. 53(33), 8634–8639 (2014). https://doi.org/10.1002/anie.201403747

    Article  Google Scholar 

  55. Foston, M., Samuel, R., He, J., Ragauskas, A.J.: A review of whole cell wall NMR by the direct-dissolution of biomass. Green Chem. 18(3), 608–621 (2016). https://doi.org/10.1039/C5GC02828K

    Article  Google Scholar 

  56. Bai, Y.-Y., Xiao, L.-P., Shi, Z.-J., Sun, R.-C.: Structural variation of bamboo lignin before and after ethanol organosolv pretreatment. Int. J. Mol. Sci. 14(11), 21394–21413 (2013). https://doi.org/10.3390/ijms141121394

    Article  Google Scholar 

  57. Yukiko, T., Ruben, V., Yuki, T., Yasuyuki, I., FC, E., Naofumi, K., Shojiro, H., Saki, H., Amiu, S., Hirofumi, H., Kanna, S.I., Paula, O., Geert G, Geert, G., Kris, M., Jun, K., Toshiyuki, T., Masao, F., Yoshihiro, K., Wout, B., John, R., Eiji, M., Shinya, K.: Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα‐dehydrogenase from Sphingobium sp. strain SYK‐6. Plant Biotechnol. J. 13(6), 821–832 (2015). https://doi.org/10.1111/pbi.12316

    Article  Google Scholar 

  58. van Erven, G., de Visser, R., Merkx, D.W.H., Strolenberg, W., de Gijsel, P., Gruppen, H., Kabel, M.A.: Quantification of lignin and its structural features in plant biomass using 13C lignin as internal standard for pyrolysis-GC-SIM-MS. Anal. Chem. 89(20), 10907–10916 (2017). https://doi.org/10.1021/acs.analchem.7b02632

    Article  Google Scholar 

  59. Singh, S.K., Singh, A.: Effect of acidity of ionic liquids on hydrogen bonding interaction between ionic liquids and lignin monomers. ChemistrySelect 3(12), 3570–3574 (2018). https://doi.org/10.1002/slct.201800037

    Article  Google Scholar 

  60. Sturgeon, M.R., Kim, S., Lawrence, K., Paton, R.S., Chmely, S.C., Nimlos, M., Foust, T.D., Beckham, G.T.: A Mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain. Chem. Eng. 2(3), 472–485 (2014). https://doi.org/10.1021/sc400384w

    Article  Google Scholar 

Download references

Acknowledgements

SKS thanks Council of Scientific and Industrial Research (CSIR), India for Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip K. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12649_2019_896_MOESM1_ESM.docx

Synthesis and characterization of BAILs, lignin depolymerization, work-up procedure, aromatic products recovery, analytical methods used for the identification of aromatic products. (DOCX 1715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Dhepe, P.L. Formic-Acid-Induced using Recyclable-Ionic Liquids as Catalysts for Lignin Conversion into Aromatic Co-Products. Waste Biomass Valor 11, 6261–6272 (2020). https://doi.org/10.1007/s12649-019-00896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00896-3

Keywords

Profiles

  1. Sandip K. Singh