Chihuil Sea Catfish Bagre panamensis Viscera as a New Source of Serine Proteases: Semi-purification, Biochemical Characterization and Application for Protein Hydrolysates Production

Abstract

The recovery of proteases from fish viscera could be a strategy to reduce environmental problems caused by inadequate disposal of fish by-products. This study reports the biochemical characterization of proteases isolated from chihuil sea catfish (Bagre panamensis) intestines and the evaluation of their stability to different physical and chemical factors. Protein hydrolysates from chihuil muscle and casein were produced using its semi-purified proteases extract (SPE) and alcalase. Assays with specific protease inhibitors indicate that trypsin and chymotrypsin are the main types of serine proteases in SPE. Semi-purified enzymes exhibited proteolytic activity at alkaline pH (9–12), and high stability at low/mild temperatures (10–40 °C). A 92% of SPE proteolytic activity was retained in the presence of 30% NaCl. The enzyme extract was stable in reducing agents (2-mercaptoethanol and DTT) but lost about 70% of proteolytic activity in anionic detergents like SDS and tween-80. Organic solvents did not affect the enzyme activity of SPE. Finally, maintaining a same E/S ratio for protein hydrolysates elaboration, chihuil serin proteases exhibited a higher hydrolytic efficiency compared to alcalase when casein and proteins from chihuil muscle were hydrolyzed. Thus, the semi-purification of serine proteases from chihuil viscera provided a low-cost source of enzymes with interesting catalytic features.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    FAO. The State of World Fisheries and Aquaculture - Meeting the sustainable development goals. Rome. pp. 2–193. http://www.fao.org/state-of-fisheries-aquaculture (2018)

  2. 2.

    Olsen, R.L., Toppe, J., Karunasagar, I.: Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci. Technol. 36(2), 144–151 (2014). https://doi.org/10.1016/j.tifs.2014.01.007

    Article  Google Scholar 

  3. 3.

    Bougatef, A.: Trypsins from fish processing waste: characteristics and biotechnological applications—Comprehensive review. J. Clean Prod. 57, 552–567 (2013). https://doi.org/10.1016/j.jclepro.2013.06.005

    Article  Google Scholar 

  4. 4.

    Shen, X., Zhang, M., Bhandari, B., Gao, Z.: Novel technologies in utilization of byproducts of animal food processing: a review. Crit. Rev. Food Sci. Nutr. (2018). https://doi.org/10.1080/10408398.2018.1493428

    Article  Google Scholar 

  5. 5.

    Klein, M.D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W.: The challenge of enzyme cost in the production of ligno cellulosic biofuels. Biotechnol. Bioeng. 109, 1083–1087 (2012). https://doi.org/10.1002/bit.24370

    Article  Google Scholar 

  6. 6.

    Bezerra, R., Lins, E., Alencar, R., Paiva, P., Chaves, M., Coelho, L.: Alkaline proteinase form intestine of Nile tilapia (Oreochromis niloticus). Process Biochem. 40, 1829–1834 (2005). https://doi.org/10.1016/j.procbio.2004.06.066

    Article  Google Scholar 

  7. 7.

    Homaei, A., Lavajoo, F., Sariri, R.: Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology. Int. J. Biol. Macromol. 88, 542–552 (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.023

    Article  Google Scholar 

  8. 8.

    Neklyudov, A.D., Ivankin, A.N., Berdutina, A.V.: Properties and uses of protein hydrolysates. Appl. Biochem. Microbiol. 36, 452–459 (2000). https://doi.org/10.1007/BF02731888

    Article  Google Scholar 

  9. 9.

    Hou, Y., Wu, Z., Dai, Z., Wang, G., Wu, G.: Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 8(1), 24 (2017). https://doi.org/10.1186/s40104-017-0153-9

    Article  Google Scholar 

  10. 10.

    Blanco, M., Sotelo, C.G., Pérez-Martín, R.I.: Hydrolysis as a valorization strategy for unused marine food biomass: boarfish and small-spotted catshark discards and by-products. J. Food Biochem. 39(4), 368–376 (2015). https://doi.org/10.1111/jfbc.12141

    Article  Google Scholar 

  11. 11.

    Murthy, L.N., Phadke, G.G., Unnikrishnan, P., Annamalai, J., Joshy, C.G., Zynudheen, A.A., Ravishankar, C.N.: Valorization of fish viscera for crude proteases production and its use in bioactive protein hydrolysate preparation. Waste Biomass Valoriz. 9(10), 1735–1746 (2017). https://doi.org/10.1007/S12649-017-9962-5

    Article  Google Scholar 

  12. 12.

    Raghavan, S., Kristinsson, H.G.: Antioxidative efficacy of alkali-treated Tilapia protein hydrolysates: a comparative study of five enzymes. J. Agric. Food Chem. 56, 1434–1441 (2008). https://doi.org/10.1021/jf0733160

    Article  Google Scholar 

  13. 13.

    Chalamaiah, M., Dinesh-Kumar, B., Hemalatha, R., Jyothirmayi, T.: Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem. 135(4), 3020–3038 (2012). https://doi.org/10.1016/j.foodchem.2012.06.100

    Article  Google Scholar 

  14. 14.

    Zamani, A., Benjakul, S.: Trypsin from unicorn leatherjacket (Aluterus monoceros) pyloric caeca: purification and its use for preparation of fish protein hydrolysate with antioxidative activity. J. Sci. Food Agric. 6(96), 962–969 (2016). https://doi.org/10.1002/jsfa.7172

    Article  Google Scholar 

  15. 15.

    Muro-Torres, V.M., Amezcua, F., Lara-Mendoza, R.E., Buszkiewicz, J.T., Amezcua-Linares., F.: Trophic ecology of the chihuil sea catfish (Bagre panamensis) in the south-east Gulf of California, México. J. Mar. Biol. Assoc. UK 98(4), 885–893 (2017). https://doi.org/10.1017/S0025315417000170

    Article  Google Scholar 

  16. 16.

    Castillo-Yáñez, F., Pacheco-Aguilar, R., García-Carreño, F., Toro, M., López, M.: Purification and biochemical characterization of chymotrypsin from the viscera of Monterey sardine (Sardinops sagax caerulea). Food Chem. 99(2), 252–259 (2006). https://doi.org/10.1016/j.foodchem.2005.06.052

    Article  Google Scholar 

  17. 17.

    Bradford, M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  18. 18.

    Sarath, G., De La Motte, R., Wagner, F., 1989. In R. Beynon (Ed.). Proteolytic enzymes a practical approach, Vol. 3: protease assay methods, 25-55, IRL Press, Oxford

  19. 19.

    Erlanger, B.F., Kokowski, N., Cohen, W.: The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 95(2), 271–278 (1961). https://doi.org/10.1016/0003-9861(61)90145-X

    Article  Google Scholar 

  20. 20.

    Laemmli, U.K.: Cleavage of structural proteins during assembly of the head bacteriophage T4. Nature 227, 680–685 (1970). https://doi.org/10.1038/227680a0

    Article  Google Scholar 

  21. 21.

    García-Carreño, F.L., Haard, N.F.: Characterization of proteinase classes in langostilla (Pleuroncodes punipes) and crayfish (Paczfastacus astacus) extracts. J. Food Biochem. 17, 97–113 (1993). https://doi.org/10.1111/j.1745-4514.1993.tb00864.x

    Article  Google Scholar 

  22. 22.

    Villalba-Villalba, A.G., Ramírez-Suárez, J.C., Valenzuela-Soto, E.M., García-Sánchez, G., Carvallo, R.G., Pacheco-Aguilar, R.: Trypsin from viscera of vermiculated sailfin catfish, Pterygoplichthys disjunctivus, Weber, 1991: its purification and characterization. Food Chem. 141, 940–945 (2013). https://doi.org/10.1016/j.foodchem.2013.03.078

    Article  Google Scholar 

  23. 23.

    García-Carreño, F.L.: Proteinase inhibitors. Trends Food Sci. Technol. 7, 197–203 (1996). https://doi.org/10.1016/0924-2244(96)10023-6

    Article  Google Scholar 

  24. 24.

    Klomklao, S., Benjakul, S., Visessanguan, W.: Comparative studies on proteolytic activity of spleen extracts from three tuna species commonly used in Thailand. J. Food Biochem. 28, 355–372 (2004). https://doi.org/10.1111/j.1745-4514.2004.05203.x

    Article  Google Scholar 

  25. 25.

    Simkhada, J.R., Cho, S.S., Park, S.J., Mander, P., Choi, Y.H., Lee, H.J., Yoo, J.C.: An oxidant and organic solvent-resistant alkaline metalloprotease from Streptomyces olivochromogenes. Appl. Biochem. Biotechnol. 162, 1457–1470 (2010). https://doi.org/10.1007/s12010-010-8925-0

    Article  Google Scholar 

  26. 26.

    Rahman, R.N.Z.R.A., Geok, L.P., Basri, M., Salleh, A.B.: An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: enzyme purification and characterization. Enzyme Microb. Technol. 39, 1484–1491 (2006). https://doi.org/10.1016/j.enzmictec.2006.03.038

    Article  Google Scholar 

  27. 27.

    Moreno-Hernández, J.M., Hernández-Mancillas, X.D., Coss, N.E., Mazorra-Manzano, M.A., Osuna-Ruiz, I., Rodríguez-Tirado, V.A., Salazar-Leyva, J.A.: Partial characterization of the proteolytic properties of an enzymatic extract from “aguama” Bromelia pinguin L. fruit grown in Mexico. Appl. Biochem. Biotechnol. 182, 181–196 (2017). https://doi.org/10.1007/s12010-016-2319-x

    Article  Google Scholar 

  28. 28.

    Adler-Nissen, J.: A review of food hydrolysis specific areas. In: Adler-Nissen, J. (ed.) Enzymatic hydrolysis of food proteins, pp. 57–109. Elsevier, Copenhagen (1986)

    Google Scholar 

  29. 29.

    Navarrete-del-Toro, M.A., García-Carreño, F.L.: Evaluation of the progress of protein hydrolysis. In: Wrolstad, R.E., Decker, E.A., Schwartz, S.J., Sporns, P. (eds.) Handbook of Food Analytical Chemistry. Water, Proteins, Enzymes, Lipids, and Carbohydrates, Vol. 1, pp. B2.2.1–B2.2.14. Wiley, Hoboken (2002)

    Google Scholar 

  30. 30.

    Silva, J., Espósito, T., Marcuschi, M., Ribeiro, K., Cavalli, R., Oliveira, V.: Purification and partial characterization of a trypsin from the processing waste of the silver mojarra (Diapterus rhombeus). Food Chem. 129, 777–782 (2011). https://doi.org/10.1016/j.foodchem.2011.05.019

    Article  Google Scholar 

  31. 31.

    Sila, A., Nasri, R., Jridi, M., Balti, R., Nasri, M., Bougatef, A.: Characterisation of trypsin purified from the viscera of Tunisian barbel (Barbus callensis) and its application for recovery of carotenoproteins from shrimp wastes. Food Chem. 132, 1287–1295 (2012). https://doi.org/10.1016/j.foodchem.2011.11.105

    Article  Google Scholar 

  32. 32.

    El-Hadj, A.N., Hmidet, N., Ghorbel-Bellaaj, O., Fakhfakh-Zouari, N., Bougatef, A., Nasri, M.: Solvent-stable digestive alkaline proteinases from striped seabream (Lithognathus mormyrus) viscera: characteristics, application in the deproteinization of shrimp waste, and evaluation in laundry. Appl. Biochem. Biotechnol. 164, 1096–1110 (2011). https://doi.org/10.1007/s12010-011-9197-z

    Article  Google Scholar 

  33. 33.

    Younes, I., Nasri, R., Bkhairia, I., Jellouli, K., Nasri, M.: New proteases extracted from red scorpionfish (Scorpaena scrofa) viscera: characterization and application as a detergent additive and for shrimp waste deproteinization. Food Bioprod. Process. 94, 453–462 (2015). https://doi.org/10.1016/j.fbp.2014.06.003

    Article  Google Scholar 

  34. 34.

    Villalba-Villalba, A.G., Pacheco-Aguilar, R., Ramírez-Suárez, J.C., Valenzuela-Soto, E.M., Castillo-Yáñez, F.J., Márquez-Ríos, E.: Partial characterization of alkaline proteases from viscera of vermiculated sailfin catfish Pterygoplichthys disjunctivus Weber, 1991. Food Sci. Tech. 77, 697–705 (2011). https://doi.org/10.1007/s12562-011-0372-5

    Article  Google Scholar 

  35. 35.

    Castillo-Yáñez, F.J., Aguilar, R.P., Lugo-Sanchez, M.E., Sanchez, G.G., Reyes, Q.E.: Biochemical characterization of an isoform of chymotrypsin from the viscera of Monterey sardine (Sardinops sagax caerulea), and comparison with bovine chymotrypsin. Food Chem. (2009). https://doi.org/10.1016/j.foodchem.2008.06.023

    Article  Google Scholar 

  36. 36.

    Jellouli, K., Bougatef, A., Daasi, D., Balti, R., Barkia, A., Nasri, M.: New alkaline trypsin from the intestine of grey triggerfish (Balistes capriscus) with high activity at low temperature: purification and characterization. Food Chem. 116, 644–650 (2009). https://doi.org/10.1016/j.foodchem.2009.02.087

    Article  Google Scholar 

  37. 37.

    Kudre, T., Thongraung, C.: Organic solvent and laundry detergent stable crude protease from Nile tilapia (Oreochromis niloticus) viscera. J. Aquat. Food Prod. Technol. 23(1), 87–100 (2014). https://doi.org/10.1080/10498850.2012.696174

    Article  Google Scholar 

  38. 38.

    Klomklao, S.: Digestive proteinases from marine organisms and their applications. J. Sci. Technol. 30(1), 37–46 (2008)

    Google Scholar 

  39. 39.

    Valdez-Melchor, R.G., Ezquerra-Brauer, J.M., Castillo-Yáñez, F.J., Cárdenas-López, J.L.: Purification and partial characterization of trypsin from the viscera of tropical sierra (Scomberomorus sierra) from the Gulf of California. J. Food Biochem. (2012). https://doi.org/10.1111/j.1745-4514.2012.00667.x

    Article  Google Scholar 

  40. 40.

    Aranishi, F., Hara, K., Osatomi, K., Ishihara, T.: Purification and characterization of cathepsin B from hepatopancreas of carp Cyprinus carpio. Comp. Biochem. Physiol. B 117, 579–587 (1997). https://doi.org/10.1016/S0305-0491(97)00191-0

    Article  Google Scholar 

  41. 41.

    Hernández-Sámano, A.C., Guzmán-García, X., García-Barrientos, R., Ascencio-Valle, F., Sierra-Beltrán, A., Vallejo-Córdoba, B., González-Córdova, A.F., Torres-Llanez, M.J., Guerrero-Legarreta, I.: Extracción y caracterización de proteasas de pepino de mar Isostichopus fuscus recolectado en el golfo de California, México. Rev. Mex. Ing. Quim. 14(1), 35–47 (2015)

    Google Scholar 

  42. 42.

    Zhu, B.W., Zhao, L., Sun, L., Li, D., Murata, Y., Yu, L., Zhang, L.: Purification and characterization of a cathepsin L-like enzyme from the body wall of the sea cucumber Stichopus japonicus. Biosci. Biotechnol. Biochem. 72(6), 1430–1437 (2008). https://doi.org/10.1271/bbb.70741

    Article  Google Scholar 

  43. 43.

    Prado, B.A., Hernández, O.A., Sánchez, E.O., Hernández, M.R.: Criterios de selección de cepas fúngicas para la producción de proteasas termoestables por cultivo en medio sólido. Rev Iberoamericana Cien 1(6), 61 (2014)

    Google Scholar 

  44. 44.

    Lu, C.-H., Lin, Y.-F., Lin, J.-J., Yu, C.-S.: Prediction of metal ion–binding sites in proteins using the fragment transformation method. PLoS ONE 7(6), 1–12 (2012). https://doi.org/10.1371/journal.pone.0039252

    Article  Google Scholar 

  45. 45.

    Flores-Fernández, M.L., Zavaleta, A.I., Chávez-Hidalgo, E.L.: Halotolerant bacteria with lipolytic activity isolated from Pilluana salterns - San Martin. Cienc. Invest 13(2), 87–91 (2010)

    Google Scholar 

  46. 46.

    Castillo-Rivera, M., Ortiz-Burgos, S., Zárate-Hernández, R.: Estructura de la comunidad de peces estuarinos en un hábitat con vegetación sumergida: variación estacional y nictémera. Hidrobiológica 21(3), 311–321 (2011)

    Google Scholar 

  47. 47.

    Le, C.M., Donnay-Moreno, C., Bruzac, S., Baron, R., Thi My Nguyen, H., Pascal Bergé, J.: Proteolysis of sardine (Sardina pilchardus) and anchovy (Stolephorus commersonii) by commercial enzymes in saline solutions. Food Technol. Biotechnol. 53, 87–90 (2015). https://doi.org/10.17113/ftb.53.01.15.3893

    Article  Google Scholar 

  48. 48.

    Saborowski, R., Sahling, G., Navarrete del Toro, M.A., Walter, I., García-Carreño, F.L.: Stability and effects of organic solvents on endopeptidases from the gastric fluid of the marine crab Cancer pagurus. J. Mol. Catal. B 30, 109–118 (2004). https://doi.org/10.1016/j.molcatb.2004.04.002

    Article  Google Scholar 

  49. 49.

    Doukyu, N., Ogino, H.: Review: organic solvent-tolerant enzymes. Biochem. Eng. J. 48(3), 270–282 (2010). https://doi.org/10.1016/j.bej.2009.09.009

    Article  Google Scholar 

  50. 50.

    Barberis, S., Quiroga, E., Morcelle, S., Priolo, N., Luco, J.M.: Study of phytoproteases stability in aqueous-organic biphasic systems using linear free energy relationships. J. Mol. Catal. B 38, 95–103 (2006). https://doi.org/10.1016/j.molcatb.2005.11.011

    Article  Google Scholar 

  51. 51.

    Osuna-Ruiz, I., Espinoza-Marroquin, M.F., Salazar-Leyva, J.A., Peña, E., Álvarez-González, C.A., Bañuelos-Vargas, I., Martínez-Montaño, E.: Biochemical characterization of a semi-purified aspartic protease from sea catfish Bagre panamensis with milk-clotting activity. Food Sci. Biotechnol. (2019). https://doi.org/10.1007/s10068-019-00614-8

    Article  Google Scholar 

  52. 52.

    Carrera, G., Riva, S.: Organic synthesis with enzymes in non-aqueous media. In: Adlercreutz, P. (ed.) Fundamentals of Biocatalysis in Neat Organic Solvents, pp. 1–24. Wiley, Weinheim (2008). https://doi.org/10.1002/9783527621729

    Google Scholar 

  53. 53.

    Ogino, H., Ishikawa, H.: Enzymes which are stable in the presence of organic solvents. J. Biosci. Bioeng. 91, 109–116 (2001). https://doi.org/10.1016/S1389-1723(01)80051-7

    Article  Google Scholar 

  54. 54.

    Adamson, N.J., Reynolds, E.C.: Characterization of casein phosphopeptides prepared using alcalase: determination of enzyme specificity. Enzyme Microb. Technol. 19, 202–207 (1996). https://doi.org/10.1016/0141-0229(95)00232-4

    Article  Google Scholar 

  55. 55.

    Doucet, D., Otter, D.E., Gauthier, S.F., Allen, F.E.: Enzyme-induced gelation of extensively hydrolyzed whey proteins by alcalase: peptide identification and determination of enzyme specificity. J. Agric. Food Chem. 51(21), 6300–6308 (2003). https://doi.org/10.1021/jf026242v

    Article  Google Scholar 

  56. 56.

    Li, Z.Y., Youravong, W., Youravong, H.K.: Protein hydrolysis by protease isolated from tuna spleen by membrane filtration: a comparative study with commercial proteases. Food Sci. Technol. 43, 166–172 (2010). https://doi.org/10.1016/j.lwt.2009.07.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the National Council for Science and Technology (CONACyT) Mexico for financing gran proposal 231525 and the graduate scholarship granted to Gissel Rios. The authors thank PhD. Carmen López Saiz for her editorial work in English.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jesús Aarón Salazar-Leyva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rios-Herrera, G.D., Osuna Ruiz, I., Hernández, C. et al. Chihuil Sea Catfish Bagre panamensis Viscera as a New Source of Serine Proteases: Semi-purification, Biochemical Characterization and Application for Protein Hydrolysates Production. Waste Biomass Valor 11, 5821–5833 (2020). https://doi.org/10.1007/s12649-019-00895-4

Download citation

Keywords

  • Protein semi-purification
  • Serine proteases
  • Protein hydrolysis
  • Sea catfish
  • Bagre panamensis