Skip to main content

Advertisement

Log in

Non-catalytic Transesterification of Waste Cooking Oil with High Free Fatty Acids Content Using Subcritical Methanol: Process Optimization and Evaluation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Palm cooking oil consumption in Indonesia is very high, and as a result, the used cooking oil which mostly ends up as the waste is also high. Direct discharge of waste cooking oil (WCO) into the environment causes serious environmental pollution problems. WCO contains triglyceride and free fatty acid, which can be converted into biodiesel. In this study, the conversion of WCO into biodiesel was conducted using non-catalytic subcritical methanol process. The effect of the ratio of WCO to methanol (w/v), temperature, and pressure on the recovery of biodiesel was investigated under constant reaction time of 4 h. Based on the Response Surface Methodology (RSM); temperature, pressure, and WCO to methanol ratio (w/v) gave a significant effect on the recovery of fatty acid methyl ester (FAME). From the experimental result, the maximum FAME recovery obtained was 93.29% with the purity up to 97% (200 °C, 5.5 MPa, 3:10), while the predicted recovery calculated by RSM was 91.93% with the optimum condition: 200 °C, 5.5 MPa for WCO to methanol ratio 0.3061 (w/v). The experimental verification showed satisfactory agreement between the observed and predicted values with only 1.36% of error. Therefore, subcritical methanol has good prospects to be applied further in lieu of conventional process to utilize waste oil with high free fatty acid content.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

WCO:

Waste cooking oil

FFA:

Free fatty acid

FAME:

Fatty acid methyl ester(s)

RSM:

Response surface methodology

References

  1. Olivares-Carrillo, P., Quesada-Medina, J.: Synthesis of biodiesel from soybean oil using supercritical methanol in a one-step catalyst-free process in batch reactor. J. Supercrit. Fluids 58(3), 378–384 (2011). https://doi.org/10.1016/j.supflu.2011.07.011

    Article  Google Scholar 

  2. Moser, B.R.: Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel. Fuel 92(1), 231–238 (2012). https://doi.org/10.1016/j.fuel.2011.08.005

    Article  Google Scholar 

  3. Guzatto, R., De Martini, T.L., Samios, D.: The use of a modified TDSP for biodiesel production from soybean, linseed and waste cooking oil. Fuel Process. Technol. 92(10), 2082–2088 (2011). https://doi.org/10.1016/j.fuproc.2011.06.013

    Article  Google Scholar 

  4. Awolu, O.O., Layokun, S.K.: Optimization of two-step transesterification production of biodiesel from neem (Azadirachta indica) oil. Int. J. Energy Environ. Eng. 4(1), 1–9 (2013). https://doi.org/10.1186/2251-6832-4-39

    Article  Google Scholar 

  5. Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K., Ishizaki, A.: Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process. Biochem. 37(1), 65–71 (2001). https://doi.org/10.1016/S0032-9592(01)00178-9

    Article  Google Scholar 

  6. Han, H., Cao, W., Zhang, J.: Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process. Biochem. 40(9), 3148–3151 (2005). https://doi.org/10.1016/j.procbio.2005.03.014

    Article  Google Scholar 

  7. Pimentel, D., Patzek, T.W.: Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat. Resour. Res. 14(1), 65–76 (2005). https://doi.org/10.1007/s11053-005-4679-8

    Article  Google Scholar 

  8. Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L., Jenvanitpanjakul, P.: Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem. Eng. J. 116(1), 61–66 (2006). https://doi.org/10.1016/j.cej.2005.09.025

    Article  Google Scholar 

  9. Annual, O.W.: OIL WORLD ISTA Mielke GmbH: Forecasting and Information Service for Oilseeds, Oils and Meals. ISTA Mielke GmbH, Hamburg (2007)

    Google Scholar 

  10. Smith, J.I.: Decomposition in soil of waste cooking oils used in potato processing l. J. Environ. Qual. 3(3), 279–281 (1974). https://doi.org/10.2134/jeq1974.00472425000300030020x

    Article  Google Scholar 

  11. Hambali, E., Mudjalipah, S., Tambunan, H., Pattiwiri, A.W., Hendroko, R.: Biodiesel gfdgfdlg fflp fdefdef lepde vdfe. In: Nixon, M.T., Agnes, T. (eds.). Teknologi Bioenergi. AgroMedia Pustaka, Jakarta Selatan (2008)

  12. Setiawati, E., Edwar, F.: Sebagai alternatif bahan bakar mesin diesel. J. Ris. Ind. VI(2), 117–127 (2012)

    Google Scholar 

  13. Huynh, L.H., Tran Nguyen, P.L., Ho, Q.P., Ju, Y.H.: Catalyst-free fatty acid methyl ester production from wet activated sludge under subcritical water and methanol condition. Bioresour. Technol. 123, 112–116 (2012). https://doi.org/10.1016/j.biortech.2012.08.001

    Article  Google Scholar 

  14. Gunawan, F., Kurniawan, A., Gunawan, I., Ju, Y.H., Ayucitra, A., Soetaredjo, F.E., Ismadji, S.: Synthesis of biodiesel from vegetable oils wastewater sludge by in-situ subcritical methanol transesterification: process evaluation and optimization. Biomass. Bioenerg. 69, 28–38 (2014). https://doi.org/10.1016/j.biombioe.2014.07.005

    Article  Google Scholar 

  15. Ju, Y.H., Huynh, L.H., Tsigie, Y.A., Ho, Q.P.: Synthesis of biodiesel in subcritical water and methanol. Fuel 105, 266–271 (2013). https://doi.org/10.1016/j.fuel.2012.05.061

    Article  Google Scholar 

  16. Canakci, M., Gerpen, J.V.: Biodiesel production from oils and fats with high free fatty. Acids 44(6), 1429–1436 (2001). https://doi.org/10.13031/2013.7010

    Article  Google Scholar 

  17. Bernal, J.M., Lozano, P., García-Verdugo, E., Burguete, M.I., Sánchez-Gómez, G., López-López, G., Pucheault, M., Vaultier, M., Luis, S.V.: Supercritical synthesis of biodiesel. Molecules 17(7), 8696–8719 (2012). https://doi.org/10.3390/molecules17078696

    Article  Google Scholar 

  18. Encinar, J.M., Pardal, A., Martínez, G.: Transesterification of rapeseed oil in subcritical methanol conditions. Fuel Process. Technol. 94(1), 40–46 (2012). https://doi.org/10.1016/j.fuproc.2011.10.018

    Article  Google Scholar 

  19. Geankoplis, C.J.: Transport Processes and Separation Process Principle (Includes Unit Operation), 4th edn. Pearson Education Inc., Hoboken, NJ (2003)

    Google Scholar 

  20. Marulanda, V.F., Anitescu, G., Tavlarides, L.L.: Biodiesel fuels through a continuous flow process of chicken fat supercritical transesterification. Energy Fuels 24(1), 253–260 (2010). https://doi.org/10.1021/ef900782v

    Article  Google Scholar 

  21. Ortiz-Martínez, V.M., Andreo-Martínez, P., García-Martínez, N., de Ríos, A.P., Hernández-Fernández, F.J., Quesada-Medina, J.: Approach to biodiesel production from microalgae under supercritical conditions by the PRISMA method. Fuel Process. Technol. 191, 211–222 (2019). https://doi.org/10.1016/j.fuproc.2019.03.031

    Article  Google Scholar 

  22. Shin, H.Y., Lim, S.M., Bae, S.Y., Oh, S.C.: Thermal decomposition and stability of fatty acid methyl esters in supercritical methanol. J. Anal. Appl. Pyrolysis 92(2), 332–338 (2011). https://doi.org/10.1016/j.jaap.2011.07.003

    Article  Google Scholar 

  23. Glisic, S.B., Orlovic, A.M.: Modelling of non-catalytic biodiesel synthesis under sub and supercritical conditions: The influence of phase distribution. J. Supercrit. Fluids 65, 61–70 (2012). https://doi.org/10.1016/j.supflu.2012.02.025

    Article  Google Scholar 

  24. Glišić, S.B., Skala, D.U.: Phase transition at subcritical and supercritical conditions of triglycerides methanolysis. J. Supercrit. Fluids 54(1), 71–80 (2010). https://doi.org/10.1016/j.supflu.2010.03.005

    Article  Google Scholar 

  25. Encinar, J.M., González, J.F., Martínez, G., Pardal, A.: Transesterification of Vegetables Oil in Subcritical Methanol Conditions, pp. 1779–1784. Repositório Comum, Lyon (2010)

    Google Scholar 

  26. Encinar, J.M., González, J.F., Rodríguez-Reinares, A.: Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel. Ind. Eng. Chem. Res. 44(15), 5491–5499 (2005). https://doi.org/10.1021/ie040214f

    Article  Google Scholar 

  27. Reynolds, R.E., Herwick, G., McCormick, R.L., Kasperson, A., Hochhauser, A.M., Jewitt, C.: Changes in Diesel Fuel. Downstream Alternatives Inc., South Bend, IN (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felycia Edi Soetaredjo or Maria Yuliana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lie, J., Rizkiana, M.B., Soetaredjo, F.E. et al. Non-catalytic Transesterification of Waste Cooking Oil with High Free Fatty Acids Content Using Subcritical Methanol: Process Optimization and Evaluation. Waste Biomass Valor 11, 5771–5781 (2020). https://doi.org/10.1007/s12649-019-00889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00889-2

Keywords

Navigation