Effect of Metal Contaminants and Antioxidants on the Oxidation Stability of Argemone mexicana Biodiesel: Experimental and Statistical Study

Abstract

Biodiesel’s auto-oxidation by metal catalyzed decomposition of hydroxides (ROOH) is a major hurdle restricting the commercial viability of biodiesel. This paper investigates the oxidation stability of argemone biodiesel contaminated with transition metals such as: Fe, Ni, Mn, Cu, and Co. Pure argemone oil biodiesel (ABD) has a rancimat induction period of 2.5 h which does not satisfy the ASTM-D6751 and EN-14214 standard limits of 3 and 8 h respectively. The results show that the presence of a metal in argemone oil results in accelerating the free radical oxidation reaction. To meet the desired standards, present work experimentally investigates the effect of various antioxidants like BHT, BHA, TBHQ, PY, and PG in the range of 100–500 ppm on argemone oil biodiesel. Effectiveness order of antioxidants in pure biodiesel was observed as: PY > PG > BHA > BHT > TBHQ. The 500 ppm of most effective antioxidant pyrogallol (PY) has the potential to enhance the induction period of argemone biodiesel above 8 h which is vital by EN-14214 standard. Based on the results of most effective antioxidant PY and varying concentration of metals (Fe, Ni, Mn, Cu, and Co), several correlations have been developed to calculate the induction period of argemone oil biodiesel, as a function of antioxidant and metal concentration.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

FAME:

Fatty acid methyl ester

ABD:

Argemone Biodiesel

SOME:

Soybean oil methyl ester

JBD:

Jatropha biodiesel

IP:

Induction period

TBHQ:

Tertiary butylhydroquinone

BHT:

Butylated hydroxytoluene

BHA:

Butylated hydroxyanisole

PG:

Propyl gallate

PY:

Pyrogallol

References

  1. 1.

    Buyukkaya, E.: Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 89, 3099–3105 (2010). https://doi.org/10.1016/j.fuel.2010.05.034

    Article  Google Scholar 

  2. 2.

    Ramalingam, S., Rajendran, S., Ganesan, P.: Performance improvement and exhaust emissions reduction in biodiesel operated diesel engine through the use of operating parameters and catalytic converter: a review. Renew. Sustain. Energy Rev. 81, 3215–3222 (2018). https://doi.org/10.1016/j.rser.2017.08.069

    Article  Google Scholar 

  3. 3.

    Statistics, B.P.: British Petroleum, BP statistics review of world energy. 21 (2018)

  4. 4.

    Knothe, G.: The Biodiesel Handbook. AOCS Press, Urbana Illinois (2005)

    Book  Google Scholar 

  5. 5.

    Pullen, J., Saeed, K.: An overview of biodiesel oxidation stability. Renew. Sustain. Energy Rev. 16, 5924–5950 (2012). https://doi.org/10.1016/j.rser.2012.06.024

    Article  Google Scholar 

  6. 6.

    Xin, J., Imahara, H., Saka, S.: Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel 88, 282–286 (2009). https://doi.org/10.1016/j.fuel.2008.08.018

    Article  Google Scholar 

  7. 7.

    Yaakob, Z., Narayanan, B.N., Padikkaparambil, S., Unni, K.S., Akbar, P.M.: A review on the oxidation stability of biodiesel. Renew. Sustain. Energy Rev. 35, 136–153 (2014). https://doi.org/10.1016/j.rser.2014.03.055

    Article  Google Scholar 

  8. 8.

    Monyem, A., Van Gerpen, J.H.: The effect of biodiesel oxidation on engine performance and emissions. Biomass Bioenerg. 20, 317–325 (2001). https://doi.org/10.1016/S0961-9534(00)00095-7

    Article  Google Scholar 

  9. 9.

    Knothe, G., Dunn, R.O.: Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. JAOCS J. Am. Oil Chem. Soc. 80, 1021–1026 (2003). https://doi.org/10.1007/s11746-003-0814-x

    Article  Google Scholar 

  10. 10.

    Waweru, E.J., Pogrebnaya, T., Kivevele, T.T.: Effect of antioxidants extracted from clove wastes and babul tree barks on the oxidation stability of biodiesel made from Water Hyacinth of Lake Victoria Origin. Waste Biomass Valoriz (2019). https://doi.org/10.1007/s12649-019-00871-y

    Article  Google Scholar 

  11. 11.

    Sarin, A., Arora, R., Singh, N.P., Sharma, M., Malhotra, R.K.: Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy. 34, 1271–1275 (2009). https://doi.org/10.1016/j.energy.2009.05.018

    Article  Google Scholar 

  12. 12.

    Ryu, K.: Effect of antioxidants on the oxidative stability and combustion characteristics of biodiesel fuels in an indirect injection (IDI) diesel engine. J. Mech. Sci. Technol. 23, 3105–3113 (2009)

    Article  Google Scholar 

  13. 13.

    Liang, Y.C., May, C.Y., Foon, C.S., Ngan, M.A., Hock, C.C., Basiron, Y.: The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel. Fuel 85, 867–870 (2006). https://doi.org/10.1016/j.fuel.2005.09.003

    Article  Google Scholar 

  14. 14.

    Knothe, G., Steidley, K.R.: The effect of metals and metal oxides on biodiesel oxidative stability from promotion to inhibition. Fuel Process. Technol. 177, 75–80 (2018). https://doi.org/10.1016/j.fuproc.2018.04.009

    Article  Google Scholar 

  15. 15.

    Kim, D.S., Hanifzadeh, M., Kumar, A.: Trend of biodiesel feedstock and its impact on biodiesel emission characteristics. Environ. Prog. Sustain. Energy. 37, 7–19 (2018). https://doi.org/10.1002/ep.12800

    Article  Google Scholar 

  16. 16.

    Nalgundwar, A., Paul, B., Sharma, S.K.: Comparison of performance and emissions characteristics of di CI engine fueled with dual biodiesel blends of palm and jatropha. Fuel 173, 172–179 (2016). https://doi.org/10.1016/j.fuel.2016.01.022

    Article  Google Scholar 

  17. 17.

    Dhar, A., Agarwal, A.K.: Effect of Karanja biodiesel blends on particulate emissions from a transportation engine. Fuel 141, 154–163 (2015). https://doi.org/10.1016/j.fuel.2014.09.124

    Article  Google Scholar 

  18. 18.

    Parida, M.K., Rout, A.K.: Combustion analysis of Argemone mexicana biodiesel blends. Energy Sour. Part A Recover. Util. Environ. Eff. 39, 698–705 (2017). https://doi.org/10.1080/15567036.2016.1256918

    Article  Google Scholar 

  19. 19.

    Pramanik, P., Das, P., Kim, P.J.: Preparation of biofuel from argemone seed oil by an alternative cost-effective technique. Fuel 91, 81–86 (2012). https://doi.org/10.1016/j.fuel.2011.07.011

    Article  Google Scholar 

  20. 20.

    Anjum, S.S., Prakash, O., Pal, A.: Conversion of non-edible Argemone Mexicana seed oil into biodiesel through the transesterification process. Energy Sour. Part A Recover. Util. Environ. Eff. 00, 1–8 (2018). https://doi.org/10.1080/15567036.2018.1563244

    Article  Google Scholar 

  21. 21.

    Gordon, M.H.: The mechanism of antioxidant action in vitro. Presented at the (1990)

  22. 22.

    Loh, S., Chew, S., Choo, Y.: Oxidative stability and storage behavior of fatty acid methyl esters derived from used palm oil. J. Am. Oil Chem. Soc. 83, 947–952 (2006)

    Article  Google Scholar 

  23. 23.

    El Boulifi, N., Bouaid, A., Martinez, M., Aracil, J.: Optimization and oxidative stability of biodiesel production from rice bran oil. Renew. Energy. 53, 141–147 (2013). https://doi.org/10.1016/j.renene.2012.11.005

    Article  Google Scholar 

  24. 24.

    Gurau, V.S., Agarwal, M.S., Sarin, A., Sandhu, S.S.: Experimental study on storage and oxidation stability of bitter apricot kernel oil biodiesel. Energy Fuels 30, 8377–8385 (2016). https://doi.org/10.1021/acs.energyfuels.6b01676

    Article  Google Scholar 

  25. 25.

    Sarin, A., Arora, R., Singh, N.P., Sarin, R., Malhotra, R.K.: Oxidation stability of palm methyl ester: effect of metal contaminants and antioxidants. Energy Fuels 24, 2652–2656 (2010). https://doi.org/10.1021/ef901172t

    Article  Google Scholar 

  26. 26.

    Obadiah, A., Kannan, R., Ramasubbu, A., Kumar, S.V.: Studies on the effect of antioxidants on the long-term storage and oxidation stability of Pongamia pinnata (L.) Pierre biodiesel. Fuel Process. Technol. 99, 56–63 (2012). https://doi.org/10.1016/j.fuproc.2012.01.032

    Article  Google Scholar 

  27. 27.

    Sahoo, W.O.O.P.K., Mulaa, J.M.O.F.J.: Effects of antioxidants on oxidation and storage stability of Croton megalocarpus biodiesel. Int. J. Energy Environ. Eng. (2015). https://doi.org/10.1007/s40095-015-0191-z

    Article  Google Scholar 

  28. 28.

    Rial, R.C., de Freitas, O.N., dos Santos, G., Nazário, C.E.D., Viana, L.H.: Evaluation of the oxidative and thermal stability of soybean methyl biodiesel with additions of dichloromethane extract ginger (Zingiber officinale Roscoe). Renew. Energy. 143, 295–300 (2019). https://doi.org/10.1016/j.renene.2019.04.164

    Article  Google Scholar 

  29. 29.

    Verma, P., Sharma, M.P., Dwivedi, G.: Investigation of metals and antioxidants on stability characteristics of biodiesel. Mater. Today Proc. 2, 3196–3202 (2015). https://doi.org/10.1016/j.matpr.2015.07.114

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarbjot Singh Sandhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Singh, D.K., Gandhi, S.K. et al. Effect of Metal Contaminants and Antioxidants on the Oxidation Stability of Argemone mexicana Biodiesel: Experimental and Statistical Study. Waste Biomass Valor 11, 6189–6198 (2020). https://doi.org/10.1007/s12649-019-00886-5

Download citation

Keywords

  • Induction period
  • Argemone mexicana
  • Metal contaminants
  • Antioxidants