Production of Bio-based Polyol from Oxypropylated Pyrolytic Lignin for Rigid Polyurethane Foam Application


A recent trend in ecofriendly product development is the use of added-value lignin residues. This study aimed to assess the potential use of pyrolytic lignin (PL) for producing rigid polyurethane foam (RPUF). For this purpose, PL was recovered from bio-oil using water as extraction solvent. The PL was then subjected to oxypropylation in the presence of KOH and under mild temperature and pressure (482 K; 14 Bar). FTIR and hydroxyl number quantification was used to confirm and assess the occurrence of oxypropylation reaction. Thus, oxypropylated lignin (OL) was successfully used to produce RPUF. Results revealed a lignin recovery yield of 30 ± 4% relative to the bio-oil weight. FTIR and NMR showed that the PL retained its aromatic structure after pyrolysis cracking. The weight ratio obtained after oxypropylation was 50/50/5 lignin/propylene oxide/KOH with a hydroxyl number of 703 mg KOH/g. Gradual substitution of polyol with OL ranged from 10 to 50%, and the ensuing foams were characterized in terms of chemical, physical, and morphological properties. Modulus of elasticity and insulation performance of 20% OL-based foam increased by 17% and 5.5%, respectively, compared to the commercial rigid polyurethane foam (CRPUF). SEM micrographs for OL-based polyurethane foams showed smaller cell structure, which is desirable for increasing rigidity. These findings demonstrate the potential use of pyrolytic lignin in the manufacturing of high performance biobased insulation materials.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8



American Society for Testing and Materials


Commercial rigid polyurethane foam


Derivative thermogravimetry


Fourier Transform InfraRed Spectroscopy


Fourier transform infrared spectroscopy in attenuated total reflection


Potassium hydroxide




Lignosulfonate-based polyurethane foam


Sodium hydroxide


Nuclear magnetic resonance


Oxypropylated lignin


Oxypropylated lignin-based polyurethane foam


Pyrolytic lignin


Propylene oxide




Rigid polyurethane


Rigid polyurethane foam


Scanning electron microscopy


Thermogravimetric analysis




  1. 1.

    Ashida, K.: Polyurethane and related foams: chemistry and technology. CRC Press, New York (2006)

    Google Scholar 

  2. 2.

    Randall, D., Lee, S.: The polyurethanes book. Wiley, New York (2002)

    Google Scholar 

  3. 3.

    Alinejad, M., Henry, C., Nikafshar, S., Gondaliya, A., Bagheri, S., Chen, N., Singh, S.K., Hodge, D.B., Nejad, M.: Lignin-based polyurethanes: opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers 11, 1202 (2019)

    Google Scholar 

  4. 4.

    Szycher, M.: Szycher’s handbook of polyurethanes. CRC Press, New York (2012)

    Google Scholar 

  5. 5.

    Ning, H., Janowski, G.M., Vaidya, U.K., Husman, G.: Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle. Compos. Struct. 80, 82–91 (2007)

    Google Scholar 

  6. 6.

    Ionescu, M.: Chemistry and Technology of Polyols for Polyurethanes. RAPRA, Anglia (2006)

    Google Scholar 

  7. 7.

    Tan, S., Abraham, T., Ference, D., Macosko, C.W.: Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52, 2840–2846 (2011)

    Google Scholar 

  8. 8.

    Da Silva, V.R., Mosiewicki, M.A., Yoshida, M.I., Da Silva, M.C., Stefani, P.M., Marcovich, N.E.: Polyurethane foams based on modified tung oil and reinforced with rice husk ash I: synthesis and physical chemical characterization. Polym. Testing 32, 438–445 (2013)

    Google Scholar 

  9. 9.

    Li, Y., Ren, H., Ragauskas, A.J.: Rigid polyurethane foam/cellulose whisker nanocomposites: preparation, characterization, and properties. J. Nanosci. Nanotechnol. 11, 6904–6911 (2011)

    Google Scholar 

  10. 10.

    Pan, X., Saddler, J.N.: Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol. Biofuels 6, 12 (2013)

    Google Scholar 

  11. 11.

    Adler, E.: Lignin chemistry—past, present and future. Wood Sci. Technol. 11, 169–218 (1977)

    Google Scholar 

  12. 12.

    Windeisen, E., Moeller, M., Matyjaszewski, K.: Lignin as building unit for polymers polymer science. In: Matyjaszewski, K., Möller, M. (eds.) Polymer Science: A Comprehensive Reference, pp. 255–265. Elsevier, Amsterdam (2012)

    Google Scholar 

  13. 13.

    Santos, R.B., Capanema, E.A., Balakshin, M.Y., Chang, H.-M., Jameel, H.: Effect of hardwoods characteristics on kraft pulping process: emphasis on lignin structure. BioResources 6, 3623–3637 (2011)

    Google Scholar 

  14. 14.

    da Silva, E.B., Zabkova, M., Araújo, J.D., Cateto, C.A., Barreiro, M.F., Belgacem, M.N., Rodrigues, A.E.: An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem. Eng. Res. Des. 87, 1276–1292 (2009)

    Google Scholar 

  15. 15.

    Tejado, A., Pena, C., Labidi, J., Echeverria, J.M., Mondragon, I.: Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour. Technol. 98, 1655–1663 (2007)

    Google Scholar 

  16. 16.

    Domenek, S., Louaifi, A., Guinault, A., Baumberger, S.: Potential of lignins as antioxidant additive in active biodegradable packaging materials. J. Polym. Environ. 21, 692–701 (2013)

    Google Scholar 

  17. 17.

    De Chirico, A., Armanini, M., Chini, P., Cioccolo, G., Provasoli, F., Audisio, G.: Flame retardants for polypropylene based on lignin. Polym. Degrad. Stab. 79, 139–145 (2003)

    Google Scholar 

  18. 18.

    Pouteau, C., Baumberger, S., Cathala, B., Dole, P.: Lignin–polymer blends: evaluation of compatibility by image analysis. C.R. Biol. 327, 935–943 (2004)

    Google Scholar 

  19. 19.

    Garcia-Perez, M., Chaala, A., Pakdel, H., Kretschmer, D., Roy, C.: Characterization of bio-oils in chemical families. Biomass Bioenergy 31, 222–242 (2007)

    Google Scholar 

  20. 20.

    Lee, W.-J., Chang, K.-C., Tseng, I.-M.: Properties of phenol-formaldehyde resins prepared from phenol-liquefied lignin. J. Appl. Polym. Sci. 124, 4782–4788 (2012)

    Google Scholar 

  21. 21.

    Sukhbaatar, B., Steele, P.H., Ingram, L.I., Kim, M.G.: Use of lignin separated from bio-oil in oriented strand board binder phenol-formaldehyde resins. BioResources 4, 789–804 (2009)

    Google Scholar 

  22. 22.

    Kudanga, T., Prasetyo, E.N., Sipilä, J., Guebitz, G.M., Nyanhongo, G.S.: Reactivity of long chain alkylamines to lignin moieties: implications on hydrophobicity of lignocellulose materials. J. Biotechnol. 149, 81–87 (2010)

    Google Scholar 

  23. 23.

    Zhang, L., Huang, J.: Effects of hard-segment compositions on properties of polyurethane–nitrolignin films. J. Appl. Polym. Sci. 81, 3251–3259 (2001)

    Google Scholar 

  24. 24.

    Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., Belgacem, M.N.: Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind. Eng. Chem. Res. 48, 2583–2589 (2009)

    Google Scholar 

  25. 25.

    Li, Y., Ragauskas, A.J.: Kraft lignin-based rigid polyurethane foam. J. Wood Chem. Technol. 32, 210–224 (2012)

    Google Scholar 

  26. 26.

    Nadji, H., Bruzzese, C., Belgacem, M.N., Benaboura, A., Gandini, A.: Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol. Mater. Eng. 290, 1009–1016 (2005)

    Google Scholar 

  27. 27.

    Mahmood, N., Yuan, Z., Schmidt, J., Xu, C.: Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew. Sustain. Energy Rev. 60, 317–329 (2016)

    Google Scholar 

  28. 28.

    Mahmood, N., Yuan, Z., Schmidt, J., Tymchyshyn, M., Xu, C.: (Charles): Hydrolytic liquefaction of hydrolysis lignin for the preparation of bio-based rigid polyurethane foam. Green Chem. 18, 2385–2398 (2016).

    Article  Google Scholar 

  29. 29.

    Scholze, B., Meier, D.: Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J. Anal. Appl. Pyrolysis 60, 41–54 (2001)

    Google Scholar 

  30. 30.

    Gandini, A., Belgacem, M.N.: Partial or total oxypropylation of natural polymers and the use of the ensuing materials as composites or polyol macromonomers. In: Gandini, A., Belgacem, M.N. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 273–288. Elsevier, Oxford (2008)

    Google Scholar 

  31. 31.

    Gandini, A., Belgacem, M.N.G., Montanari, S.: Lignins as macromonomers for polyesthers and polyurethanes. In: Hu, T.Q. (ed.) Chemical Modification, Properties, and Usage of Lignin. Academic/Plenum Publishers, New York (2002)

    Google Scholar 

  32. 32.

    Hu, S., Luo, X., Li, Y.: Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. Chemsuschem 7, 66–72 (2014)

    Google Scholar 

  33. 33.

    Pavier, C., Gandini, A.: Oxypropylation of sugar beet pulp. 1. Optimisation of the reaction. Ind. Crops Prod. 12, 1–8 (2000)

    Google Scholar 

  34. 34.

    Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 38, 68–94 (2012)

    Google Scholar 

  35. 35.

    Žilnik, L.F., Jazbinšek, A.: Recovery of renewable phenolic fraction from pyrolysis oil. Sep. Purif. Technol. 86, 157–170 (2012)

    Google Scholar 

  36. 36.

    Robinson, T.J.: Box-Behnken Designs. In: Ruggeri, F., Kenett, R.S., Faltin, F.W. (eds.) Encyclopedia of Statistics in Quality and Reliability. Wiley, Chichester (2008)

    Google Scholar 

  37. 37.

    Mahmood, N., Yuan, Z., Schmidt, J., Xu, C.C.: Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized Kraft lignin via direct replacement or oxypropylation. Eur. Polym. J. 68, 1–9 (2015)

    Google Scholar 

  38. 38.

    Sahoo, S., Seydibeyoğlu, M., Mohanty, A.K., Misra, M.: Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy 35, 4230–4237 (2011)

    Google Scholar 

  39. 39.

    Schorr, D., Diouf, P.N., Stevanovic, T.: Evaluation of industrial lignins for biocomposites production. Ind. Crops Prod. 52, 65–73 (2014)

    Google Scholar 

  40. 40.

    Jiang, X., Ellis, N., Zhong, Z.: Characterization of pyrolytic lignin extracted from bio-oil. Chin. J. Chem. Eng. 18, 1018–1022 (2010)

    Google Scholar 

  41. 41.

    Zakzeski, J., Bruijnincx, P.C., Jongerius, A.L., Weckhuysen, B.M.: The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010)

    Google Scholar 

  42. 42.

    Ingram, L., Mohan, D., Bricka, M., Steele, P., Strobel, D., Crocker, D., Mitchell, B., Mohammad, J., Cantrell, K., Pittman Jr., C.U.: Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils. Energy Fuels 22, 614–625 (2007)

    Google Scholar 

  43. 43.

    Scholze, B., Hanser, C., Meier, D.: Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin): Part II. GPC, carbonyl goups, and 13C-NMR. J. Anal. Appl. Pyrolysis 58, 387–400 (2001)

    Google Scholar 

  44. 44.

    Daniel, J., Hayes, S.F.: The biofine process—production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Wiley (ed.) Biorefineries–Industrial Processes and Products, pp. 139–164. Wiley, Germany (2006)

    Google Scholar 

  45. 45.

    Nimz, H.H., Robert, D., Faix, O., Nemr, M.: Carbon-13 NMR spectra of lignins, 8. Structural differences between lignins of hardwoods, softwoods, grasses and compression wood. Holzforschung Int. J. Biol. Chem. Phys. Technol. Wood 35, 16–26 (1981)

    Google Scholar 

  46. 46.

    Mullen, C.A., Boateng, A.A.: Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. J. Anal. Appl. Pyrol. 90, 197–203 (2011)

    Google Scholar 

  47. 47.

    Wang, S., Wang, Y., Cai, Q., Wang, X., Jin, H., Luo, Z.: Multi-step separation of monophenols and pyrolytic lignins from the water-insoluble phase of bio-oil. Sep. Purif. Technol. 122, 248–255 (2014)

    Google Scholar 

  48. 48.

    Tiainen, E., Drakenberg, T., Tamminen, T., Kataja, K., Hase, A.: Determination of phenolic hydroxyl groups in lignin by combined use of 1H NMR and UV spectroscopy. Holzforschung 53, 529–533 (1999)

    Google Scholar 

  49. 49.

    Brebu, M., Vasile, C.: Thermal degradation of lignin—a review. Cell. Chem. Technol. 44, 353–363 (2010)

    Google Scholar 

  50. 50.

    Bernardini, J., Cinelli, P., Anguillesi, I., Coltelli, M.-B., Lazzeri, A.: Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur. Polym. J. 64, 147–156 (2015)

    Google Scholar 

  51. 51.

    Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., Belgacem, M.N.: Kinetic study of the formation of lignin-based polyurethanes in bulk. React. Funct. Polym. 71, 863–869 (2011)

    Google Scholar 

  52. 52.

    Bonini, C., D’Auria, M., Emanuele, L., Ferri, R., Pucciariello, R., Sabia, A.R.: Polyurethanes and polyesters from lignin. J. Appl. Polym. Sci. 98, 1451–1456 (2005)

    Google Scholar 

  53. 53.

    Coleman, M.M., Lee, K.H., Skrovanek, D.J., Painter, P.C.: Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19, 2149–2157 (1986)

    Google Scholar 

  54. 54.

    Sormana, J.-L., Meredith, J.C.: High-throughput discovery of structure–mechanical property relationships for segmented poly (urethane–urea) s. Macromolecules 37, 2186–2195 (2004)

    Google Scholar 

  55. 55.

    Chen, T.-K., Tien, Y.-I., Wei, K.-H.: Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41, 1345–1353 (2000)

    Google Scholar 

  56. 56.

    Simon, J., Barla, F., Kelemen-Haller, A., Farkas, F., Kraxner, M.: Thermal stability of polyurethanes. Chromatographia 25, 99–106 (1988)

    Google Scholar 

  57. 57.

    Hayati, A.N., Evans, D.A.C., Laycock, B., Martin, D.J., Annamalai, P.K.: A simple methodology for improving the performance and sustainability of rigid polyurethane foam by incorporating industrial lignin. Ind. Crops Prod. 117, 149–158 (2018)

    Google Scholar 

  58. 58.

    Zhang, X., Jeremic, D., Kim, Y., Street, J., Shmulsky, R.: Effects of surface functionalization of lignin on synthesis and properties of rigid bio-based polyurethanes foams. Polymers 10, 706 (2018).

    Article  Google Scholar 

  59. 59.

    Cateto, C.A., Barreiro, M.F., Ottati, C., Lopretti, M., Rodrigues, A.E., Belgacem, M.N.: Lignin-based rigid polyurethane foams with improved biodegradation. J. Cell. Plast. 50, 81–95 (2014)

    Google Scholar 

Download references


Sincere thanks are due to the National Sciences and Engineering Research Council of Canada (Project Number: 499133), the Centre Technologique des Résidus Industriels, the Chaire de Recherche de la Valorisation de la Caractérisation et de la Transformation du Bois, EnerLab, and AbriTech for their in-kind and financial contribution, which enabled us to conduct this study. The authors gratefully acknowledge the assistance of Gilles Villeneuve during the experiments. The views and opinions expressed in this paper are those of the authors.

Author information



Corresponding author

Correspondence to Flavia Lega Braghiroli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saffar, T., Bouafif, H., Braghiroli, F.L. et al. Production of Bio-based Polyol from Oxypropylated Pyrolytic Lignin for Rigid Polyurethane Foam Application. Waste Biomass Valor 11, 6411–6427 (2020).

Download citation


  • Bio-sourced materials
  • Rigid polyurethane foams
  • Bio-based polyol
  • Pyrolytic bio-oil
  • Pyrolytic lignin
  • Oxypropylation