Improvements of Thermal and Thermochemical Properties of Rosin by Chemical Transformation for Its Use as Biofuel

Abstract

The use of raw materials from renewable sources has become an important topic for different industries. Pine oleoresin is one of the most important renewable sources. It is composed of a broad range of chemical substances from volatile molecules to complex compounds. The resinic fraction, known as rosin or colophony, comprises approximately 80% of oleoresin. This fraction has become the most attractive one from the economic standpoint. Rosin is a complex mixture of diterpenic acids and is typically used in formulation of adhesives, coating materials, rubbers, printing inks, among others. Although their transformations have been studied, scarce information on the thermal and thermochemical properties of rosin and rosin-derived products has been reported. In this work some of these properties have been estimated to evaluate the influence of chemical transformations such as reduction, isomerization and esterification of rosin components. The estimations have been compared to the literature data and to some experimental values. The interest of some of these transformations is based on the reduction in melting and boiling temperatures observed, although such reductions are probably not enough to use these substances as fuel components.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Yadav, B.K., Gidwani, B., Vyas, A.: Rosin: recent advances and potential applications in novel drug delivery system. J. Bioact. Compat. Polym. 31, 111–126 (2016). https://doi.org/10.1177/0883911515601867

    Article  Google Scholar 

  2. 2.

    Höfer, R.: Chapter 3B—the pine biorefinery platform chemicals value chain. In: Pandey, A., Höfer, R., Taherzadeh, M., Nampoothiri, K.M., Larroche, C. (eds.) Industrial Biorefineries & White Biotechnology. Elsevier, Amsterdam (2015)

    Google Scholar 

  3. 3.

    Wideman, L.G., Kuczkowski, J.A.: Decarboxylation of rosin acids, EU Patent No. 0149958A2, (1985)

  4. 4.

    Silvestre AJD (2008) Chapter 4—rosin: major sources, properties and applications. In: Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam

  5. 5.

    Souto, J.C., Yustos, P., Ladero, M., Garcia-Ochoa, F.: Disproportionation of rosin on an industrial Pd/C catalyst: Reaction pathway and kinetic model discrimination. Bioresour. Technol. 102, 3504–3511 (2011). https://doi.org/10.1016/j.biortech.2010.11.022

    Article  Google Scholar 

  6. 6.

    Wang, L., Chen, X., Liang, J., Chen, Y., Pu, X., Tong, Z.: Kinetics of the catalytic isomerization and disproportionation of rosin over carbon-supported palladium. Chem. Eng. J. 152, 242–250 (2009). https://doi.org/10.1016/j.cej.2009.04.052

    Article  Google Scholar 

  7. 7.

    Clark, I.T., Harris, E.E.: Catalytic cracking of rosin 2. J. Am. Chem. Soc. 74, 1030–1032 (1952). https://doi.org/10.1021/ja01124a046

    Article  Google Scholar 

  8. 8.

    Bernas, A., Salmi, T., Murzin, D.Y., Mikkola, J.-P., Rintola, M.: Catalytic transformation of abietic acid to hydrocarbons. Top. Catal. 55, 673–679 (2012). https://doi.org/10.1007/s11244-012-9846-7

    Article  Google Scholar 

  9. 9.

    Mikulec, J., Kleinová, A., Cvengroš, J., Joríková, L., Banič, M.: Catalytic transformation of tall oil into biocomponent of diesel fuel. Int. J. Chem. Eng. 2012, 1–9 (2012). https://doi.org/10.1155/2012/215258

    Article  Google Scholar 

  10. 10.

    Lappi, H.E., Alén, R.J.: Pyrolysis of cruded tall oil-derived products. BioResources 6, 5121–5138 (2011)

    Google Scholar 

  11. 11.

    Coll, R., Udas, S., Jacoby, W.A.: Production of diesel fuel additives from the rosin acid fraction of crude tall oil. Prog. Thermochem. Biomass. Convers. (2001). https://doi.org/10.1002/9780470694954.ch127

    Article  Google Scholar 

  12. 12.

    Wilbon, P.A., Chu, F., Tang, C.: Progress in renewable polymers from natural terpenes, terpenoids and rosin. Macromol. Rapid Commun. 34, 8–37 (2013). https://doi.org/10.1002/marc.201200513

    Article  Google Scholar 

  13. 13.

    Ojagh, H., Creaser, D., Salam, M.A., Grennfelt, E.L., Olsson, L.: Hydroconversion of abietic acid into value-added fuel components over sulfided NiMo catalysts with varying support acidity. Fuel Process. Technol. 190, 55–66 (2019). https://doi.org/10.1016/j.fuproc.2019.03.008

    Article  Google Scholar 

  14. 14.

    Gao, Y., Li, L., Chen, H., Li, J., Song, Z., Shang, S., Song, J., Wang, Z., Xiao, G.: High value-added application of rosin as a potential renewable source for the synthesis of acrylopimaric acid-based botanical herbicides. Ind. Crops Prod. 78, 131–140 (2015). https://doi.org/10.1016/j.indcrop.2015.10.032

    Article  Google Scholar 

  15. 15.

    Kazakov, A., Muzny, C.D., Chirico, R.D., Diky, V.V., Frenkel, M.: Web Thermo Tables—an on-line version of the TRC thermodynamic tables. J. Res. Natl. Inst. Stand. Technol. 113, 209 (2012). https://doi.org/10.6028/jres.113.016

    Article  Google Scholar 

  16. 16.

    Bhattacharya, A., Shivalkar, S.: Re-tooling Benson’s group additivity method for estimation of the enthalpy of formation of free radicals: C/H and C/H/O Groups. J. Chem. Eng. Data. 51, 1169–1181 (2006). https://doi.org/10.1021/je0503960

    Article  Google Scholar 

  17. 17.

    Janbazi, H., Hasemann, O., Schulz, C., Kempf, A., Wlokas, I., Peukert, S.: Response surface and group additivity methodology for estimation of thermodynamic properties of organosilanes. Int. J. Chem. Kinet. 50, 681–690 (2018). https://doi.org/10.1002/kin.21192

    Article  Google Scholar 

  18. 18.

    Domalski, E.S., Hearing, E.D.: Estimation of the thermodynamic properties of hydrocarbons at 298.15 K. J. Phys. Chem. Ref. Data. 17, 1637–1678 (1988). https://doi.org/10.1063/1.555814

    Article  Google Scholar 

  19. 19.

    Roganov, G.N., Pisarev, P.N., Emel’yanenko, V.N., Verevkin, S.P.: Measurement and prediction of thermochemical properties. Improved Benson-type increments for the estimation of enthalpies of vaporization and standard enthalpies of formation of aliphatic alcohols. J. Chem. Eng. Data. 50, 1114–1124 (2005). https://doi.org/10.1021/je049561m

    Article  Google Scholar 

  20. 20.

    Morales, G., Martinez, R.: Thermochemical properties and contribution groups for ketene dimers and related structures from theoretical calculations. J. Phys. Chem. A. 113, 8683–8703 (2009). https://doi.org/10.1021/jp9030915

    Article  Google Scholar 

  21. 21.

    Cohen, N.: Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. J. Phys. Chem. Ref. Data. 25, 1411–1481 (1996). https://doi.org/10.1063/1.555988

    MathSciNet  Article  Google Scholar 

  22. 22.

    Benson, S.W., Golden, D.M., Haugen, G.R., Shaw, R., Cruickshank, F.R., Rodgers, A.S., O’neal, H.E., Walsh, R.: Additivity rules for the estimation of thermochemical properties. Chem. Rev. 69, 279–324 (1969). https://doi.org/10.1021/cr60259a002

    Article  Google Scholar 

  23. 23.

    Joback, K.G., Reid, R.C.: Estimation of pure-component properties from group-contributions. Chem. Eng. Commun. 57, 233–243 (1987). https://doi.org/10.1080/00986448708960487

    Article  Google Scholar 

  24. 24.

    Lapuerta, M., Rodríguez-Fernández, J., Oliva, F.: Determination of enthalpy of formation of methyl and ethyl esters of fatty acids. Chem. Phys. Lipids. 163, 172–181 (2010). https://doi.org/10.1016/j.chemphyslip.2009.11.002

    Article  Google Scholar 

  25. 25.

    Wang, L., Ding, S., Gan, P., Chen, X., Zhang, D., Wei, X., Wang, X.: A supported nano ZnO catalyst based on a spent fluid cracking catalyst (FC3R) for the heterogeneous esterification of rosin. React. Kinet. Mech. Catal. 119, 219–233 (2016). https://doi.org/10.1007/s11144-016-1022-9

    Article  Google Scholar 

  26. 26.

    Zinkel, D.F., Rusell, J.: Naval stores: Production, chemistry, utilization. Pulp Chemicals Association, New York, New York, NY (1989)

    Google Scholar 

  27. 27.

    Fieser, L.F., Campbell, W.P.: Hydroxyl and amino derivatives of dehydroabietic acid and dehydroabietinol. J. Am. Chem. Soc. 61, 2528–2534 (1939). https://doi.org/10.1021/ja01878a080

    Article  Google Scholar 

  28. 28.

    Tschirch, A., Wolff, M.: The occurrence of abietic acid in resin oil. Arch. der Pharm. 245, 1–4 (1908)

    Article  Google Scholar 

  29. 29.

    Syracuse Research Corporation of Syracuse, N.Y. (US): SciFinder data.

  30. 30.

    Kono, M., Maruyama, R.: Chemistry of coccids produced in Japan. XI. The resinous constituents of Ceroplastes rubens Mask. I. Nippon Nogei Kagaku Kaishi. 12, 512–520 (1936)

  31. 31.

    Kutan, I.: Separation of pimaric acid from resin of ordinary pine Pinus silvestris. Zhurnal Prikl. Khimii 36, 1149–1151 (1963)

  32. 32.

    Shmidt, E.N., Pentegova, V.A.: High-boiling neutral compounds from the oleoresin of Pinus silvestris. Izv. Sib. Otd. Akad. Nauk SSSR, Seriya Khimicheskikh Nauk. 144–146 (1968)

  33. 33.

    Rollett, A., Tabakoff, P., Feimer, S.: Acid constituents of sandarac resin. Monatsh. Chem. 50, 1–5 (1928)

    Article  Google Scholar 

  34. 34.

    De Pascual Teresa, J., San Feliciano, A., Miguel del, C.M.J.: Components of Juniperus oxycedrus fruits. An. Quim. 70, 1015–1019 (1974)

    Google Scholar 

  35. 35.

    Chang, L.C., Song, L.L., Park, E.J., Luyengi, L., Lee, K.J., Farnsworth, N.R., Pezzuto, J.M., Kinghorn, A.D.: Bioactive constituents of Thuja occidentalis. J. Nat. Prod. 63, 1235–1238 (2000). https://doi.org/10.1021/np0001575

    Article  Google Scholar 

  36. 36.

    Grant, P.K., Huntrakul, C., Sheppard, D.R.J.: Diterpenes of Dacrydium bidwillii. Aust. J. Chem. 20, 969–972 (1967). https://doi.org/10.1071/CH9670969

    Article  Google Scholar 

  37. 37.

    Lazarev, M.Y., Zaretskii, M. V: X-ray structural analysis of levopimaric acid. Sin. Org. Soedin. 127–137 (1970)

  38. 38.

    Lombard, R., Ebelin, J.: The hydrogenation of the resin acids of pine gums. II. Bull. Soc. Chim. Fr. 930–936 (1953)

  39. 39.

    Bardyshev, I.I., Cherches, K.A.: Dehydroabietic and palustric acids as component parts of the rosin of Picea excelsa. Dokl. Akad. Nauk SSSR. 116, 959–960 (1957)

    Google Scholar 

  40. 40.

    Gu, W., Wang, S.: Synthesis and antimicrobial activities of novel 1H-dibenzo[a, c]carbazoles from dehydroabietic acid. Eur. J. Med. Chem. 45, 4692–4696 (2010). https://doi.org/10.1016/J.EJMECH.2010.07.038

    Article  Google Scholar 

  41. 41.

    Komshilov, N.F.: High-melting abietic acid. Zhurnal Prikl Khimii 30, 1111–1115 (1957)

    Google Scholar 

  42. 42.

    Nong, W., Chen, X., Wang, L., Liang, J., Wang, H., Long, L., Huang, Y., Tong, Z.: Measurement and correlation of solid-liquid equilibrium for abietic acid+alcohol systems at atmospheric pressure. Fluid Phase Equilib. 367, 74–78 (2014). https://doi.org/10.1016/j.fluid.2014.01.018

    Article  Google Scholar 

  43. 43.

    Yadav, J.S., Baishya, G., Dash, U.: Synthesis of (+)-amberketal and its analog from l-abietic acid. Tetrahedron 63, 9896–9902 (2007). https://doi.org/10.1016/j.tet.2007.06.063

    Article  Google Scholar 

  44. 44.

    Tsutsui, M.: Japanese pine resins. XI. The isolation of resin acid by the brucine salt technique: the isolation of retene-type acids. Nippon Kagaku Kaishi. Pure Chem. 496–498 (1953)

  45. 45.

    Harris, G.C., Sanderson, T.F.: Resin acids. I. An improved method of isolation of resin acids; isolation of a new abietic-type acid, neoabietic acid. J. Am. Chem. Soc. 70, 334–339 (1948). https://doi.org/10.1021/ja01181a104

    Article  Google Scholar 

  46. 46.

    Pigulevskii, G.V., Kostenko, V.G.: Neoabietic and abietic acids-primary resin acids from oleoresin of the Siberian fir Abies sibirica. Zhurnal Prikl Khimii 33, 439–444 (1960)

    Google Scholar 

  47. 47.

    Murray, S.M., O’Brien, R.A., Mattson, K.M., Ceccarelli, C., Sykora, R.E., West, K.N., Davis, J.H.: The fluid-mosaic model, homeoviscous adaptation, and ionic liquids: dramatic lowering of the melting point by side-chain unsaturation. Angew. Chem. 49, 2755–2758 (2010). https://doi.org/10.1002/anie.200906169

    Article  Google Scholar 

Download references

Acknowledgements

Colciencias is gratefully acknowledged for the scholarship (call 272 of 2015) supporting D.G and project 37-1-693 (ref. FP44842-124-2017). Universidad de Antioquia is acknowledged for the research project PRG2014-1091.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Magín Lapuerta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García, D., Bustamante, F., Alarcón, E. et al. Improvements of Thermal and Thermochemical Properties of Rosin by Chemical Transformation for Its Use as Biofuel. Waste Biomass Valor 11, 6383–6394 (2020). https://doi.org/10.1007/s12649-019-00863-y

Download citation

Keywords

  • Rosin
  • Isomerization
  • Reduction
  • Esterification
  • Properties estimation