Abstract
The use of raw materials from renewable sources has become an important topic for different industries. Pine oleoresin is one of the most important renewable sources. It is composed of a broad range of chemical substances from volatile molecules to complex compounds. The resinic fraction, known as rosin or colophony, comprises approximately 80% of oleoresin. This fraction has become the most attractive one from the economic standpoint. Rosin is a complex mixture of diterpenic acids and is typically used in formulation of adhesives, coating materials, rubbers, printing inks, among others. Although their transformations have been studied, scarce information on the thermal and thermochemical properties of rosin and rosin-derived products has been reported. In this work some of these properties have been estimated to evaluate the influence of chemical transformations such as reduction, isomerization and esterification of rosin components. The estimations have been compared to the literature data and to some experimental values. The interest of some of these transformations is based on the reduction in melting and boiling temperatures observed, although such reductions are probably not enough to use these substances as fuel components.
Graphic Abstract

This is a preview of subscription content, log in to check access.








References
- 1.
Yadav, B.K., Gidwani, B., Vyas, A.: Rosin: recent advances and potential applications in novel drug delivery system. J. Bioact. Compat. Polym. 31, 111–126 (2016). https://doi.org/10.1177/0883911515601867
- 2.
Höfer, R.: Chapter 3B—the pine biorefinery platform chemicals value chain. In: Pandey, A., Höfer, R., Taherzadeh, M., Nampoothiri, K.M., Larroche, C. (eds.) Industrial Biorefineries & White Biotechnology. Elsevier, Amsterdam (2015)
- 3.
Wideman, L.G., Kuczkowski, J.A.: Decarboxylation of rosin acids, EU Patent No. 0149958A2, (1985)
- 4.
Silvestre AJD (2008) Chapter 4—rosin: major sources, properties and applications. In: Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam
- 5.
Souto, J.C., Yustos, P., Ladero, M., Garcia-Ochoa, F.: Disproportionation of rosin on an industrial Pd/C catalyst: Reaction pathway and kinetic model discrimination. Bioresour. Technol. 102, 3504–3511 (2011). https://doi.org/10.1016/j.biortech.2010.11.022
- 6.
Wang, L., Chen, X., Liang, J., Chen, Y., Pu, X., Tong, Z.: Kinetics of the catalytic isomerization and disproportionation of rosin over carbon-supported palladium. Chem. Eng. J. 152, 242–250 (2009). https://doi.org/10.1016/j.cej.2009.04.052
- 7.
Clark, I.T., Harris, E.E.: Catalytic cracking of rosin 2. J. Am. Chem. Soc. 74, 1030–1032 (1952). https://doi.org/10.1021/ja01124a046
- 8.
Bernas, A., Salmi, T., Murzin, D.Y., Mikkola, J.-P., Rintola, M.: Catalytic transformation of abietic acid to hydrocarbons. Top. Catal. 55, 673–679 (2012). https://doi.org/10.1007/s11244-012-9846-7
- 9.
Mikulec, J., Kleinová, A., Cvengroš, J., Joríková, L., Banič, M.: Catalytic transformation of tall oil into biocomponent of diesel fuel. Int. J. Chem. Eng. 2012, 1–9 (2012). https://doi.org/10.1155/2012/215258
- 10.
Lappi, H.E., Alén, R.J.: Pyrolysis of cruded tall oil-derived products. BioResources 6, 5121–5138 (2011)
- 11.
Coll, R., Udas, S., Jacoby, W.A.: Production of diesel fuel additives from the rosin acid fraction of crude tall oil. Prog. Thermochem. Biomass. Convers. (2001). https://doi.org/10.1002/9780470694954.ch127
- 12.
Wilbon, P.A., Chu, F., Tang, C.: Progress in renewable polymers from natural terpenes, terpenoids and rosin. Macromol. Rapid Commun. 34, 8–37 (2013). https://doi.org/10.1002/marc.201200513
- 13.
Ojagh, H., Creaser, D., Salam, M.A., Grennfelt, E.L., Olsson, L.: Hydroconversion of abietic acid into value-added fuel components over sulfided NiMo catalysts with varying support acidity. Fuel Process. Technol. 190, 55–66 (2019). https://doi.org/10.1016/j.fuproc.2019.03.008
- 14.
Gao, Y., Li, L., Chen, H., Li, J., Song, Z., Shang, S., Song, J., Wang, Z., Xiao, G.: High value-added application of rosin as a potential renewable source for the synthesis of acrylopimaric acid-based botanical herbicides. Ind. Crops Prod. 78, 131–140 (2015). https://doi.org/10.1016/j.indcrop.2015.10.032
- 15.
Kazakov, A., Muzny, C.D., Chirico, R.D., Diky, V.V., Frenkel, M.: Web Thermo Tables—an on-line version of the TRC thermodynamic tables. J. Res. Natl. Inst. Stand. Technol. 113, 209 (2012). https://doi.org/10.6028/jres.113.016
- 16.
Bhattacharya, A., Shivalkar, S.: Re-tooling Benson’s group additivity method for estimation of the enthalpy of formation of free radicals: C/H and C/H/O Groups. J. Chem. Eng. Data. 51, 1169–1181 (2006). https://doi.org/10.1021/je0503960
- 17.
Janbazi, H., Hasemann, O., Schulz, C., Kempf, A., Wlokas, I., Peukert, S.: Response surface and group additivity methodology for estimation of thermodynamic properties of organosilanes. Int. J. Chem. Kinet. 50, 681–690 (2018). https://doi.org/10.1002/kin.21192
- 18.
Domalski, E.S., Hearing, E.D.: Estimation of the thermodynamic properties of hydrocarbons at 298.15 K. J. Phys. Chem. Ref. Data. 17, 1637–1678 (1988). https://doi.org/10.1063/1.555814
- 19.
Roganov, G.N., Pisarev, P.N., Emel’yanenko, V.N., Verevkin, S.P.: Measurement and prediction of thermochemical properties. Improved Benson-type increments for the estimation of enthalpies of vaporization and standard enthalpies of formation of aliphatic alcohols. J. Chem. Eng. Data. 50, 1114–1124 (2005). https://doi.org/10.1021/je049561m
- 20.
Morales, G., Martinez, R.: Thermochemical properties and contribution groups for ketene dimers and related structures from theoretical calculations. J. Phys. Chem. A. 113, 8683–8703 (2009). https://doi.org/10.1021/jp9030915
- 21.
Cohen, N.: Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. J. Phys. Chem. Ref. Data. 25, 1411–1481 (1996). https://doi.org/10.1063/1.555988
- 22.
Benson, S.W., Golden, D.M., Haugen, G.R., Shaw, R., Cruickshank, F.R., Rodgers, A.S., O’neal, H.E., Walsh, R.: Additivity rules for the estimation of thermochemical properties. Chem. Rev. 69, 279–324 (1969). https://doi.org/10.1021/cr60259a002
- 23.
Joback, K.G., Reid, R.C.: Estimation of pure-component properties from group-contributions. Chem. Eng. Commun. 57, 233–243 (1987). https://doi.org/10.1080/00986448708960487
- 24.
Lapuerta, M., Rodríguez-Fernández, J., Oliva, F.: Determination of enthalpy of formation of methyl and ethyl esters of fatty acids. Chem. Phys. Lipids. 163, 172–181 (2010). https://doi.org/10.1016/j.chemphyslip.2009.11.002
- 25.
Wang, L., Ding, S., Gan, P., Chen, X., Zhang, D., Wei, X., Wang, X.: A supported nano ZnO catalyst based on a spent fluid cracking catalyst (FC3R) for the heterogeneous esterification of rosin. React. Kinet. Mech. Catal. 119, 219–233 (2016). https://doi.org/10.1007/s11144-016-1022-9
- 26.
Zinkel, D.F., Rusell, J.: Naval stores: Production, chemistry, utilization. Pulp Chemicals Association, New York, New York, NY (1989)
- 27.
Fieser, L.F., Campbell, W.P.: Hydroxyl and amino derivatives of dehydroabietic acid and dehydroabietinol. J. Am. Chem. Soc. 61, 2528–2534 (1939). https://doi.org/10.1021/ja01878a080
- 28.
Tschirch, A., Wolff, M.: The occurrence of abietic acid in resin oil. Arch. der Pharm. 245, 1–4 (1908)
- 29.
Syracuse Research Corporation of Syracuse, N.Y. (US): SciFinder data.
- 30.
Kono, M., Maruyama, R.: Chemistry of coccids produced in Japan. XI. The resinous constituents of Ceroplastes rubens Mask. I. Nippon Nogei Kagaku Kaishi. 12, 512–520 (1936)
- 31.
Kutan, I.: Separation of pimaric acid from resin of ordinary pine Pinus silvestris. Zhurnal Prikl. Khimii 36, 1149–1151 (1963)
- 32.
Shmidt, E.N., Pentegova, V.A.: High-boiling neutral compounds from the oleoresin of Pinus silvestris. Izv. Sib. Otd. Akad. Nauk SSSR, Seriya Khimicheskikh Nauk. 144–146 (1968)
- 33.
Rollett, A., Tabakoff, P., Feimer, S.: Acid constituents of sandarac resin. Monatsh. Chem. 50, 1–5 (1928)
- 34.
De Pascual Teresa, J., San Feliciano, A., Miguel del, C.M.J.: Components of Juniperus oxycedrus fruits. An. Quim. 70, 1015–1019 (1974)
- 35.
Chang, L.C., Song, L.L., Park, E.J., Luyengi, L., Lee, K.J., Farnsworth, N.R., Pezzuto, J.M., Kinghorn, A.D.: Bioactive constituents of Thuja occidentalis. J. Nat. Prod. 63, 1235–1238 (2000). https://doi.org/10.1021/np0001575
- 36.
Grant, P.K., Huntrakul, C., Sheppard, D.R.J.: Diterpenes of Dacrydium bidwillii. Aust. J. Chem. 20, 969–972 (1967). https://doi.org/10.1071/CH9670969
- 37.
Lazarev, M.Y., Zaretskii, M. V: X-ray structural analysis of levopimaric acid. Sin. Org. Soedin. 127–137 (1970)
- 38.
Lombard, R., Ebelin, J.: The hydrogenation of the resin acids of pine gums. II. Bull. Soc. Chim. Fr. 930–936 (1953)
- 39.
Bardyshev, I.I., Cherches, K.A.: Dehydroabietic and palustric acids as component parts of the rosin of Picea excelsa. Dokl. Akad. Nauk SSSR. 116, 959–960 (1957)
- 40.
Gu, W., Wang, S.: Synthesis and antimicrobial activities of novel 1H-dibenzo[a, c]carbazoles from dehydroabietic acid. Eur. J. Med. Chem. 45, 4692–4696 (2010). https://doi.org/10.1016/J.EJMECH.2010.07.038
- 41.
Komshilov, N.F.: High-melting abietic acid. Zhurnal Prikl Khimii 30, 1111–1115 (1957)
- 42.
Nong, W., Chen, X., Wang, L., Liang, J., Wang, H., Long, L., Huang, Y., Tong, Z.: Measurement and correlation of solid-liquid equilibrium for abietic acid+alcohol systems at atmospheric pressure. Fluid Phase Equilib. 367, 74–78 (2014). https://doi.org/10.1016/j.fluid.2014.01.018
- 43.
Yadav, J.S., Baishya, G., Dash, U.: Synthesis of (+)-amberketal and its analog from l-abietic acid. Tetrahedron 63, 9896–9902 (2007). https://doi.org/10.1016/j.tet.2007.06.063
- 44.
Tsutsui, M.: Japanese pine resins. XI. The isolation of resin acid by the brucine salt technique: the isolation of retene-type acids. Nippon Kagaku Kaishi. Pure Chem. 496–498 (1953)
- 45.
Harris, G.C., Sanderson, T.F.: Resin acids. I. An improved method of isolation of resin acids; isolation of a new abietic-type acid, neoabietic acid. J. Am. Chem. Soc. 70, 334–339 (1948). https://doi.org/10.1021/ja01181a104
- 46.
Pigulevskii, G.V., Kostenko, V.G.: Neoabietic and abietic acids-primary resin acids from oleoresin of the Siberian fir Abies sibirica. Zhurnal Prikl Khimii 33, 439–444 (1960)
- 47.
Murray, S.M., O’Brien, R.A., Mattson, K.M., Ceccarelli, C., Sykora, R.E., West, K.N., Davis, J.H.: The fluid-mosaic model, homeoviscous adaptation, and ionic liquids: dramatic lowering of the melting point by side-chain unsaturation. Angew. Chem. 49, 2755–2758 (2010). https://doi.org/10.1002/anie.200906169
Acknowledgements
Colciencias is gratefully acknowledged for the scholarship (call 272 of 2015) supporting D.G and project 37-1-693 (ref. FP44842-124-2017). Universidad de Antioquia is acknowledged for the research project PRG2014-1091.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
García, D., Bustamante, F., Alarcón, E. et al. Improvements of Thermal and Thermochemical Properties of Rosin by Chemical Transformation for Its Use as Biofuel. Waste Biomass Valor 11, 6383–6394 (2020). https://doi.org/10.1007/s12649-019-00863-y
Received:
Accepted:
Published:
Issue Date:
Keywords
- Rosin
- Isomerization
- Reduction
- Esterification
- Properties estimation