Skip to main content
Log in

Comparison Between Single and Two-Stage Anaerobic Digestion of Vegetable Waste: Kinetics of Methanogenesis and Carbon Flow

  • Original Research
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study aims to compare the performance and kinetics between the single-stage anaerobic digestion (SAD) and the two-stage anaerobic digestion (TAD) of vegetable waste (VW). The SAD was performed using continuously stirred tank reactors. Meanwhile, the TAD experiment was set up using a combined system involving a continuously stirred tank for hydrolysis/acidogenesis and an upflow reactor for methanogenesis. The hydrolytic reactor operated as a batch process with a retention time (RT) of 9 days, while the methane reactor was a continuous process operation with RT of 20 days. Both TAD and SAD were controlled at a temperature of 36 °C. The SAD experiments lasted for 143 days, and were characterised by the kinetic rate constant k = 0.02 day−1 which was much lower than that for the TAD (k = 0.66 − 2.16 day−1). The SAD seemed to be inhibited by high concentration of free ammonia and low inoculum to substrate ratio; herein, only 17.8–22.3% of the initial carbon could be converted into biogas (equivalent to 91–110 Nml/g-VSadded) with low methane content (44.1–48.7%). Meanwhile, TAD converted 41.67% initial carbon to biogas (equivalent to 299.0–374.6 Nml/g-VSadded) with high methane content (71.68–81.0%). Moreover, methanogenesis in the TAD was highly stable which enabled the digestion process to return to normal state within a few days, even though the concentrations of the influent increased to double (6.5–24.5 g-COD/l). As per these results, the TAD was much more stable, faster, and stronger than the SAD.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ji, C., Kong, C.-X., Mei, Z.-L., Li, J.: A review of the anaerobic digestion of fruit and vegetable waste. Appl. Biochem. Biotechnol. 183(3), 906–922 (2017). https://doi.org/10.1007/s12010-017-2472-x

    Article  Google Scholar 

  2. Lin, J., Zuo, J., Gan, L., Li, P., Liu, F., Wang, K., Chen, L., Gan, H.: Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J. Environ. Sci. 23(8), 1403–1408 (2011). https://doi.org/10.1016/S1001-0742(10)60572-4

    Article  Google Scholar 

  3. Plazzotta, S., Manzocco, L., Nicoli, M.C.: Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends Food Sci. Technol. 63, 51–59 (2017). https://doi.org/10.1016/j.tifs.2017.02.013

    Article  Google Scholar 

  4. Chernicharo de Lemos, C.A.: Anaerobic reactors, vol. 4. Biological Wastewater Treatment Series. IWA Publishing, London (2007)

    Google Scholar 

  5. Van, D.P., Fujiwara, T., Tho, B.L., Toan, P.P.S., Minh, G.H.: A review of anaerobic digestion systems for biodegradable waste: configurations, operating parameters, and current trends. Environ. Eng. Res. (2019). https://doi.org/10.4491/eer.2018.334

    Article  Google Scholar 

  6. Aslanzadeh, S., Rajendran, K., Taherzadeh, M.J.: A comparative study between single-and two-stage anaerobic digestion processes: effects of organic loading rate and hydraulic retention time. Int. Biodeterior. Biodegrad. 95, 181–188 (2014). https://doi.org/10.1016/j.ibiod.2014.06.008

    Article  Google Scholar 

  7. Ramos-Suárez, J., Arroyo, N.C., González-Fernández, C.: The role of anaerobic digestion in algal biorefineries: clean energy production, organic waste treatment, and nutrient loop closure. In: Singh, B., Kuldeep, B., Faizal, B. (eds.) Algae and Environmental Sustainability, pp. 53–76. Springer, India (2015)

    Chapter  Google Scholar 

  8. Mao, C., Feng, Y., Wang, X., Ren, G.: Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 45, 540–555 (2015). https://doi.org/10.1016/j.rser.2015.02.032

    Article  Google Scholar 

  9. Trzcinski, A.P., David, C.S.: Microbial biomethane from solid wastes: principles and biotechnogical processes. In: Harzevili, F.D., Serge, H. (eds.) Microbial Fuels. pp. 77–151. CRC Press, Boca Raton (2017)

    Chapter  Google Scholar 

  10. Ganesh, R., Torrijos, M., Sousbie, P., Lugardon, A., Steyer, J.P., Delgenes, J.P.: Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance. Waste Manag. (Oxford) 34(5), 875–885 (2014).

    Article  Google Scholar 

  11. Xiao, B., Qin, Y., Wu, J., Chen, H., Yu, P., Liu, J., Li, Y.-Y.: Comparison of single-stage and two-stage thermophilic anaerobic digestion of food waste: performance, energy balance and reaction process. Energy Convers. Manag. 156, 215–223 (2018). https://doi.org/10.1016/j.enconman.2017.10.092

    Article  Google Scholar 

  12. Schievano, A., Tenca, A., Scaglia, B., Merlino, G., Rizzi, A., Daffonchio, D., Oberti, R., Adani, F.: Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies. Environ. Sci. Technol. 46(15), 8502–8510 (2012). https://doi.org/10.1021/es301376n

    Article  Google Scholar 

  13. Begum, S., Anupoju, G.R., Sridhar, S., Bhargava, S.K., Jegatheesan, V., Eshtiaghi, N.: Evaluation of single and two stage anaerobic digestion of landfill leachate: effect of pH and initial organic loading rate on volatile fatty acid (VFA) and biogas production. Bioresour. Technol. 251, 364–373 (2018). https://doi.org/10.1016/j.biortech.2017.12.069

    Article  Google Scholar 

  14. APHA: Standard Methods for the Examination of Water and Wastewater. In. USA: Washington, D.C, (2012)

    Google Scholar 

  15. Dinh, P.V., Hoang, M.G., Pham Phu, S.T., Fujiwara, T.: Kinetics of carbon dioxide, methane and hydrolysis in co-digestion of food and vegetable wastes. Glob. J. Environ. Sci. Manag. 4(4), 401–412 (2018a). https://doi.org/10.22034/GJESM.2018.04.002

    Article  Google Scholar 

  16. Dinh, P.V., Hoang, M.G., Pham Phu, S.T., Fujiwara, T.: A new kinetic model for biogas production from co-digestion by batch mode. Glob. J. Environ. Sci. Manag. 4(3), 251–262 (2018b). https://doi.org/10.22034/GJESM.2018.03.001

    Article  Google Scholar 

  17. Basu, D., Asolekar, S.R.: Evaluation of substrate removal kinetics for UASB reactors treating chlorinated ethanes. Environ. Sci. Pollut. Res. 19(6), 2419–2427 (2012). https://doi.org/10.1007/s11356-012-0754-y

    Article  Google Scholar 

  18. Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., Liu, Y., Ma, J., Yu, L., Li, X.: Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase. Bioresour. Technol. 144, 80–85 (2013). https://doi.org/10.1016/j.biortech.2013.06.099

    Article  Google Scholar 

  19. Dinh, P.V., Fujiwara, T., Phu, S.T.P., Hoang, M.G.: Kinetic of biogas production in co-digestion of vegetable waste, horse dung, and sludge by batch reactors. In: IOP Conference Series: Earth and Environmental Science, vol. 1, p. 012041. IOP Publishing, Bristol (2018)

  20. Gallert, C., Winter, J.: Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production. Appl. Microbiol. Biotechnol. 48(3), 405–410 (1997). https://doi.org/10.1007/s002530051071

    Article  Google Scholar 

  21. Braun, R., Huber, P., Meyrath, J.: Ammonia toxicity in liquid piggery manure digestion. Biotechnol. Lett. 3(4), 159–164 (1981). https://doi.org/10.1007/BF00239655

    Article  Google Scholar 

  22. Boulanger, A., Pinet, E., Bouix, M., Bouchez, T., Mansour, A.A.: Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Manag. (Oxford) 32(12), 2258–2265 (2012). https://doi.org/10.1016/j.wasman.2012.07.024

    Article  Google Scholar 

  23. Parawira, W., Murto, M., Zvauya, R., Mattiasson, B.: Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew. Energy 29(11), 1811–1823 (2004). https://doi.org/10.1016/j.renene.2004.02.005

    Article  Google Scholar 

  24. Chen, S., Zhang, J., Wang, X.: Effects of alkalinity sources on the stability of anaerobic digestion from food waste. Waste Manag. Res. 33(11), 1033–1040 (2015). https://doi.org/10.1177/0734242X15602965

    Article  Google Scholar 

  25. Nielfa, A., Cano, R., Vinot, M., Fernández, E., Fdz-Polanco, M.: Anaerobic digestion modeling of the main components of organic fraction of municipal solid waste. Process Saf. Environ. Prot. 94, 180–187 (2015). https://doi.org/10.1016/j.psep.2015.02.002

    Article  Google Scholar 

  26. Ravi, P.P., Lindner, J., Oechsner, H., Lemmer, A.: Effects of target pH-value on organic acids and methane production in two-stage anaerobic digestion of vegetable waste. Bioresour. Technol. 247, 96–102 (2018). https://doi.org/10.1016/j.biortech.2017.09.068

    Article  Google Scholar 

  27. Wu, Y., Wang, C., Liu, X., Ma, H., Wu, J., Zuo, J., Wang, K.: A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment. Bioresour. Technol. 211, 16–23 (2016). https://doi.org/10.1016/j.biortech.2016.03.050

    Article  Google Scholar 

  28. Raynal, J., Delgenes, J., Moletta, R.: Two-phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process. Bioresour. Technol. 65(1–2), 97–103 (1998). https://doi.org/10.1016/S0960-8524(98)00009-1

    Article  Google Scholar 

  29. Möller, K., Müller, T.: Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng. Life Sci. 12(3), 242–257 (2012). https://doi.org/10.1002/elsc.201100085

    Article  Google Scholar 

  30. Romli, M., Greenfield, P., Lee, P.: Effect of recycle on a two-phase high-rate anaerobic wastewater treatment system. Water Res. 28(2), 475–482 (1994). https://doi.org/10.1016/0043-1354(94)90285-2

    Article  Google Scholar 

  31. Diamantis, V., Aivasidis, A.: Kinetic analysis and simulation of UASB anaerobic treatment of a synthetic fruit wastewater. Glob. NEST J. 12(2), 175–180 (2010). https://doi.org/10.30955/gnj.000562

    Article  Google Scholar 

  32. Math-Alvarez, J., Viturtia, A.M., Llabres-Luengo, P., Cecchi, F.: Kinetic and performance study of a batch two-phase anaerobic digestion of fruit and vegetable wastes. Biomass Bioenergy 5(6), 481–488 (1993). https://doi.org/10.1016/0961-9534(93)90043-4

    Article  Google Scholar 

  33. Gerardi, M.H.: The Microbiology of Anaerobic Digesters. Wiley-Interscience, New Jersey, USA (2003)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Okayama University (Japan) and National University of Civil Engineering (vietnam) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Pham Van.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham Van, D., Takeshi, F., Hoang Minh, G. et al. Comparison Between Single and Two-Stage Anaerobic Digestion of Vegetable Waste: Kinetics of Methanogenesis and Carbon Flow. Waste Biomass Valor 11, 6095–6103 (2020). https://doi.org/10.1007/s12649-019-00861-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00861-0

Keywords

Navigation