Skip to main content
Log in

Antioxidants, Toxicity, and Nitric Oxide Inhibition Properties of Pyroligneous Acid from Palm Kernel Shell Biomass

Waste and Biomass Valorization Aims and scope Submit manuscript

Cite this article

Abstract

Huge volumes of lignocellulosic biomass residues generated from agricultural activities such as oil palm biomass pose great environmental threats if improperly treated. In this study, pyroligneous acid (PA) obtained from slow pyrolysis of palm kernel shell (PKS) were evaluated for its antioxidant activity via chemical assays, toxicity, and potential as anti-inflammatory agent based on nitric oxide (NO) inhibition activity. The PA was extracted using ethyl acetate (EA) and fractionated using column chromatography. Fractions 13–17 that contain highest total phenolic contents (866.84 ± 54.28 µg GAE/mg) were chosen for subsequent studies. Results obtained were as follows; DPPH—75.34 ± 3.40%, TEAC—1346.48 ± 5.29 μg Trolox/mg, FRAP—11.80 ± 0.41 mmol Fe(II)/mg, hydroxyl radical scavenging—IC50 270.34 ± 4.88 µg/mL, superoxide radical scavenging—IC50 472.32 ± 1.87 µg/mL, cytotoxicity after 24 h at less than 50 µg/mL—cell viability of ≥ 93.08% for RAW 264.7 macrophage cell and anti-inflammatory activity with NO production of 6.55% after 24 h at sample concentration of 25 µg/mL. From the GC–MS analysis, phenols and derivatives were identified as major compound (83.24%) followed by esters (11.23%), and ketones (5.53%). The present of phenolic compounds namely benzene-1,2-diol, catechol (35.01%), 1,3-dimethoxy-2-hydroxybenzene, syringol (23.81%), and other catechol derivatives can be attributed to the antioxidant and anti-inflammatory activities determined. This study has successfully demonstrated the potential use of PA obtained from PKS as alternative antioxidant and anti-inflammatory agent.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iqbal, J., Abbasi, B.A., Mahmood, T., Kanwal, S., Ali, B., Khalil, A.T.: Plant-derived anticancer agents: a green anticancer approach. Asian Pac. J. Trop. Biomed. 7, 1129–1150 (2017)

    Google Scholar 

  2. Li, R., Narita, R., Ouda, R., Kimura, C., Nishimura, H., Yatagai, M., Fujita, T., Watanabe, T.: Structure-dependent antiviral activity of catechol derivatives in pyroligneous acid against the encephalomycarditis virus. RSC Adv. 8, 35888–35896 (2018)

    Google Scholar 

  3. Wei, Q., Ma, X., Dong, J.: Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches. J. Anal. Appl. Pyrolysis. 87, 24–28 (2010)

    Google Scholar 

  4. Ma, C., Song, K., Yu, J., Yang, L., Zhao, C., Wang, W., Zu, G., Zu, Y.: Pyrolysis process and antioxidant activity of pyroligneous acid from Rosmarinus officinalis leaves. J. Anal. Appl. Pyrolysis. 104, 38–47 (2013)

    Google Scholar 

  5. Ho, C.L., Lin, C.Y., Ka, S.M., Chen, A., Tasi, Y.L., Liu, M.L., Chiu, Y.C., Hua, K.F.: Bamboo vinegar decreases inflammatory mediator expression and NLRP3 inflammasome activation by inhibiting reactive oxygen species generation and protein kinase C-α/δ activation. PLoS ONE 8, e75738 (2013)

    Google Scholar 

  6. Tripathi, M., Sahu, J.N., Ganesan, P.: Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew. Sustain. Energy Rev. 55, 467–481 (2016)

    Google Scholar 

  7. Jahanban-Esfahlan, A., Amarowicz, R.: Walnut (Juglans regia L.) shell pyroligneous acid: chemical constituents and functional applications. RSC Adv. 8, 22376–22391 (2018)

    Google Scholar 

  8. Mmojieje, J., Hornung, A.: The potential application of pyroligneous acid in the UK Agricultural Industry. J. Crop Improv. 29, 228–246 (2015)

    Google Scholar 

  9. Lee, S.H., H’ng, P.S., Chow, M.J., Sajap, A.S., Tey, B.T., Salmiah, U., Sun, Y.L.: Effectiveness of pyroligneous acid from vapour released in charcoal industry against biodegradable agent under laboratory. J. Appl. Sci. 11, 3848–3853 (2011)

    Google Scholar 

  10. Zulkarami, B., Ashrafuzzaman, M., Husni, M.O., Ismail, M.R.: Effect of pyroligneous acid on growth, yield and quality improvement of rockmelon in soilless culture. Aust. J. Crop Sci. 5, 1508–1514 (2011)

    Google Scholar 

  11. Lashari, M.S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., Zheng, J., Zheng, J., Zhang, X., Yu, X.: Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Res. 144, 113–118 (2013)

    Google Scholar 

  12. Mungkunkamchao, T., Kesmala, T., Pimratch, S., Toomsan, B., Jothityangkoon, D.: Wood vinegar and fermented bioextracts: natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Sci. Hortic. 154, 66–72 (2013)

    Google Scholar 

  13. Kook, K., Kim, K.H.: The effects of supplemental levels of bamboo vinegar on growth performance, serum profile and meat quality in fattening hanwoo cow. J. Anim. Sci. Technol. 45, 57–68 (2003)

    Google Scholar 

  14. Kook, K., Jeong, J.H., Kim, K.H.: The effects of supplemental levels of bamboo vinegar liquids on growth performance, serum profile, carcass grade, and meat quality characteristics in finishing pigs. J. Anim. Sci. Technol. 47, 721–730 (2005)

    Google Scholar 

  15. Loo, A.Y., Jain, K., Darah, I.: Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem. 107, 1151–1160 (2008)

    Google Scholar 

  16. Wei, Q., Ma, X., Zhao, Z., Zhang, S., Liu, S.: Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell. J. Anal. Appl. Pyrolysis. 88, 149–154 (2010)

    Google Scholar 

  17. Ma, X., Wei, Q., Zhang, S., Shi, L., Zhao, Z.: Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid. J. Anal. Appl. Pyrolysis. 91, 338–343 (2011)

    Google Scholar 

  18. Mathew, S., Zakaria, Z.A., Musa, N.F.: Antioxidant property and chemical profile of pyroligneous acid from pineapple plant waste biomass. Process Biochem. 50, 1892–1985 (2015)

    Google Scholar 

  19. Lee, C.S., Yi, E.H., Kim, H.R., Huh, S.R., Sung, S.H., Chung, M.H., Ye, S.K.: Anti-dermatitis effects of oak wood vinegar on the DNCB-induced contact hypersensitivity via STAT3 suppression. J. Ethnopharmacol. 135, 747–753 (2011)

    Google Scholar 

  20. ASTM International: Standard test methods for direct moisture content measurement of wood and wood-base materials. ASTM D4442-07 (2007)

  21. ASTM International: Standard test method for ash in biomass. ASTM E1755-01 (2007)

  22. ASTM International: Standard test method for volatile matter content of activated carbon samples. ASTM D5832-98 (2008)

  23. National Renewable Energy Laboratory (NREL): Chemical Analysis and Testing Laboratory Analytical Procedures. United State: National Renewable Energy Laboratory (1998)

  24. Rungruang, P., Junyapoon, S.: Antioxidative activity of phenolic compounds in pyroligneous acid produced from Eucalyptus wood. In: The 8th International Symposium on Biocontrol and Biotechnology (2010)

  25. Eastman, H.E., Jamieson, C., Watson, A.J.: Development of solvent selection guides. Aldrichimica Acta. 48, 51–55 (2015)

    Google Scholar 

  26. Ma, C., Li, W., Zu, Y., Yang, L., Li, J.: Antioxidant properties of pyroligneous acid obtained by thermochemical conversion of Schisandra chinensis Baill. Molecules 19, 20821–20838 (2014)

    Google Scholar 

  27. Brand-Williams, W., Cuvelier, M.E., Berset, C.L.: Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25–30 (1995)

    Google Scholar 

  28. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999)

    Google Scholar 

  29. Dufour, D., Pichette, A., Mshvildadze, V., Bradette-Hébert, M.E., Lavoie, S., Longtin, A., Laprise, C., Legault, J.: Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Ledum groenlandicum Retzius. J. Ethnopharmacol. 111, 22–28 (2007)

    Google Scholar 

  30. Choe, K.I., Kwon, J.H., Park, K.H., Oh, M.H., Kim, M.H., Kim, H.H., Cho, S.H., Chung, E.K., Ha, S.Y., Lee, M.W.: The antioxidant and anti-inflammatory effects of phenolic compounds isolated from the root of Rhodiola sachalinensis A. BOR. Molecules 17, 11484–11494 (2012)

    Google Scholar 

  31. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G.: An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010)

    Google Scholar 

  32. Mathew, S., Zakaria, Z.A.: Pyroligneous acid—the smoky acidic liquid from plant biomass. Appl. Microbiol. Biotechnol. 99, 611–622 (2015)

    Google Scholar 

  33. Alothman, M., Bhat, R., Karim, A.A.: Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 115, 785–788 (2009)

    Google Scholar 

  34. Kasote, D.M., Katyare, S.S., Hegde, M.V., Bae, H.: Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 11, 982–991 (2015)

    Google Scholar 

  35. Shahidi, F., Nacsk, M.: Food Phenolics: Sources, Chemistry. Effects and Application. Publishing Co Inc, Lancaster (1995)

    Google Scholar 

  36. Zhang, H., Tsao, R.: Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 8, 33–42 (2016)

    Google Scholar 

  37. Wu, Q., Zhang, S., Hou, B., Zheng, H., Deng, W., Liu, D., Tang, W.: Study on the preparation of wood vinegar from biomass residues by carbonization process. Bioresour. Technol. 179, 98–103 (2015)

    Google Scholar 

  38. Fernandes, E.R., Marangoni, C., Medeiros, S.H., Souza, O., Sellin, N.: Slow pyrolysis of banana culture waste: Leaves and pseudostem. In: 3rd International Conference on Industrial and Hazardous Waste Management (2012)

  39. Pereira, D.M., Valentão, P., Pereira, J.A., Andrade, P.B.: Phenolics: from chemistry to biology. Molecules 14, 2202–2211 (2009)

    Google Scholar 

  40. Cadet, J., Davies, K.J., Medeiros, M.H., Di Mascio, P., Wagner, J.R.: Formation and repair of oxidatively generated damage in cellular DNA. Free Radic. Biol. Med. 107, 13–34 (2017)

    Google Scholar 

  41. Forman, H.J., Augusto, O., Brigelius-Flohe, R., Dennery, P.A., Kalyanaraman, B., Ischiropoulos, H., Mann, G.E., Radi, R., Roberts II, L.J., Vina, J., Davies, K.J.: Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free Radic. Biol. Med. 78, 233–235 (2015)

    Google Scholar 

  42. Kanaparthy, A., Kanaparthy, R.: Cytotoxicity of endodontic sealers-a comparative study using L-929 mouse skin fibroblast cell response-an ex vivo study. Int. J. Med. Res. Health Sci. 5, 59–62 (2016)

    Google Scholar 

  43. Hegde, M.N., Rodrigues, J.C., Kumari, S., Hegde, N.D.: Toxicity evaluation of root canal sealers on human gingival fibroblasts. Endodont 23, 40–46 (2011)

    Google Scholar 

  44. Dahl, J.E., Frangou-Polyzois, M.J., Polyzois, G.L.: In vitro biocompatibility of denture relining materials. Gerodontology 23, 17–22 (2006)

    Google Scholar 

  45. Hong, G.E., Park, H.S., Kim, J.A., Nagappan, A., Zhang, J., Kang, S.R., Won, C.K., Cho, J.H., Kim, E.H., Kim, G.S.: Anti-oxidant and anti-inflammatory effects of Fraxinus rhynchophylla on lipopolysaccharide (LPS)-induced murine Raw 264.7 cells. J. Biomed. Res. 13, 331–338 (2012)

    Google Scholar 

  46. Assanga, I., Lujan, L.: Cell growth curves for different cell lines and their relationship with biological activities. Int. J. Biotechnol. Mol. Biol. Res. 4, 60–70 (2013)

    Google Scholar 

  47. Kong, A.N., Yu, R., Chen, C., Mandlekar, S., Primiano, T.: Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch. Pharmacal Res. 23, 1–6 (2000)

    Google Scholar 

  48. Kimura, Y., Suto, S., Tatsuka, M.: Evaluation of carcinogenic/co-carcinogenic activity of chikusaku-eki, a bamboo charcoal by-product used as a folk remedy, in BALB/c 3T3 cells. Biol. Pharm. Bull. 25, 1026–1029 (2002)

    Google Scholar 

  49. Jung, I.S., Kim, Y.J., Gal, S.W., Choi, Y.J.: Antimicrobial and antioxidant activities and inhibition of nitric oxide synthesis of oak wood vinegar. J. Life Sci. 17, 105–109 (2007)

    Google Scholar 

  50. Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K., Lee, S.S.: Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat. Res./Fundam. Mol. Mech. Mutagenesis 480, 243–268 (2001)

    Google Scholar 

  51. Lin, C.T., Chen, C.J., Lin, T.Y., Tung, J.C., Wang, S.Y.: Anti-inflammation activity of fruit essential oil from Cinnamomum insularimontanum Hayata. Bioresour. Technol. 99, 8783–8787 (2008)

    Google Scholar 

  52. Hobbs, A., Higgs, A., Moncada, S.: Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 39, 191–220 (1999)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Teknologi Malaysia (UTM) for the GUP Grant (07G78) and the Ministry of Education, Malaysia, for the FRGS Grant (4F994) and the MyPhD scholarship to Khoirun Nisa Mahmud.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khoirun Nisa Mahmud or Zainul Akmar Zakaria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, K.N., Hashim, N.M., Ani, F.N. et al. Antioxidants, Toxicity, and Nitric Oxide Inhibition Properties of Pyroligneous Acid from Palm Kernel Shell Biomass. Waste Biomass Valor 11, 6307–6319 (2020). https://doi.org/10.1007/s12649-019-00857-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00857-w

Keywords

Navigation