Skip to main content
Log in

Production of Porous Poly(phospho-siloxo) Networks for Thermal Insulations Using Low-Value Calcium-Rich Wastes as Pore-Forming Agents

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study focuses on the preparation of porous poly(phospho-siloxo) networks for thermal insulation applications using commercial calcium carbonate and calcium-rich wastes such as oyster shell, snail shell and eggshell powders as pore-forming agents. The control and porous poly(phospho-siloxo) networks were prepared by adding phosphoric acid (4 M) as a chemical ingredient to metakaolin containing 0 and 15 wt% of each foaming agents. The final products were monitored using the X-ray diffractometry, infrared spectroscopy, apparent density, absolute density, thermal conductivity, optical microscopy, scanning electron microscopy and mercury intrusion porosimetry. The results show that the thermal conductivity of the control and porous poly(phospho-siloxo) network from commercial calcium carbonate are 0.35 and 0.20 W/mK, respectively. They were higher compared to those from snail shell (0.17 W/mK), eggshell (0.15 W/mK) and oyster shell (0.14 W/mK). The cumulative pore volumes are 211.4, 365.5, 380.6, 389.7 and 393.3 mm3/g for the control and porous specimens from chicken eggshell, commercial calcium carbonate, snail shell and oyster shell powders, respectively. Their total porosity measured by mercury intrusion porosimeter are 30.9, 45.5, 46.0, 45.9 and 45.4%, respectively, whereas those calculated with apparent and true density measured by pycnometer are 34.48, 45.25, 52.74, 50.84 and 52.60%, respectively. The concentrated pore size diameter of the porous sample from eggshell is highest compared to the others. It can be seen that the total porosities measured by mercury intrusion porosimeter of porous specimens are nearly the same trend as well as the thermal conductivity. It was found that the low-value calcium-rich wastes could be used for producing porous poly(phospho-siloxos) networks which could be utilized for thermal insulation applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sasmal, N., Garai, M., Karmakar, B.: Preparation and characterization of novel foamed porous glass-ceramics. Mater. Charact. 103, 90–100 (2015)

    Google Scholar 

  2. Akthar, F.K., Evans, J.R.G.: High porosity (%3e90%) cementitious foams. Cem. Concr. Res. 40, 352–358 (2010)

    Google Scholar 

  3. Othuman, M.A., Wang, Y.C.: Elevated-temperature thermal properties of lightweight foamed concrete. Constr. Build. Mater. 25, 705–716 (2011)

    Google Scholar 

  4. Kamseu, E., Nait-Ali, B., Bignozzi, M.C., Leonelli, C., Rossignol, S., Smith, D.S.: Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J. Eur. Ceram. Soc. 32, 1593–1603 (2012)

    Google Scholar 

  5. Zhang, Z., Provis, J.L., Reid, A., Wang, H.: Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Comp. 62, 97–105 (2015)

    Google Scholar 

  6. Ngouloure, Z.N.M., Nait-Ali, B., Zekeng, S., Kamseu, E., Melo, U.C., Smith, D., Leonelli, C.: Recycled natural wastes in metakaolin-based porous geopolymers for insulating applications. J. Build. Eng. 3, 58–69 (2015)

    Google Scholar 

  7. Bell, J.L., Kriven, W.M.: Preparation of ceramic foams from metakaolin-based geopolymer gels. Ceram. Eng. Sci. Proc. 29, 97–111 (2009)

    Google Scholar 

  8. Liu, L.P., Cui, X.M., Qiu, S.H., Yu, J.L., Zhang, L.: Preparation of phosphoric acid-based porous geopolymers. Appl. Clay Sci. 50, 600–603 (2010)

    Google Scholar 

  9. Arellano Aguilar, R., Burciaga Díaz, O., Escalante García, J.I.: Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates. Constr. Build. Mater. 24, 1166–1175 (2010)

    Google Scholar 

  10. Davidovits, J.: Geopolymer Chemistry and Applications, 3rd edn. Institut Géopolymère, France (2011)

    Google Scholar 

  11. Shiu, H.-S., Lin, K.-L., Chao, S.-J., Hwang, C.-L., Cheng, T.-W.: Effects of foam agent on characteristics of thin-film transistor liquid crystal display waste glass-metakaolin-based cellular geopolymer. Environ. Prog. Sustain. Energy 33, 538–550 (2014)

    Google Scholar 

  12. Prud'homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A., Rossignol, S.: In situ inorganic foams prepared from various clays at low temperature. Appl. Clay Sci. 51, 15–22 (2011)

    Google Scholar 

  13. Landi, E., Medri, V., Papa, E., Dedecek, J., Klein, P., Benito, P., et al.: Alkali-bonded ceramics with hierarchical tailored porosity. Appl. Clay Sci. 73, 56–64 (2013)

    Google Scholar 

  14. Abdollahnejad, Z., Pacheco-Torgal, F., Félix, T., Tahri, W., Aguiar, J.B.: Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr. Build. Mater. 80, 18–30 (2015)

    Google Scholar 

  15. Medpelli, D., Seo, J.-M., Seo, D.-K.: Geopolymer with hierarchically meso/macroporous structure from reactive emulsion templating. J. Am. Ceram. Soc. 97, 70–73 (2014)

    Google Scholar 

  16. Cilla, M.S., Morelli, M.R., Colombo, P.: Open cell geopolymer foams by a novel saponification/peroxide/gel casting combined route. J. Eur. Ceram. Soc. 34, 3133–3137 (2014)

    Google Scholar 

  17. Fernandes, H.R., Ferreira, D.D., Andreola, F., Lancellotti, I., Barbieri, L., Ferreira, J.M.F.: Environmental friendly management of CRT glass by foaming with waste egg shells, calcite or dolomite. Ceram. Int. 40, 13371–13379 (2014)

    Google Scholar 

  18. Le-Ping, L., Xue-Min, C., Shu-Heng, Q., Jun-Li, Y., Lin, Z.: Preparation of phosphoric acid-based porous geopolymers. Appl. Clay Sci. 50, 600–603 (2010)

    Google Scholar 

  19. Gualtieri, L.M., Romagnoli, M., Gualtieri, F.A.: Preparation of phosphoric acid-based geopolymer foams using limestone as pore-forming agent. J. Eur. Ceram. Soc. 35, 3167–3178 (2015)

    Google Scholar 

  20. Fongang, R.T.T., Pemndje, J., Lemougna, P.N., Melo, U.C., Nanseu, C.P., Nait-Ali, B., Kamseu, E., Leonelli, C.: Cleaner production of the lightweight insulating composites: microstructure, pore network and thermal conductivity. Energy Build. 107, 113–122 (2015)

    Google Scholar 

  21. Riyap, H.I., Bewa, C.N., Banenzoué, C., Tchakouté, H.K., Rüscher, C.H., Kamseu, E., Bignozzi, M.C., Leonelli, C.: Microstructure and mechanical, physical and structural properties of sustainable lightweight metakaolin-based geopolymer cements and mortars employing rice husk. J. Asian Ceram. Soc. 7, 199–212 (2019)

    Google Scholar 

  22. Stadelman, W.J.: Eggs and egg products. In: Francis, F.J. (ed.) Encyclopedia of Food Science and Technology, 2nd edn, pp. 593–599. Wiley, New York (2000)

    Google Scholar 

  23. Buasri, A., Chaiyut, N., Loryuenyong, V., Wongweang, C., Khamsrisuk, S.: Application of eggshell wastes as a heterogeneous catalyst for biodiesel production. Sustain. Energy 1, 7–13 (2013)

    Google Scholar 

  24. Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin-Nomade, A., Yvon, J., Martin, F.: Genesis of Mayouom kaolin deposit (Western Cameroon). Appl. Clay Sci. 32, 125–140 (2006)

    Google Scholar 

  25. Tchakouté, H.K., Elimbi, A., Mbey, J.A., Ngally Sabouang, C.J., Njopwouo, D.: The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Constr. Build. Mater. 35, 960–969 (2012)

    Google Scholar 

  26. Tchakouté, H.K., Mbey, J.A., Elimbi, A., Kenne, B.B.D., Njopwouo, D.: Synthesis of volcanic ash-based geopolymer mortars by fusion method: effects of adding metakaolin to fused volcanic ash. Ceram. Inter. 39, 1613–1621 (2013)

    Google Scholar 

  27. Tchakouté, H.K., Elimbi, A., Kenne, B.B.D., Mbey, J.A., Njopwouo, D.: Synthesis of geopolymers from volcanic ash via the alkaline fusion method: effect of Al2O3/Na2O molar ratio of soda–volcanic ash. Ceram. Inter. 39, 269–276 (2013)

    Google Scholar 

  28. Djobo, J.N.Y., Tchadjié, L.N., Tchakouté, H.K., Kenne, B.B.D., Elimbi, A., Njopwouo, D.: Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. J. Asian Ceram. Soc. 2, 387–398 (2014)

    Google Scholar 

  29. Mabah, D.E.T., Tchakouté, H.K., Rüscher, C.H., Kamseu, E., Elimbi, A., Leonelli, C.: Design of low-cost semi-crystalline calcium silicate from biomass for the improvement of the mechanical and microstructural properties of metakaolin-based geopolymer cements. Mater. Chem. Phys. 223, 98–108 (2019)

    Google Scholar 

  30. Tchuenté, F.M., Tchakouté, H.K., Banenzoué, C., Rüscher, C.H., Kamseu, E., Andreola, F., Leonelli, C.: Microstructural and mechanical properties of (Ca, Na)-poly(sialate-siloxo) from metakaolin as aluminosilicate and calcium silicate from precipitated silica and calcined chicken eggshell. Constr. Build. Mater. 201, 662–675 (2019)

    Google Scholar 

  31. Djobo, J.N.Y., Tchakouté, H.K., Ranjbar, N., Elimbi, A., Tchadjié, L.N., Njopwouo, D.: Gel composition and strength properties of alkali-activated oyster shell-volcanic ash: effect of synthesis conditions. J. Am. Ceram. Soc. 99, 3159–3166 (2016)

    Google Scholar 

  32. Tchakouté, H.K., Fotio, D., Rüscher, C.H., Kamseu, E., Djobo, J.N.Y., Bignozzi, M.C., Leonelli, C.: The effects of synthesized calcium phosphate compounds on the mechanical and microstructural properties of metakaolin-based geopolymer cements. Constr. Build. Mater. 163, 776–792 (2018)

    Google Scholar 

  33. Kurczewska, J., Pecyna, P., Ratajczak, M., Gaje, M., Schroeder, G.: Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing. Saudi Pharm. J. 25, 911–920 (2017)

    Google Scholar 

  34. Li, Y., Zhang, Y., Zhang, Y., Liu, M., Zhang, F., Wang, L.: Thermal behavior analysis of halloysite selected from Inner Mongolia Autonomous Region in China. J. Therm. Anal. Calorm. 129, 1333–1339 (2017)

    Google Scholar 

  35. Joshi, G., Rawat, D.S., Lamba, B.Y., Bisht, K.K., Kumar, P., Kumar, N., Kumar, S.: Transesterification of Jatropha and Karanja oils by using waste egg shell derived calcium based mixed metal oxides. Energy Convers. Manag. 96, 258–267 (2015)

    Google Scholar 

  36. Laskar, I.B., Rajkumari, K., Gupta, R., Chatterjee, S., Paul, B., Rokhum, L.: Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv. 8, 20131–20142 (2018)

    Google Scholar 

  37. Balmain, J., Hannoyer, B., Lopez, E.: Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (nacre) from the shell of the mollusk Pinctada maxima. J. Biomed. Mater. Res. 48, 749–754 (1999)

    Google Scholar 

  38. Verma, D., Katti, K., Katti, D.: Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 64, 1051–1057 (2006).

    Google Scholar 

  39. Hongxia, G., Zhenping, Q., Peng, Q., Peng, Y., Suping, C., Wei, W.: Crystallization of aragonite CaCO3 with complex structures. Adv. Powder Technol. 22, 777–783 (2011)

    Google Scholar 

  40. Nayak, P.S., Singh, B.K.: Instrumental characterization of clay by XRF. XRD and FTIR. Bull. Mater. Sci. 30, 235–238 (2007)

    Google Scholar 

  41. Nirmala, B., Sudha, A.G., Suresh, E.: Synthesis and characterization of alumino phosphate zeolites with tri ethyl amine as a template using microwave assisted technique. Int. Arch. Appl. Sci. Technol. 4, 45–51 (2013)

    Google Scholar 

  42. Rokita, M., Handke, M., Mozgawa, W.: The AIPO4 polymorphs structure in the light of Raman and IR spectroscopy studies. J. Mol. Struct. 555, 351–356 (2000)

    Google Scholar 

  43. Bewa, C.N., Tchakouté, H.K., Fotio, D., Rüscher, C.H., Kamseu, E., Leonelli, C.: Water resistance and thermal behavior of metakaolin-phosphate-based geopolymer cements. J. Asian Ceram. Soc. 6, 271–283 (2018)

    Google Scholar 

  44. Mirkovic, M.M., Pasti, T.D.L., Dosen, A.M., Cebela, M.Z., Rosic, A.A., Matovic, B.Z., Babi, B.M.: Adsorption of malathion on mesoporous monetite obtained by mechanochemical treatment of brushite. RSC Adv. 6, 12219–12225 (2016)

    Google Scholar 

  45. Idowu, B., Cama, G., Deb, S., Di Silvio, L.: In vitro osteoinductive potential of porous monetite for bone tissue engineering. J. Tissue Eng. 5, 1–14 (2014)

    Google Scholar 

  46. Tchakouté, H.K., Rüscher, C.H., Kamseu, E., Andreola, F., Leonelli, C.: Influence of the molar concentration of phosphoric acid solution on the properties of metakaolin-phosphate-based geopolymer cements. Appl. Clay Sci. 147, 184–194 (2017)

    Google Scholar 

  47. Alghamdi, H., Neithalath, N.: Novel synthesis of lightweight geopolymer matrices from fly ash through carbonate-based activation. Mater. Today Commun. 17, 266–267 (2018)

    Google Scholar 

  48. Wongsa, A., Sata, V., Nematollahi, B., Sanjayan, J., Chindaprasirt, P.: Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. J. Clean. Prod. 195, 1069–1080 (2018)

    Google Scholar 

  49. Novais, R.M., Buruberri, L.H., Ascensao, G., Seabra, M.P., Labrincha, J.A.: Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J. Clean. Prod. 119, 99–107 (2016)

    Google Scholar 

Download references

Acknowledgements

Dr. Tchakouté Kouamo Hervé gratefully acknowledges the Alexander von Humboldt Foundation for its financial support this work under Grant N° KAM/1155741 GFHERMES-P. The authors would like to thank Mr Valerie Petrov for SEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé K. Tchakouté.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchakouté, H.K., Bewa, C.N., Kesseng, N.A. et al. Production of Porous Poly(phospho-siloxo) Networks for Thermal Insulations Using Low-Value Calcium-Rich Wastes as Pore-Forming Agents. Waste Biomass Valor 11, 5857–5875 (2020). https://doi.org/10.1007/s12649-019-00846-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00846-z

Keywords

Navigation