Improved Methane Production Using Lignocellulolytic Enzymes from Trichoderma koningiopsis TM3 Through Co-digestion of Palm Oil Mill Effluent and Oil Palm Trunk Residues


The efficacy of concentrated enzymes from Trichoderma koningiopsis TM3 in hydrolyzing palm oil mill effluent (POME) and oil palm trunk residues (OPTr) at 40 and 50 °C was evaluated prior to methane fermentation. POME hydrolysate containing total sugar concentration of 15.40 g L−1 was obtained from enzymatic hydrolysis using 15 Unit g−1 TVS at 50 °C for 18 h incubation with the hydrolysis yield of 0.35 g total sugars g−1 TVS. The OPTr hydrolysate contained slightly higher total sugar concentration (18.90 g L−1) with the hydrolysis yield of 0.85 g total sugars g−1 TVS under the same condition. Methane production from POME hydrolysate was 6.29% higher than the raw POME. Co-digestion of POME hydrolysate with OPTr gave the maximum methane yield (369 ml CH4 g−1 VS-added) with the increase of 9.28% compared to the raw POME. The methane production rate (Rmax) and the hydrolysis rate constant (kh) of the co-digestion of POME hydrolysate with OPTr were 1.2-fold higher than those of the POME hydrolysate. PCR-DGGE analysis revealed that Clostridium sp. and Petrimonas sp. were dominated bacteria while Methanosarcina sp. and Methanospirillum sp. played an important role in methane production. These results indicated that enzymatic pretreatment and co-digestion of POME hydrolysate with OPTr could improve methane yield from anaerobic fermentation of POME.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Prasertsan, S., Prasertsan, P.: Biomass residues from palm oil mills in Thailand: an overview on quantity and potential usage. Biomass Bioenergy 11, 387–395 (1996)

    Google Scholar 

  2. 2.

    O-Thong, S., Boe, K., Angelidaki, I.: Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Appl. Energy 93, 648–654 (2012)

    Google Scholar 

  3. 3.

    Noparat, P., Prasertsan, P., O-Thong, S.: Potential for using enriched cultures and thermotolerant bacteria isolates for production of biohydrogen from oil palm sap and microbial community analysis. Int. J. Hydrogen Energy 37, 16412–16420 (2012)

    Google Scholar 

  4. 4.

    Kelly-Yong, T.L., Lee, K.T., Mohamed, A.R., Bhatia, S.: Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 35, 5692–5701 (2007)

    Google Scholar 

  5. 5.

    Noparat, P., Prasertsan, P., O-Thong, S.: Isolation and characterization of high hydrogen-producing strain Clostridium beijerinckii PS-3 from fermented oil palm sap. Int. J. Hydrogen Energy 36, 14086–14092 (2011)

    Google Scholar 

  6. 6.

    Ang, S.K., Shaza, E.M., Adibah, Y., Suraini, A.A., Madihah, M.S.: Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48, 1293–1302 (2013)

    Google Scholar 

  7. 7.

    Chew, T.L., Subhash, B.: Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresour. Technol. 99, 7911–7922 (2008)

    Google Scholar 

  8. 8.

    Oswal, N., Sarma, P.M., Zinjarde, S.S., Pant, A.: Palm oil mill effluent treatment by tropical marine yeast. Bioresour. Technol. 85, 35–37 (2002)

    Google Scholar 

  9. 9.

    Basri, M.F., Yacob, S., Hassan, M.A., Shirai, Y., Wakisaka, M., Zakarai, M.R.: Improve biogas production from palm oil mill effluent by a scaled-down anaerobic treatment process. World J. Microbiol. Biotechnol. 26, 505–514 (2010)

    Google Scholar 

  10. 10.

    Chen, H., Liu, L., Yang, X., Li, Z.: New process of maize stalks amination treatment by steam explosion. Biomass Bioenergy 28, 411–417 (2005)

    Google Scholar 

  11. 11.

    Bruni, E., Jensen, A.P., Angelidaki, I.: Steam treatment of digested biofibers for increasing biogas production. Bioresour. Technol. 101, 668–671 (2010)

    Google Scholar 

  12. 12.

    Hartmann, H., Angelidaki, I., Ahring, B.K.: Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Sci. Technol. 41, 145–153 (2000)

    Google Scholar 

  13. 13.

    Zieminski, K., Romanowska, I., Kowalska, M.: Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag. 32, 1131–1137 (2012)

    Google Scholar 

  14. 14.

    Prasertsan, P., Khangkhachit, W., Duangsuwan, W., Mamimin, C., O-Thong, S.: irect hydrolysis of palm oil mill effluent by xylanase enzyme to enhance biogas production using two-steps thermophilic fermentation under non-sterile condition. Int. J. Hydrogen Energy 42, 27759–27766 (2017)

    Google Scholar 

  15. 15.

    Ortega, N., Busto, M.D., Perez-Mateo, S.M.: Kinetics of cellulose saccharification by Trichoderma reesei cellulase. Int. Biodeterior. Biodegrad. 47, 7–14 (2001)

    Google Scholar 

  16. 16.

    Mun, W.K., Rahman, N.A.A., Abd-Aziz, S., Sabaratnam, V., Hassan, M.A.: Enzymatic hydrolysis of palm oil mill effluent solid using mixed cellulases from locally isolated fungi. Res. J. Microbiol. 3, 474–481 (2008)

    Google Scholar 

  17. 17.

    Mata-Alvarez, J., Dosta, J., Romeo-Guiza, M.S., Fonoll, X., Peces, M., Astals, S.: A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 36, 412–427 (2014)

    Google Scholar 

  18. 18.

    Rodger, B.B., Laura, B., American Public Health Association.; American Water Works Association.; Water Environment Federation: Standard Method for the Examination of Water and Wastewater, 18th edn. American Public Health Association, New York (1988)

    Google Scholar 

  19. 19.

    Nutongkaew, T., Prasertsan, P., Leamdum, C., Sattayasamitsathit, S., Noparat, P.: Bioconversion of oil palm trunk residues hydrolyzed by enzymes from newly isolated fungi and use for ethanol and acetic acid production under two-stage and simultaneous fermentation. Waste Biomass Valoriz (2019).

    Article  Google Scholar 

  20. 20.

    Prasertsan, P., H-Kittikul, A., Kunghae, A., Maneesri, J., Oi, S.: Optimization for xylanase and cellulase production from Aspergillus niger ATCC 6275 in palm oil mill wastes and its application. World J. Microbiol. Biotechnol. 13, 555–559 (1997)

    Google Scholar 

  21. 21.

    Prasertsan, P., Kittikun, A., Chantapaso, S.: Factors affecting treatment of palm oil mill effluent by enzyme from Aspergillus niger ATCC 6275 cultivated on palm cake. Songklanakarin J. Sci. Technol. 23, 797–806 (2001)

    Google Scholar 

  22. 22.

    Prasertsan, P., Oi, S.: Production of cellulolytic enzymes from fungi and use in the saccharification of palm cake and palm fibre. World J. Microbiol. Biotechnol. 8, 536–538 (1992)

    Google Scholar 

  23. 23.

    Bailey, M.J., Peter, B., Kaisa, P.: Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257–270 (1992)

    Google Scholar 

  24. 24.

    Ncube, T., Howard, R.L., Abotsi, E.K., van Rensburg, E.L.J., Ncube, I.: Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Ind. Crop Prod. 37, 118–123 (2012)

    Google Scholar 

  25. 25.

    Adeleke, E.O., Omafuvbe, B.O., Adewale, I.O., Bakara, M.K.: Purification and characterization of a cellulase obtained from cocoa (Theobroma cacao) pod-degrading Bacillus coagulans Co4. Turk. J. Biochem. 37, 222–230 (2012)

    Google Scholar 

  26. 26.

    Chen, M., Zhao, J., Xia, L.: Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenergy 33, 1381–1385 (2009)

    Google Scholar 

  27. 27.

    Zulkefli, S., Abdulmalek, E., Rahman, M.B.A.: Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renew Energy 107, 36–44 (2017)

    Google Scholar 

  28. 28.

    Zhen, G., Lu, X., Kobayashi, T., Kumar, X.K.: Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food wastes kinetic modeling and synergistic impact evaluation. Chem. Eng. J. 299, 332–341 (2016)

    Google Scholar 

  29. 29.

    Kongjan, P., O-Thong, S., Angelidaki, I.: Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour. Technol. 102, 4028–4035 (2011)

    Google Scholar 

  30. 30.

    Mamimin, C., Singklala, A., Kongjan, P., Suraraksa, B., Prasertsan, P., Imai, T., O-Thong, S.: Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. Int. J. Hydrogen Energy 40, 6319–63298 (2015)

    Google Scholar 

  31. 31.

    Hniman, A., O-Thong, S., Prasertsan, P.: Developing a thermophilic hydrogen producing microbial consortia from geothermal spring for efficient utilization of xylose and glucose mixed substrates and oil palm trunk hydrolysate. Int. J. Hydrogen Energy 36, 8785–8793 (2011)

    Google Scholar 

  32. 32.

    Yossan, S., O-Thong, S., Prasertsan, P.: Effect of initial pH, nutrients and temperature on hydrogen production from palm oil mill effluent using thermotolerant consortia and corresponding microbial communities. Int. J. Hydrogen. Energy 37, 13806–13814 (2012)

    Google Scholar 

  33. 33.

    Lam, M.K., Lee, K.T.: Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection. Biotechnol. Adv. 29, 124–141 (2011)

    Google Scholar 

  34. 34.

    Hamzha, F., Idris, A., Shuan, T.K.: Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulose and β 1-4 glucosidase. Biomass Bioenergy 35, 1055–1059 (2013)

    Google Scholar 

  35. 35.

    Qiu, G.M., Aita, M., Walker, S.: Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour. Technol. 117, 251–256 (2012)

    Google Scholar 

  36. 36.

    Ramachandriya, K.D., Wilkins, M.R., Hiziroglu, S., Atiyeh, H.K.: Development of an efficient pretreatment process for enzymatic saccharification of Eastern redcedar. Bioresour. Technol. 136, 131–139 (2013)

    Google Scholar 

  37. 37.

    Fang, C., O-Thong, S., Boe, K., Angelidaki, I.: Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME). J. Hazard Mater. 189, 229–234 (2011)

    Google Scholar 

  38. 38.

    Saelor, S., Kongjan, P., O-Thong, S.: Biogas production from anaerobic co-digestion of palm oil mill effluent and empty fruit bunches. Energy Procedia 138, 717–722 (2017)

    Google Scholar 

  39. 39.

    Suksong, W., Kongjan, P., O-Thong, S.: Biohythane production from co-digestion of palm oil mill effluent with solid residues by two-stage solid state anaerobic digestion process. Energy Procedia 79, 943–947 (2015)

    Google Scholar 

  40. 40.

    Kim, S.H., Choi, S.M., Ju, H.J., Jung, J.Y.: Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches. Environ. Technol. 34, 2163–2170 (2013)

    Google Scholar 

  41. 41.

    Yu, Y., Park, B., Hwang, S.: Co-digestion of lignocellulosics with glucose using thermophilic acidogens. Biochem. Eng. J. 18, 225–229 (2004)

    Google Scholar 

  42. 42.

    Vivekanand, V., Mulat, D.G., Eijsink, V.G.H., Horn, S.J.: Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresour. Technol. 249, 35–41 (2018)

    Google Scholar 

  43. 43.

    Shukor, M.Y., Hassan, N.A.A., Jusoh, A.Z., Perumal, N., Shamaan, N.A., MacCormack, W.P., Syed, M.A.: Isolation and Characterization of a Pseudomonas Diesel Degrading Strain from Antartica. J. Environ. Biol. 30, 1–6 (2009)

    Google Scholar 

  44. 44.

    Gopinath, L.R., Gehitha, T.R., Bhuvaneswari, R., Archaya, S., Merlin, C.P.: Hydrocarbon degradation and biogas production efficiency of bacteria isolated from petrol polluted soil. Res. J. Recent Sci. 4, 60–67 (2015)

    Google Scholar 

  45. 45.

    Ekperigin, M.M.: Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. Afr. J. Biotechnol. 6, 028–033 (2007)

    Google Scholar 

  46. 46.

    Potivichayanon, S., Pokethitiyook, P., Kruatrachue, M.: Hydrogen sulfide removal by a novel fixed-film bioscrubber system. Process Biochem. 41, 708–715 (2006)

    Google Scholar 

  47. 47.

    Ku, S.C., Hsueh, P.R., Yang, P.C., Luh, K.T.: Clinical and microbiological characteristics of bacteremia caused by Acinetobacter lwoffii. Eur. J. Clin. Microbiol. Infect. Dis. 19, 501–505 (2000)

    Google Scholar 

  48. 48.

    Gao, R., Cao, Y., Yuan, X., Zhu, W., Wang, X., Cui, Z.: Microbial diversity in a full-scale anaerobic reactor treating high concentration organic cassava wastewater. Afr. J. Biotechnol. 11, 6494–6500 (2012)

    Google Scholar 

  49. 49.

    Grabowaski, A., Tindall, B.J., Bardin, V., Blanchet, D., Jeanthon, C.: Petrimonas sulfuriphila gen. nov., sp. nov., amesophilic fermentative bacterium isolatedfrom a biodegraded oil reservoir. Int. J. Syst. Evol. Microb. 55, 113–1121 (2005)

    Google Scholar 

  50. 50.

    Ikegami, K., Aita, Y., Shiroma, A., Shimogi, M., Tamotsu, H., Ashimine, N., Shinzato, M., Ohki, S., Nakano, K., Teruya, K., Satou, K., Hirano, T., Yohda, M.: Complete genome sequence of Petrimonas sp. strain IBARAKI, assembled from the metagenome data of a culture containing Dehalococcoides spp. Genome Announc. 6(18), e00384 (2018)

    Google Scholar 

  51. 51.

    Karakashev, D., Batstone, D.J., Angelidaki, I.: Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 71, 331–338 (2005)

    Google Scholar 

  52. 52.

    Galagan, J.E., Nusbaum, C., Roy, A., Endrizzi, M.G., MacDonald, P., FitzHugh, W., Calvo, S., Engels, R., Smirnov, S., Atnoor, D., Brown, A., Allen, N., McEwan, P., McKernan, K., Talamas, J., Tirrell, A., Ye, W., Zimmer, A., Barber, R.D., Cann, I., Graham, D.E., Grahame, D.A., Guss, A.M., Hedderich, R., Ingram-Smith, C.: The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome. Res. 12, 532–542 (2002)

    Google Scholar 

  53. 53.

    Shin, S.G., Han, G., Lim, J., Lee, C., Hwang, S.: A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Res. 44, 4838–4849 (2010)

    Google Scholar 

  54. 54.

    Lino, T., Mori, K., Suzuki, K.I.: Methanospirillum lacunae methaneproducing archaeon isolate from a puddly soil, and emened descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int. J. Syst. Evol. Microbiol. 60, 2563–2566 (2010)

    Google Scholar 

  55. 55.

    Stewart, L.C., Jung, J.H., Kim, Y.T., Kwon, S.W., Park, C.S., Holden, J.F.: Methanocaldococcus bathoardescens sp. nov., ahyperthermophilic methanogen isolated from a volcanicallyactive deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 65, 1280–1283 (2015)

    Google Scholar 

Download references


This research work was financially supported by Agricultural Research Development Agency (ARDA) (Grant No. CRP5605021180), Thailand Research Fund (Grant No. RTA6080010) and the PSU-Ph.D. Scholarship, Graduate School, Prince of Songkla University.

Author information



Corresponding author

Correspondence to Poonsuk Prasertsan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nutongkaew, T., Prasertsan, P., O-Thong, S. et al. Improved Methane Production Using Lignocellulolytic Enzymes from Trichoderma koningiopsis TM3 Through Co-digestion of Palm Oil Mill Effluent and Oil Palm Trunk Residues. Waste Biomass Valor 11, 5123–5136 (2020).

Download citation


  • Enzymatic hydrolysis
  • Methane production
  • Co-digestion
  • Palm oil mill effluent
  • Oil palm trunk residues
  • Microbial community