Skip to main content

Influence of a Conductive Material and Different Anaerobic Inocula on Biochemical Methane Potential of Substrates from Alcoholic Beverage Production

Abstract

The impact of a conductive material as powdered activated carbon (PAC) on the biochemical methane potential of whisky pot ale (PA) and brewery spent yeast (SY) was investigated. The test was carried out with three different types of anaerobic inocula: manure inoculum (MI), sewage sludge (SS) and granular sludge (GR). Brewery spent yeast produced partial (in sewage and granular sludge) and total (in manure inoculum) methanogenesis inhibition due to the toxicity of some of its constituents (hops extract). The inhibition was overcome by the supplementation of PAC, that improved significantly the anaerobic digestion process for SY, allowing to reach biochemical methane potential values between 657–699 L CH4 kg−1 VS and it reduced redox potential from − 368 to − 398 mV. The activated carbon did not improve the methane yields from whisky PA since microorganisms did not have difficulties to process this substrate; in fact, the redox potential slightly increased from − 355 to − 330 mV.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Montes, J.A., Leivas, R., Martínez-Prieto, D., Rico, C.: Biogas production from the liquid waste of distilled gin production: optimization of UASB reactor performance with increasing organic loading rate for co-digestion with swine wastewater. Bioresour. Technol. 274, 43–47 (2019). https://doi.org/10.1016/j.biortech.2018.11.060

    Article  Google Scholar 

  2. Massara, T.M., Komesli, O.T., Sozudogru, O., Komesli, S., Katsou, E.: A mini review of the techno-environmental sustainability of biological processes for the treatment of high organic content industrial wastewater streams. Waste Biomass Valoriz. 8(5), 1665–1678 (2017). https://doi.org/10.1007/s12649-017-0022-y

    Article  Google Scholar 

  3. Zahedi, S., Sales, D., García-Morales, J.L., Solera, R.: Obtaining green energy from dry-thermophilic anaerobic co-digestion of municipal solid waste and biodiesel waste. Biosyst. Eng. 170, 108–116 (2018). https://doi.org/10.1016/j.biosystemseng.2018.04.005

    Article  Google Scholar 

  4. Deublein, D., Steinhauser, A.: Biogas from Waste and Renewable Resources: An Introduction, p. 100. Wiley, New York (2011)

    Google Scholar 

  5. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008). https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  6. Calabrò, P.S., Fazzino, F., Folino, A., Scibetta, S., Sidari, R.: Improvement of semi-continuous anaerobic digestion of pre-treated orange peel waste by the combined use of zero valent iron and granular activated carbon. Biomass Bioenergy. 129, 105337 (2019). https://doi.org/10.1016/j.biombioe.2019.105337

    Article  Google Scholar 

  7. Barrena, R., Traub, J.E., Rodriguez Gil, C., Goodwin, J.A.S., Harper, A.J., Willoughby, N.A., Sánchez, A., Aspray, T.J.: Batch anaerobic digestion of deproteinated malt whisky pot ale using different source inocula. Waste Manag. 71, 675–682 (2018). https://doi.org/10.1016/j.wasman.2017.06.025

    Article  Google Scholar 

  8. Cheng, Q., Francis, L., Call, D.F.: Amending anaerobic bioreactors with pyrogenic carbonaceous materials: the influence of material properties on methane generation. Environ. Sci. 4:1794–1806 (2018). https://doi.org/10.1039/C8EW00447A

    Article  Google Scholar 

  9. Sosa-Hernández, O., Parameswaran, P., Alemán-Nava, G.S., Torres, C.I., Parra-Saldívar, R.: Evaluating biochemical methane production from brewer’s spent yeast. J. Ind. Microbiol. Biotechnol. 43, 1195–1204 (2016). https://doi.org/10.1007/s10295-016-1792-0

    Article  Google Scholar 

  10. Zupančič, G.D., Škrjanec, I., Logar, R.M.: Anaerobic co-digestion of excess brewery yeast in a granular biomass reactor to enhance the production of biomethane. Bioresour. Technol. 124, 328–337 (2012). https://doi.org/10.1016/j.biortech.2012.08.064

    Article  Google Scholar 

  11. Kato, S., Hashimoto, K., Watanabe, K.: Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals. Environ. Microbiol. 14, 1646–1654 (2012). https://doi.org/10.1111/j.1462-2920.2011.02611.x

    Article  Google Scholar 

  12. Zema, D.A., Fòlino, A., Zappia, G., Calabrò, P.S., Tamburino, V., Zimbone, S.A.: Anaerobic digestion of orange peel in a semi-continuous pilot plant: an environmentally sound way of citrus waste management inagro-ecosystems. Sci. Total Environ. 630, 401–408 (2018). https://doi.org/10.1016/j.scitotenv.2018.02.168

    Article  Google Scholar 

  13. Calabrò, P.S., Fazzino, F., Folino, A., Paone, E., Komilis, D.: Semi-continuous anaerobic digestion of orange peel waste: effect of activated carbon addition and alkaline pretreatment on the process. Sustainability 11, 3386 (2019). https://doi.org/10.3390/su11123386

    Article  Google Scholar 

  14. Cruz Viggi, C., Rossetti, S., Fazi, S., Paiano, P., Majone, M., Aulenta, F.: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Technol. 48(13), 7536–7543 (2014). https://doi.org/10.1021/es5016789

    Article  Google Scholar 

  15. Zhu, H., Han, Y., Ma, W., Han, H., Ma, W., Xu, C.: New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of graphene. Bioresour. Technol. 262, 302–309 (2018). https://doi.org/10.1016/j.biortech.2018.04.080

    Article  Google Scholar 

  16. Dang, Y., Sun, D., Woodard, T.L., Wang, L.Y., Nevin, K.P., Holmes, D.E.: Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials. Bioresour. Technol. 238, 30–38 (2016). https://doi.org/10.1016/j.biortech.2017.04.021

    Article  Google Scholar 

  17. Valero, D., Rico, C., Canto-Canché, B., Domínguez-Maldonado, J., Tapia-Tussell, R., Cortes-Velazquez, A., Alzate-Gaviria, L.: Enhancing biochemical methane potential and enrichment of specific electroactive communities from nixtamalization wastewater using granular activated carbon as a conductive material. Energies. 11(8), 2101 (2018). https://doi.org/10.3390/en11082101

    Article  Google Scholar 

  18. Baek, G., Kim, J., Cho, K., Bae, H., Lee, C.: The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation. Appl. Microbiol. Biotechnol. 99, 10355–10366 (2015). https://doi.org/10.1007/s00253-015-6900-y

    Article  Google Scholar 

  19. Lei, Y., Sun, D., Dang, Y., Chen, H., Zhao, Z., Zhang, Y., Holmes, D.E.: Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth. Bioresour. Technol. 222, 270–276 (2016). https://doi.org/10.1016/j.biortech.2016.10.007

    Article  Google Scholar 

  20. Xu, S., He, C., Luo, L., Lü, F., He, P., Cui, L.: Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresour. Technol. 196, 606–612 (2015). https://doi.org/10.1016/j.biortech.2015.08.018

    Article  Google Scholar 

  21. APHA: Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, Washington (1998)

    Google Scholar 

  22. Koch, K., Lippert, T., Drewes, J.E.: The role of inoculum’s origin on the methane yield of different substrates in biochemical methane potential (BMP) tests. Bioresour. Technol. 243, 457–463 (2017). https://doi.org/10.1016/j.biortech.2017.06.142

    Article  Google Scholar 

  23. Shanmugam, S.R., Adhikari, S., Wang, Z., Shakya, R.: Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production. Bioresour. Technol. 223, 115–120 (2017). https://doi.org/10.1016/j.biortech.2016.10.008

    Article  Google Scholar 

  24. Camacho, C.G., Ruggeri, B.: Syntrophic microorganisms interactions in anaerobic digestion (AD): a critical review in the light of increase energy production. Chem. Eng. Trans. 64, 391–396 (2018)

    Google Scholar 

  25. Dubé CD, Guiot SR (2015) Direct interspecies electron transfer in anaerobic digestion: a review. In: Guebitz G, Bauer A, Bochmann G, Gronauer A, Weiss S (eds) Biogas Science and Technology Advances in Biochemical Engineering/Biotechnology, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-319-21993-6_4.

    Chapter  Google Scholar 

  26. Goodwin, J.A.S., Stuart, J.B.: Anaerobic digestion of malt whisky distillery pot ale using upflow anaerobic sludge blanket reactors. Bioresour. Technol. 49(1), 75–81 (1994). https://doi.org/10.1016/0960-8524(94)90175-9

    Article  Google Scholar 

  27. Franke-Whittle, I.H., Walter, A., Ebner, C., Insam, H.: Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 34(11), 2080–2089 (2014). https://doi.org/10.1016/j.wasman.2014.07.020

    Article  Google Scholar 

  28. Vitanza, R., Cortesi, A., Gallo, V., Colussi, I., De Arana-Sarabia, M.E.: Biovalorization of brewery waste by applying anaerobic digestion. Chem. Biochem. Eng. Q. 30, 351–357 (2016). https://doi.org/10.15255/CABEQ.2015.2237

    Article  Google Scholar 

  29. Oliveira, J.V., Alves, M.M., Costa, J.C.: Biochemical methane potential of brewery by-products. Clean Technol. Environ. 20, 435–440 (2018). https://doi.org/10.1007/s10098-017-1482-2

    Article  Google Scholar 

  30. Barua, S., Dhar, B.R.: Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol. 244, 698–707 (2017). https://doi.org/10.1016/j.biortech.2017.08.023

    Article  Google Scholar 

  31. Dang, Y., Holmes, D.E., Zhao, Z., Woodard, T.L., Zhang, Y., Sun, D., Lovley, D.R.: Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresour. Technol. 220, 516–522 (2016). https://doi.org/10.1016/j.biortech.2016.08.114

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Destilería Siderit in the framework of the Innova Program in the Autonomous Community of Cantabria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liliana Alzate-Gaviria or Carlos Rico.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valero, D., Alzate-Gaviria, L., Montes, J.A. et al. Influence of a Conductive Material and Different Anaerobic Inocula on Biochemical Methane Potential of Substrates from Alcoholic Beverage Production. Waste Biomass Valor 11, 5957–5964 (2020). https://doi.org/10.1007/s12649-019-00834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00834-3

Keywords

  • Biochemical methane potential (BMP)
  • Powdered activated carbon (PAC)
  • Direct interspecies electron transfer (DIET)
  • Anaerobic digestion
  • Whiskey pot ale
  • Brewery spent yeast