Skip to main content

Advertisement

Log in

Optimization of Enzymatic Pretreatments to Obtain Fermentable Sugars from Fruit and Vegetable Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biofuels production from organic waste requires an efficient hydrolysis to produce fermentable sugars. Physicochemical and biological pretreatment corresponds to good alternative to improve biofuel yield. Nonetheless, physical treatments can result in a negative energy balance and chemical treatments can generate inhibitors for a fermentative process, as well as difficulties in the recycling of organic matter. Thus, enzymatic pretreatments lead to fast and ecofriendly processes for conversion of waste biomass into monomeric units. In this work, fruit and vegetable wastes were hydrolyzed applying three types of enzymatic complexes: Viscozyme® L and a mixture of Multifect® B and Naturalzyme 40 XLTM. Production of reducing sugars as a temperature function and enzyme concentration was optimized by response surface analysis. Enzymatic complexes revealed high hydrolysis yield. Viscozyme® L application is highlighted; obtaining a hydrolysis higher than with the mixture of Multifect® B and Naturalzyme 40 XLTM (80% and 60% respectively) and being a promising treatment for the development of an efficient saccharification process of fruit and vegetable wastes. The optimum application conditions for Viscozyme® L were of 0.24 ppm and 40 °C and were validated with an error rate of 5%. For the mixture of Multifect® B and Naturalzyme 40 XLTM with Pectinase/Polygalacturonase activity, an optimum 0.93 ppm and 41 °C was found; these were validated with an error of 6%. Therefore, cellulases, xylanases and hemicellulases (Viscozyme® L) assured the hydrolysis of food wastes obtaining better available sugars for successive fermentative processes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations (FAO): Food Losses and Waste in Latin America and the Caribbean 2016

  2. Edwiges, T., et al.: Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Manag. 71, 618–625 (2018)

    Google Scholar 

  3. Kapdan, I.K., Kargi, F.: Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38, 569–582 (2006)

    Google Scholar 

  4. Li, K., Liu, R., Sun, C.: A review of methane production from agricultural residues in China. Renew. Sustain. Energy Rev. 54, 857–865 (2016)

    Google Scholar 

  5. Garcia-Peña, E.I., Parameswaran, P., Kang, D.W., Canul-Chan, M., Krajmalnik-Brown, R.: Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresour. Technol. 102, 9447–9455 (2011)

    Google Scholar 

  6. Haghighi Mood, S., et al.: Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27, 77–93 (2013)

    Google Scholar 

  7. Jain, S., Jain, S., Wolf, I.T., Lee, J., Tong, Y.W.: A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sustain. Energy Rev. 52, 142–154 (2015)

    Google Scholar 

  8. Kumar, G., Bakonyi, P., Periyasamy, S., Kim, S.H., Nemestóthy, N., Bélafi-Bakó, K.: Lignocellulose biohydrogen: practical challenges and recent progress. Renew. Sustain. Energy Rev. 44, 728–737 (2015)

    Google Scholar 

  9. Nissilä, M.E., Lay, C.H., Puhakka, J.A.: Dark fermentative hydrogen production from lignocellulosic hydrolyzates—a review. Biomass Bioenerg 67, 145–159 (2014)

    Google Scholar 

  10. Grohmann, K., Cameron, R.G., Buslig, B.S.: Fractionation and pretreatment of orange peel by dilute acid hydrolysis. Bioresour. Technol. 54(2), 129–141 (1995)

    Google Scholar 

  11. Qi, B., Chen, X., Shen, F., Su, Y., Wan, Y.: Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology. Ind. Eng. Chem. Res. 48, 7346–7353 (2009)

    Google Scholar 

  12. Sirkar, A., Das, R., Chowdhury, S., Sahu, S.: An experimental study and mathematical modelling of ethanol production from banana peels by hydrolysis and fermentation. J. Inst. Eng. 88, 4–10 (2008)

    Google Scholar 

  13. Talebnia, F., Pourbafrani, M., Lundin, M., Taherzadeh, M.J.: Optimization study of citrus wastes saccharification by dilute-acid hydrolysis. BioResources 3(1), 108–122 (2008)

    Google Scholar 

  14. Behera, S., Arora, R., Nandhagopal, N., Kumar, S.: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014)

    Google Scholar 

  15. Wen, Z., Liao, W., Chen, S.: Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour. Technol. 91, 31–39 (2004)

    Google Scholar 

  16. Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66(3), 506–577 (2002)

    Google Scholar 

  17. Oberoi, H.S., et al.: Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous saccharification and fermentation process. Bioresour. Technol. 102, 1593–1601 (2011)

    Google Scholar 

  18. Oberoi, H.S., Vadlani, P.V., Saida, L., Bansal, S., Hughes, J.D.: Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process. Waste Manag. 31, 1576–1584 (2011)

    Google Scholar 

  19. Moreno Cardenas, E.L., Cano Quintero, D.J., Elkin Alonso, C.M.: Generation of Biohydrogen by anaerobic fermentation of organics wastes in Colombia. In: Liquid, Gaseous and Solid Biofuels—Conversion Techniques. INTECH Open Access Publisher (2013).

  20. Sluiter, A. et al.: Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP) (2008).

  21. Wise, L.E., Murphy, M., D’Addieco, A.A.: Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Pap. trade J. 122(2), 35–43 (1946)

    Google Scholar 

  22. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Google Scholar 

  23. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)

    Google Scholar 

  24. Triolo, J.M., Sommer, S.G., Møller, H.B., Weisbjerg, M.R., Jiang, X.Y.: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour. Technol. 102, 9395–9402 (2011)

    Google Scholar 

  25. Rajarathnam, S., Bano, Z., Steinkraus, K.H.: Pleurotus mushrooms. part III. biotransformations of natural lignocellulosic wastes: commercial applications and implications. Crit. Rev. Food Sci. Nutr. 28(1), 31–113 (1989)

    Google Scholar 

  26. Abdolali, A., Guo, W.S., Ngo, H.H., Chen, S.S., Nguyen, N.C., Tung, K.L.: Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour. Technol. 160, 57–66 (2014)

    Google Scholar 

  27. Omar, R., Idris, A., Yunus, R., Khalid, K., Aida Isma, M.I.: Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel 90, 1536–1544 (2011)

    Google Scholar 

  28. Dhillon, G.S., Kaur, S., Brar, S.K., Verma, M.: Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind. Crops Prod. 38, 6–13 (2012)

    Google Scholar 

  29. Pourbafrani, M., Forgács, G., Horváth, I.S., Niklasson, C., Taherzadeh, M.J.: Production of biofuels, limonene and pectin from citrus wastes. Bioresour. Technol. 101, 4246–4250 (2010)

    Google Scholar 

  30. Boluda-Aguilar, M., García-Vidal, L., González-Castañeda, F.D.P., López-Gómez, A.: Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresour. Technol. 101, 3506–3513 (2010)

    Google Scholar 

  31. Prozil, S.O., Evtuguin, D.V., Lopes, L.P.C.: Chemical composition of grape stalks of Vitis vinifera L. from red grape pomaces. Ind. Crops Prod. 35, 178–184 (2012)

    Google Scholar 

  32. Cheilas, T., et al.: Hemicellulolytic activity of Fusarium oxysporum grown on sugar beet pulp. Production of extracellular arabinanase. Process Biochem. 35, 557–561 (2000)

    Google Scholar 

  33. Nawirska, A., Kwaśniewska, M.: Dietary fibre fractions from fruit and vegetable processing waste. Food Chem. 91, 221–225 (2005)

    Google Scholar 

  34. Joshi, V.K., Attri, D.: Solid state fermentation of apple pomace for the production of value added products. Nat. Prod. Radiance 5(4), 289–296 (2006)

    Google Scholar 

  35. Lohrasbi, M., Pourbafrani, M., Niklasson, C., Taherzadeh, M.J.: Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products. Bioresour. Technol. 101, 7382–7388 (2010)

    Google Scholar 

  36. Ros, M., Franke-Whittle, I.H., Morales, A.B., Insam, H., Ayuso, M., Pascual, J.A.: Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste. Bioresour. Technol. 136, 1–7 (2013)

    Google Scholar 

  37. Ji, C., Kong, C.X., Mei, Z.L., Li, J.: A review of the anaerobic digestion of fruit and vegetable waste. Appl. Biochem. Biotechnol. 183(3), 906–922 (2017)

    Google Scholar 

  38. Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)

    Google Scholar 

  39. Várnai, A., Siika-aho, M., Viikari, L.: Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb. Technol. 46, 185–193 (2010)

    Google Scholar 

  40. Fisgativa, H., Tremier, A., Dabert, P.: Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Manag. 50, 264–274 (2016)

    Google Scholar 

  41. Gunaseelan, V.N.: Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour. Technol. 98, 1270–1277 (2007)

    Google Scholar 

  42. Appels, L., Baeyens, J., Degrève, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755–781 (2008)

    Google Scholar 

  43. Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 38, 383–392 (2014)

    Google Scholar 

  44. Liu, X., Gao, X., Wang, W., Zheng, L., Zhou, Y., Sun, Y.: Pilot-scale anaerobic co-digestion of municipal biomass waste: focusing on biogas production and GHG reduction. Renew. Energy 44, 463–468 (2012)

    Google Scholar 

  45. Forster-Carneiro, T., Pérez, M., Romero, L.I.: Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresour. Technol. 99, 6994–7002 (2008)

    Google Scholar 

  46. Merino, S.T., Cherry, J.: Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol. 108, 95–120 (2007)

    Google Scholar 

  47. Veeken, A., Hamelers, B.: Effect of temperature on hydrolysis rates of selected biowaste components. Bioresour. Technol. 69, 249–254 (1999)

    Google Scholar 

  48. Widmer, W., Zhou, W., Grohmann, K.: Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation. Bioresour. Technol. 101, 5242–5249 (2010)

    Google Scholar 

  49. Gomez-Tovar, F., Celis, L.B., Razo-Flores, E., Alatriste-Mondragón, F.: Chemical and enzymatic sequential pretreatment of oat straw for methane production. Bioresour. Technol. 116, 372–378 (2012)

    Google Scholar 

  50. Caffall, K.H., Mohnen, D.: The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344, 1879–1900 (2009)

    Google Scholar 

  51. Zykwinska, A., Thibault, J.F., Ralet, M.C.: Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged. J. Exp. Bot. 58(7), 1795–1802 (2007)

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge to Universidad Nacional de Colombia for funding the project "Evaluation of enzymatic hydrolysis of organic waste to produce biofuels" within which this work was carried out. Hermes Code: 36096, through the "National Call for Projects to Strengthen Research, Creation, and Innovation of Universidad Nacional de Colombia 2016–2018".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Duque Martinez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabas Candama, M.A., Duque Martinez, S. & Cadena Chamorro, E.M. Optimization of Enzymatic Pretreatments to Obtain Fermentable Sugars from Fruit and Vegetable Waste. Waste Biomass Valor 11, 5991–6002 (2020). https://doi.org/10.1007/s12649-019-00821-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00821-8

Keywords

Navigation