Skip to main content

Advertisement

Log in

Characterization of Bone Char and Carbon Xerogel as Sustainable Alternative Bioelectrodes for Bioelectrochemical Systems

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Bioelectrochemical systems (BES) are growing future sustainable energy and chemical production technologies that combine biological catalytic redox activity with classic abiotic electrochemical reactions and physics. Several aspects of these systems, such as cell configuration, applied voltage, electrode materials, inoculum/substrate, and low-cost electrodes to facilitate scaling, have been studied and reported. This work focuses on the development of inexpensive materials with desirable characteristics for use as electrodes for BES. The two selected carbon-based anode materials were carbon xerogels and bone char; both have different surface morphologies and are carbonaceous materials with precursors that allow control of their porosity. Industrial-grade raw material and cattle bone waste were used to fabricate the anodes. The electrochemical properties of the bone char and carbon xerogel electrodes were characterized by the open circuit voltage (OCV), electrochemical impedance spectroscopy, and cyclic voltammetry. Chronoamperometry was recorded for 25 days to follow the setup bioanodes. When the microbial bioanode process was completed, the bioelectrodes were immersed into fresh inoculum/substrate, and BES were operated for 10 days at the OCV until a relatively constant cell voltage output was achieved. The results show that the carbon xerogel surface area (468 m2/g) is 5 times higher than bone char, but the xerogel surface roughness is lower than that of the char. Similar to the electrochemical properties, the current density of the xerogel (25 mA/cm2) is 4 times less than that of the bone; therefore, the biofilm growth is promoted on the bone char surface. Our findings show that the bone char bioanode has a capacitance feature of 1.65 F/m2, which is even higher than the double layer capacitances of carbon-based materials reported in the literature. Hence, it is possible to use BES for simultaneous production and storage of renewable electricity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. IEA: World Energy Outlook 2018. International Energy Agency. https://www.iea.org/weo/ (2019). Accessed 22 May 2019

  2. Amponsah, N.Y., Troldborg, M., Kington, B., Aalders, I., Hough, R.L.: Greenhouse gas emissions from renewable energy sources: a review of lifecycle considerations. Renew. Sust. Energ. Rev. 39, 461–475 (2014)

    Google Scholar 

  3. Logan, B.E., Rabaey, K.: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337, 686–690 (2012)

    Google Scholar 

  4. Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, T.: Microbial fuel cells: from fundamentals to applications. A review. J. Power Sources 356, 225–244 (2017)

    Google Scholar 

  5. Kadier, A., Simayi, Y., Abdeshahian, P., Azman, N.F., Chandrasekhar, K., Kalil, M.S.: A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Eng. J. 55, 427–443 (2016)

    Google Scholar 

  6. Guo, K., Prevoteau, A., Patil, S.A., Rabaey, K.: Engineering electrodes for microbial electrocatalysis. Curr. Opin. Biotechnol. 33, 149–156 (2015)

    Google Scholar 

  7. Kumar, G.G., Sathiya Sarathi, V.G., Nahm, K.S.: Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens. Bioelectron. 43, 461–475 (2013)

    Google Scholar 

  8. Yeung, K., Han, W.: Zeolites and mesoporous materials in fuel cell applications. Catal. Today 236, 182–205 (2014)

    Google Scholar 

  9. Anatolini, E.: Composite materials for polymer electrolyte membrane microbial fuel. Biosens. Bioelectron. 69, 54–70 (2015)

    Google Scholar 

  10. Mustakeen: Electrode materials for microbial fuel cells: nanomaterial approach. Mater. Renew. Sustain. Energy 4(22), 1–11 (2015)

    Google Scholar 

  11. Wei, J., Liang, P., Huang, X.: Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 102, 9335–9344 (2011)

    Google Scholar 

  12. Zhao, F., Rahunen, N., Varcoe, J.R., Chandra, A., Avignone-Rossa, C., Thumser, A.E., Slade, R.C.T.: Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol. 42, 4971–4976 (2008)

    Google Scholar 

  13. Sonawane, J.M., Yadav, A., Ghosh, P.C., Adeloju, S.B.: Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens. Bioelectron. 90, 558–576 (2017)

    Google Scholar 

  14. Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., Yang, Z.: Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70–85 (2015)

    Google Scholar 

  15. Taberna, P.-L., Gaspard, S.: Nanoporous carbons for high energy density supercapacitors. In: Gaspard, S., Ncibi, M.C. (eds.) Biomass for Sustainable Applications: Pollution Remediation and Energy, pp. 366–399. The Royal Society of Chemistry, Letchworth (2014)

    Google Scholar 

  16. Kalyani, P., Anitha, A.: Biomass carbon & its prospects in electrochemical energy systems. Int. J. Hydrogen Energy 38, 4034–4045 (2013)

    Google Scholar 

  17. Cazetta, A.L., Zhang, T., Silva, T.L., Almeida, V.C., Asefa, T.: Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation. Appl. Catal. B Environ. 225, 30–39 (2018)

    Google Scholar 

  18. Ai, J., Yin, W.Z., Hansen, H.C.B.: Fast dechlorination of chlorinated ethylenes by green rust in the presence of bone char. Environ. Sci. Technol. Lett. 6(3), 191–196 (2019)

    Google Scholar 

  19. Bedin, K.C., de Azevedo, S.P., Leandro, P.K.T., Cazetta, A.L., Almeida, V.C.: Bone char prepared by CO2 atmosphere: preparation optimization and adsorption studies of Remazol Brilliant Blue R. J. Cleaner Prod. 161, 288–298 (2017)

    Google Scholar 

  20. Mesquita, P.D., Souza, C.R., Santos, N.T.G., Rocha, S.D.F.: Fixed-bed study for bone char adsorptive removal of refractory organics from electrodialysis concentrate produced by petroleum refinery. Environ. Technol. 39(12), 1544–1556 (2018)

    Google Scholar 

  21. Moura, R.A., Seolatto, A.A., Ferreira, M.E.D., Freitas, F.F.: The adsorption study of Royal Blue Tiafix and Black Tiassolan dyes using bone char as adsorbent. Adsorp. Sci. Technol. 36(3–4), 1178–1198 (2018)

    Google Scholar 

  22. Nigri, E.M., Santos, A.L.A., Mesquita, P.L., Viana, P.R.M., Rocha, S.D.F.: Simultaneous removal of strontium and refractory organic compounds from electrodialysis effluents by modified bovine bone char. Desalin. Water Treat. 145, 189–201 (2019)

    Google Scholar 

  23. Sellaoui, L., Mendoza-Castillo, D.I., Reynel-Avila, H.E., Bonilla-Petriciolet, A., Ben Lamine, A., Erto, A.: A new statistical physics model for the ternary adsorption of Cu2+, Cd2+ and Zn2+ ions on bone char: experimental investigation and simulations. Chem. Eng. J. 343, 544–553 (2018)

    Google Scholar 

  24. Ranjbar, N., Hashemi, S., Ramavandi, B., Ravanipour, M.: Chromium(VI) removal by bone char-ZnO composite: parameters optimization by response surface methodology and modeling. Environ. Prog. Sustain. Energy 37(5), 1684–1695 (2018)

    Google Scholar 

  25. Herath, H., Kawakami, T., Tafu, M.: Repeated heat regeneration of bone char for sustainable use in fluoride removal from drinking water. Healthcare 6(4), 143 (2018)

    Google Scholar 

  26. Nigri, E.M., Cechinel, M.A.P., Mayer, D.A., Mazur, L.P., Loureiro, J.M., Rocha, S.D.F., Vilar, V.J.P.: Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies. Environ. Sci. Pollut. Res. 24(3), 2364–2380 (2017)

    Google Scholar 

  27. Ip, A.W.M., Barford, J.P., McKay, G.: A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char. Chem. Eng. J. 157, 434–442 (2010)

    Google Scholar 

  28. Sicupira, D.C., Silva, T.T., Ladeira, A.C.Q., Mansur, M.B.: Adsorption of manganese from acid mine drainage effluents using bone char: continuous fixed bed column and batch desorption studies. Braz. J. Chem. Eng. 32(2), 577–584 (2015)

    Google Scholar 

  29. Medellín-Castillo, N.A., Leyva-Ramos, R., Padilla-Ortega, E., Ocampo-Perez, R., Flores-Cano, J.V., Berber-Mendoza, M.S.: Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions. J. Ind. Eng. Chem. 20, 4014–4021 (2014)

    Google Scholar 

  30. Medellin-Castillo, N.A., Padilla-Ortega, E., Tovar-Garcia, L.D., Leyva-Ramos, R., Ocampo-Perez, R., Carrasco-Marin, F., Berber-Mendoza, M.S.: Removal of fluoride from aqueous solution using acid and thermally treated bone char. Adsorption 22(7), 951–961 (2016)

    Google Scholar 

  31. Job, N., Thery, A., Pirard, R., Marien, J., Kocon, L., Rouzaud, J.N., Beguin, F., Pirard, J.-P.: Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43, 2481–2494 (2005)

    Google Scholar 

  32. Contreras, M.S., Páez, C.A., Zubizarreta, L., Léonard, A., Blacher, S., Olivera-Fuentes, C.G., Arenillas. A., Pirard, J.P., Job, N.: A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides. Carbon 48, 3157–3168 (2010).

    Google Scholar 

  33. Rojas-Mayorga, C.K., Mendoza-Castillo, D.I., Bonilla-Petriciolet, A., Silvestre-Albero, J.: Tailoring the adsorption behavior of bone char for heavy metal removal from aqueous solution. Adsorp. Sci. Technol. 34(6), 368–387 (2016)

    Google Scholar 

  34. Isaacs-Páez, E.D., Haro, M., Juárez-Pérez, E.J., Carmona, R., Parra, J.B., Leyva-Ramos, R., Ania, C.O.: Fast synthesis of micro/mesoporous xerogels: textural and energetic assessment. Micro. Meso. Mater. 209, 2–9 (2015)

    Google Scholar 

  35. Li, S., Cheng, C., Thomas, A.: Carbon-based microbial-fuel-cell electrodes: from: conductive supports to active catalysts. Adv. Mater. 29, 1602547 (2017)

    Google Scholar 

  36. APHA: Standard Methods for Examination of Water and Wastewater (22nd edn.). American Public Health Association, Washington, DC (2012)

  37. Haro, M., Rasines, G., Macías, C., Ania, C.O.: Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water. Carbon 49, 3723–3730 (2011)

    Google Scholar 

  38. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area. Pore Size and Density. Particle Technology Series XIV. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  39. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders & Porous Solids. Principles, Methodology and Applications. Academic Press, London (1999)

    Google Scholar 

  40. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    Google Scholar 

  41. Cheung, C.W., Porter, J.F., McKay, G.: Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir 18, 650–656 (2002)

    Google Scholar 

  42. Medellín-Castillo, N.A., Leyva-Ramos, R., Ocampo-Perez, R., García de la Cruz, R.F., Aragón-Piña, A., Rosales-Martinez, J.M., Guerrero-Coronado, R.M., Fuentes-Rubio, L.: Adsorption of fluoride from water solution on bone char. Ind. Eng. Chem. Res. 46, 9205–9212 (2007)

    Google Scholar 

  43. Han, T.H., Sawant, S.Y., Cho, M.H.: Development of suitable anode materials for microbial fuel cells. In: Das, D. (ed.) Microbial Fuel Cell: A Bioelectrochemical System that Converts Waste to Watts, pp. 101–124. Springer, New York (2018)

    Google Scholar 

  44. Macias, C., Rasines, G., García, T.E., Zafra, M.C., Lavela, P., Tirado, J.L., Ania, C.O.: Synthesis of porous and mechanically compliant carbon aerogels using conductive and structural additives. Gels 2, 4 (2016)

    Google Scholar 

  45. Michaelidou, U., ter Heijne, A., Euverink, G.J.W., Hamelers, H.V.M., Stams, A.J.M., Geelhoed, J.S.: Microbial communities and electrochemical performance of titanium based anodic electrodes in a microbial fuel cell. Appl Environ. Microbiol. 77, 1069–1075 (2011)

    Google Scholar 

  46. Liu, Y., Harnisch, F., Fricke, K., Schröder, U., Climent, V., Feliu, J.M.: The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosens. Bioelectron. 25, 2167–2171 (2010)

    Google Scholar 

  47. Zhou, Y., Zhou, G., Yin, L., Guo, J., Wan, X., Shi, H.: High-performance carbon anode derived from sugarcane for packed microbial fuel cells. Chem. Electro. Chem. 3, 1–8 (2016)

    Google Scholar 

  48. Yang, X., Maa, X., Wang, K., Wu, D., Lei, Z., Feng, C.: Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode. Electrochim. Acta 210, 846–853 (2016)

    Google Scholar 

  49. He, Z., Wagner, N., Minteer, S.D., Angenent, L.T.: An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol. 40, 5212–5217 (2006)

    Google Scholar 

  50. Tommasi, T., Sacco, A., Armato, C., Hidalgo, D., Millone, L., Sanginario, A., Tresso, E., Schilirò, T., Pirri, C.F.: Dynamical analysis of microbial fuel cells based on planar and 3D-packed anodes. Chem. Eng. J. 288, 38–49 (2016)

    Google Scholar 

  51. He, Z., Mansfeld, F.: Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci. 2(2), 215–219 (2009)

    Google Scholar 

  52. Frackowiak, E., Béguin, F.: Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001)

    Google Scholar 

  53. Feng, C., Ma, L., Li, F., Mai, H., Lang, X., Fan, S.: A polypyrrole/anthraquinone-2,6 disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens. Bioelectron. 25, 1516–1520 (2010)

    Google Scholar 

  54. Deeke, A., Sleutels, T.H.J.A., Hamelers, H.V.M., Buisman, C.J.N.: Capacitive bioanodes enable renewable energy storage in microbial fuel cells. Environ. Sci. Technol. 46, 3554–3560 (2012)

    Google Scholar 

  55. Lv, Z., Xie, D., Li, F., Hu, Y., Wei, C., Feng, C.: Microbial fuel cell as a biocapacitor by using pseudo-capacitive anode materials. J. Power Sources 246, 642–649 (2014)

    Google Scholar 

  56. Frackowiak, E., Metenier, K., Bertagna, V., Beguin, F.: Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 77, 2421–2423 (2000)

    Google Scholar 

  57. Du, C., Yeh, J., Pan, N.: High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16, 350–353 (2005)

    Google Scholar 

  58. Mutha, H.K., Lu, Y., Stein, I.Y., Cho, H.J., Suss, M., Laoui, T., Thompson, C., Wardle, B., Wang, E.: Porosimetry and packing morphology of vertically aligned carbon nanotube arrays via impedance spectroscopy. Nanotechnology 28(5), LT01 (2017)

    Google Scholar 

  59. Cercado, B., Cházaro-Ruiz, L.F., Ruiz, V., López-Prieto, I.D.J., Buitrón, G., Razo-Flores, E.: Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance. Biosen. Bioelectron. 50, 373–381 (2013)

    Google Scholar 

  60. Yu, Y.-Y., Zhai, D.-D., Si, R.-W., Sun, J.-Z., Liu, X., Yong, Y.-C.: Three-dimensional electrodes for high-performance bioelectrochemical systems. Int. J. Mol. Sci. 18(1), 90 (2017)

    Google Scholar 

Download references

Acknowledgements

EDIP thanks CONACyT-SENER for her postdoctoral fellowship. BCQ thanks the financial support from CONACyT-SENER-FSE (Project 247006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Cercado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaacs-Páez, E.D., Medellín-Castillo, N., Manríquez-Guerrero, F. et al. Characterization of Bone Char and Carbon Xerogel as Sustainable Alternative Bioelectrodes for Bioelectrochemical Systems. Waste Biomass Valor 11, 4885–4894 (2020). https://doi.org/10.1007/s12649-019-00817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00817-4

Keywords

Navigation