Skip to main content
Log in

Evaluation of the Physical–Chemical and Microbiological Characteristics of the Phospho-Compost Produced Under Forced Aeration System at the Industrial Scale

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The objective of this work was to evaluate the composting process of agro-industrial waste (coffee husk, plantain peel, bovine manure, and food waste) with rock phosphate supplementation using static piles with forced aeration.

Methods

Three 5-tonne piles of waste were composted in each treatment; supplementation treatment contained 15% (dry basis) rock phosphate and the control did not. Carbon/nitrogen ratio, total and soluble phosphorus, oxygen concentration, pH, and temperature were measured throughout composting.

Results

Both treatments reached final C/N ratios about 9.0. Total and soluble phosphorus was higher for supplemented piles (6.4% and 154 ppm, respectively) compared to control (3.1% and 106 ppm, respectively). The lowest oxygen concentrations (below 40% oxygen saturation) was observed in the first 15 weeks. Based on their Solubilization Index (SI), 203 isolations of phosphate-solubilizing bacteria were obtained and characterized. For supplemented piles, molecular identification was made to the two isolates with the highest SI in the mesophilic phase and to one isolate in the thermophilic phase. Mesophilic isolates were identified as Pseudomonas aeruginosa and the thermophilic one as Nocardiopsis spp. (99% probability).

Conclusion

Rock phosphate addition did not affect the final product quality, since both treatments comply with the parameters of mature compost. Compost supplementation with rock phosphate is a viable strategy not only to supply phosphorus to the soil, but also to increase its content of phosphate-solubilizing bacteria.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altomare, C., Tringovska, I.: Beneficial soil microorganisms, an ecological alternative for soil fertility management. In: Lichtfouse, E. (ed.) Genetics, Biofuels and Local Farming Systems Sustainable Agriculture Reviews, vol. 7, pp. 161–214. Springer, Netherlands (2011)

    Chapter  Google Scholar 

  2. White, P.J., Brown, P.H.: Plant nutrition for sustainable development and global health. Ann. Bot. 105, 1073–1080 (2010). https://doi.org/10.1093/aob/mcq085

    Article  Google Scholar 

  3. Biswas, D.R., Narayanasamy, G.: Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate. Bioresour. Technol. 97(18), 2243–2251 (2006). https://doi.org/10.1016/j.biortech.2006.02.004

    Article  Google Scholar 

  4. Fernández, L.A., Zabala, P., Gomez, M.A., Sagardoy, M.A.: Bacterias solubilizadoras de fosfato inorgánico aisladas del suelo de la región sojera. Cienc. Suelo 23, 31–37 (2005)

    Google Scholar 

  5. Hernández-Leal, T., Carrión, G., Heredia, G.: Solubilización in vitro de fosfatos por una cepa de Paecilomyces lilacinus (Thom) Samson. Agrociencia 45, 881–892 (2011)

    Google Scholar 

  6. Sánchez, Ó.J., Ospina, D.A., Montoya, S.: Compost supplementation with nutrients and microorganisms in composting process. Waste Manage. 69, 136–153 (2017). https://doi.org/10.1016/j.wasman.2017.08.012

    Article  Google Scholar 

  7. Mora, J.R.: Contribuciones del compost al mejoramiento de la fertilidad de los suelos Rev. Luna Azul 1–6 (2006).

  8. Nishanth, D., Biswas, D.R.: Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresour. Technol. 99, 3342–3353 (2008)

    Article  Google Scholar 

  9. Zayed, G., Abdel-Motaal, H.: Bio-active composts from rice straw enriched with rock phosphate and their effect on the phosphorous nutrition and microbial community in rhizosphere of cowpea. Bioresour. Technol. 96, 929–935 (2005)

    Article  Google Scholar 

  10. Meena, M.D., Biswas, D.R.: Effect of rock phosphate enriched compost and chemical fertilizers on microbial biomass phosphorus and phosphorus fractions. Afr. J. Microbiol. Res. 9(23), 1519–1526 (2015).

    Article  Google Scholar 

  11. Shammas, N.K., Wang, L.K.: Biosolids composting. In: Wang, L.K., Pereira, N.C., Hung, Y.T., Shammas, N.K. (eds.) Biological Treatment Processes. Handbook of Environmental Engineering Series, vol. 8, pp. 669–713. Humana Press, Inc., Totowa (2009)

    Chapter  Google Scholar 

  12. Leal, N., Madrid, C.: Compostaje de residuos orgánicos mezclados con roca fosfórica. Agron. Trop. 48, 335–357 (1998)

    Google Scholar 

  13. Wickramatilake, A.R., Munehiro, R., Nagaoka, T., Wasaki, J., Kouno, K.: Compost amendment enhances population and composition of phosphate solubilizing bacteria and improves phosphorus availability in granitic regosols. Soil Sci. Plant Nutr. 57, 529–540 (2011). https://doi.org/10.1080/00380768.2011.600243

    Article  Google Scholar 

  14. Lara, C., Esquivel, L.M., Negrete, J.L.: Bacterias nativas solubilizadores de fosfatos para incrementar los cultivos en el departamento de Córdoba-Colombia. Biotecnol. Sector Agrop. Agroind. 9, 114–120 (2011)

    Google Scholar 

  15. ICONTEC: NTC 5167. Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmienda o acondicionadores de suelo. In: NTC 5167. p. 52. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá (2011)

  16. Bernal, M.P., Sánchez, M.A., Paredes, C., Roig, A.: Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agric. Ecosyst. Environ. 69, 175–189 (1998).

    Article  Google Scholar 

  17. Kjeldahl, J.: Neue methode zur bestimmung des stickstoffs in organischen körpern (New method for the determination of nitrogen in organic bodies, in German). Z. Anal. Chem. 22(1), 366–382 (1883). https://doi.org/10.1007/bf01338151

    Article  Google Scholar 

  18. Altieri, R., Esposito, A.: Evaluation of the fertilizing effect of olive mill waste compost in short-term crops. Int. Biodeterior. Biodegrad. 64, 124–128 (2010)

    Article  Google Scholar 

  19. Chang, C.-H., Yang, S.-S.: Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour. Technol. 100(4), 1648–1658 (2009). https://doi.org/10.1016/j.biortech.2008.09.009

    Article  Google Scholar 

  20. ICONTEC: NTC 5350. Calidad de suelo. Determinacion de fósforo disponible. In: NTC 5350, vol. 5350. vol. 1, p. 19. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá (2016)

  21. Mehta, S., Nautiyal, C.S.: An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43(1), 51–56 (2001). https://doi.org/10.1007/s002840010259

    Article  Google Scholar 

  22. González, A.C., Robles, L., Nuñez, A., Strap, J.L., Crawford D.L.: Análisis molecular y cultural de actinomicetos estacionales en suelos del hábitat de Artemisia tridentata. Rev. Int. Botan. Exper. 78, 83–90 (2009).

    Google Scholar 

  23. Bobadilla, C., Rincón, S.C.: Aislamiento y producción de bacterias fosfato solubilizadoras a partir de compost obtenido de residuos de plaza (Isolation and production of phosphate-solubilizing bacteria from compost obtained from market place waste, in Spanish). Pontificia Universidad Javeriana, Pregrado (2008)

    Google Scholar 

  24. Kumar, V., Narula, N.: Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol. Fertil. Soils 28(3), 301–305 (1999). https://doi.org/10.1007/s003740050497

    Article  Google Scholar 

  25. Shilev, S., Naydenov, M., Vancheva, V., Aladjadjiyan, A.: Composting of food and agricultural wastes. In: Oreopoulou, V., Russ, W. (eds.) Utilization of By-Products and Treatment of Wastes in the Food Industry, vol. 3, pp. 283–301. Springer, New York (2007)

    Chapter  Google Scholar 

  26. Waszkielis, K.M., Białobrzewski, I., Nowak, K.W., Dzadz, Ł., Dach, J.: Determination of the thermal conductivity of composted material. Measurement 58, 441–447 (2014). https://doi.org/10.1016/j.measurement.2014.09.006

    Article  Google Scholar 

  27. Insam, H., de Bertoldi, M.: Microbiology of the composting process. In: Diaz, L.F., de Bertoldi, M., Bidlingmaier, W., Golueke, C. (eds.) Compost Science and Technology. Waste Management Series, vol. 8, pp. 25–48. Elsevier, New York (2007)

    Chapter  Google Scholar 

  28. Bustamante, M.A., Ceglie, F.G., Aly, A., Mihreteab, H.T., Ciaccia, C., Tittarelli, F.: Phosphorus availability from rock phosphate: combined effect of green waste composting and sulfur addition. J. Environ. Manage. 182, 557–563 (2016). https://doi.org/10.1016/j.jenvman.2016.08.016

    Article  Google Scholar 

  29. Jeong, Y.K., Kim, J.S.: A new method for conservation of nitrogen in aerobic composting processes. Bioresour. Technol. 79(2), 129–133 (2001)

    Article  Google Scholar 

  30. Jeong, Y.K., Hwang, S.J.: Optimum doses of Mg and P salts for precipitating ammonia into struvite crystals in aerobic composting. Bioresour. Technol. 96(1), 1–6 (2005). https://doi.org/10.1016/j.biortech.2004.05.028

    Article  Google Scholar 

  31. Pandey, A., Gaind, S., Ali, A., Nain, L.: Effect of bioaugmentation and nitrogen supplementation on composting of paddy straw. Biodegradation 20, 293–306 (2009)

    Article  Google Scholar 

  32. Berrocal Rosso, E.P., Durango Petro, J.M., Barrera Violeth, J.L., Diaz Pongutá, B.: Evaluación de formas de fósforo en suelos cultivados con plátano (Evaluation of phosphorus forms in soils cropped with plantain, in Spanish). Acta Agron. 58(3), 152–159 (2009)

    Google Scholar 

  33. Fankem, H., Abba, M., Ngo Nkot, L., Deubel, A., Merbach, W., Etoa, F.-X., Nwaga, D.: Selecting indigenous P-solubilizing bacteria for cowpea and millet improvement in nutrient-deficient acidic soils of southern cameroon. In: Bationo, A., Waswa, B., Okeyo, M.J., Maina, F., Kihara, M.J. (eds.) Innovations as Key to the Green Revolution in Africa: Exploring the Scientific Facts, pp. 391–398. Springer, Netherlands, Dordrecht (2011)

    Chapter  Google Scholar 

  34. Khan, M.S., Zaidi, A., Ahmad, E.: Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan, M.S., Zaidi, A., Musarrat, J. (eds.) Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology, pp. 31–62. Springer, Cham, Switzerland (2014)

    Google Scholar 

  35. Iyamuremye, F., Dick, R.P., Baham, J.: Organic amendments and phosphorus dynamics: I. Phosphorus chemistry and sorption. Soil Sci. 161(7), 426–435 (1996)

    Google Scholar 

  36. Fuentes, B., Bolan, N., Naidu, R., Mora, M.D.L.L.: Phosphorus in organic waste-soil systems. Rev. Cienc. Suelo Nutr. 6(2), 64–83 (2006). https://doi.org/10.4067/S0718-27912006000200006

    Article  Google Scholar 

  37. Pypers, P., Verstraete, S., Thi, C.P., Merckx, R.: Changes in mineral nitrogen, phosphorus availability and salt-extractable aluminium following the application of green manure residues in two weathered soils of South Vietnam. Soil Biol. Biochem. 37(1), 163–172 (2005). https://doi.org/10.1016/j.soilbio.2004.06.018

    Article  Google Scholar 

  38. Rynk, R.: On-farm composting handbook. Northeast Regional Agricultural Engineering Service, Ithaca, NY (1992)

    Google Scholar 

  39. Hasan, K.M., Sarkar, G., Alamgir, M., Bari, Q.H., Haedrich, G.: Study on the quality and stability of compost through a Demo Compost Plant. Waste Manag 32(11), 2046–2055 (2012). https://doi.org/10.1016/j.wasman.2012.05.039

    Article  Google Scholar 

  40. Zhang, X., Cao, Y., Tian, Y., Li, J.: Short-term compost application increases rhizosphere soil carbon mineralization and stimulates root growth in long-term continuously cropped cucumber. Sci. Hortic. 175, 269–277 (2014)

    Article  Google Scholar 

  41. Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., Swings, J.: Microbiological aspects of biowaste during composting in a monitored compost bin. J. Appl. Microbiol. 94, 127–137 (2003)

    Article  Google Scholar 

  42. Paściak, M., Krzysztof Pawlik, K., Gamian, A., Szponar, B., Skóra, J., Gutarowska, B.: An airborne actinobacteria Nocardiopsis alba isolated from bioaerosol of a mushroom compost facility. Aerobiologia 30, 413–422 (2014)

    Article  Google Scholar 

  43. Pathalam, G., Rajendran, H.A.D., Appadurai, D.R., Gandhi, M.R., Michael, G.P., Savarimuthu, I., Naif, A.A.-D.: Isolation and molecular characterization of actinomycetes with antimicrobial and mosquito larvicidal properties. Beni-Suef Univ. J. Appl. Sci. 6(2), 209–217 (2017). https://doi.org/10.1016/j.bjbas.2017.04.002

    Article  Google Scholar 

  44. García-Valdés, E., Lalucat, J.: Pseudomonas: molecular phylogeny and current taxonomy. Molecular and Applied Biology. Springer International Publishing, Cham, Pseudomonas (2016)

    Google Scholar 

  45. He, S.T., Zhi, X.Y., Jiang, H., Yang, L.L., Wu, J.Y., Zhang, Y.G., Hozzein, W.N., Li, W.J.: Biogeography of Nocardiopsis strains from hypersaline environments of Yunnan and Xinjiang Provinces, western China. Sci Rep 5, 13323 (2015). https://doi.org/10.1038/srep13323

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Bioprocess and Agro-industry Plant at the Universidad de Caldas for scientific and technical assistance during the development of this work. This work was supported by the Fund for Science, Technology and Innovation of the Colombian General System of Royalties (Grant BIPIN 2012000100178) and the Universidad de Caldas (Grant 0700413) through the research project Implementation of a comprehensive strategy through biotechnological innovation for waste utilization in Caldas province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Montoya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13826 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montoya, S., Ospina, D.A. & Sánchez, Ó.J. Evaluation of the Physical–Chemical and Microbiological Characteristics of the Phospho-Compost Produced Under Forced Aeration System at the Industrial Scale. Waste Biomass Valor 11, 5977–5990 (2020). https://doi.org/10.1007/s12649-019-00813-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00813-8

Keywords

Navigation