Skip to main content

Advertisement

Log in

Modified Rice Husk Silica from Biowaste: An Efficient Catalyst for Transesterification of Diethyl Malonate and Benzyl Alcohol

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Molybdenum and lanthanum oxide modified silica-based catalysts were prepared from the agricultural waste rice husk. These synthesized catalysts were characterized by various spectroscopic and non-spectroscopic techniques. The catalytic performance was investigated by transesterification reaction between diethyl malonate and benzyl alcohol in the liquid phase using modified silica as a heterogeneous catalyst. Molybdenum modified silica-based catalyst showed the highest conversion efficiency of 95.6% and selectivity of 96.8% for dibenzyl malonate. The reaction conditions were optimized to give maximum efficiency with the highest selectivity in a solvent-free green method.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. Shahla, S., Cheng, N.G., Yusoff, R.: An overview on transesterification of natural oils and fats. Biotechnol. Bioprocess Eng. 1(15), 891–904 (2010). https://doi.org/10.1007/s12257-009-3157-2

    Article  Google Scholar 

  2. Bittner, S., Felix, S., Authority, D., Sheva, B.: A convenient method of transesterification under neutral conditions. Tetrahedron Lett. 44, 3871–3874 (1975). https://doi.org/10.1016/S0040-4039(00)91300-5

    Article  Google Scholar 

  3. Raghavendra, P.S., Shamshuddin, M.S.Z., Thimmaraju, N.: Vapor phase transesterification of dimethyl malonate with phenol over cordierite honeycomb coated with zirconia and its modified forms. Int. J. Chem. Mol. Eng. 9, 1383–1386 (2015). https://doi.org/10.5281/zenodo.1110363

    Article  Google Scholar 

  4. Zhang, C., Li, S., Bao, S.: Sustainable synthesis of ZSM-5 zeolite from rice husk ash without addition of solvents. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0356-0

    Article  Google Scholar 

  5. Andreola, F., Lancellotti, I., Manfredini, T., Bondioli, F., Barbieri, L.: Rice husk ash (RHA) recycling in brick manufactureeffects on physical and microstructural properties. Waste Biomass Valoriz. 9, 2529–2539 (2018). https://doi.org/10.1007/s12649-018-0343-5

    Article  Google Scholar 

  6. Demis, S., Tapali, J.G., Papadakis, V.G.: Plant design and economics of rice husk ash exploitation as a pozzolanic material. Waste Biomass Valoriz. 6, 843–853 (2015). https://doi.org/10.1007/s12649-015-9412-1

    Article  Google Scholar 

  7. Rosa, D.S., Vargas, B.P., Silveira, M.V., Rosa, C.H., Martins, M.L., Rosa, G.R.: On the use of calcined agro-industrial waste as palladium supports in the production of eco-friendly catalysts : rice husks and banana peels tested in the Suzuki–Miyaura reaction. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0252-7

    Article  Google Scholar 

  8. Radhika, T., Sugunan, S.: Structural and catalytic investigation of vanadia supported on ceria promoted with high surface area rice husk silica. J. Mol. Catal. A Chem. 250, 169–176 (2006). https://doi.org/10.1016/j.molcata.2006.01.048

    Article  Google Scholar 

  9. Thimmaraju, N., Shamshuddin, S.Z.M., Pratap, S.R.: Transesterification of diethyl malonate with benzyl alcohol catalyzed by modified zirconia: kinetic study. J. Mol. Catal. A Chem. 391, 55–65 (2014). https://doi.org/10.1016/j.molcata.2014.03.025

    Article  Google Scholar 

  10. Saravanamurugan, S., Han, D., Koo, J., Park, S.: Transesterification reactions over morphology controlled amino-functionalized SBA-15 catalysts. Catal. Commun. 9, 158–163 (2008). https://doi.org/10.1016/j.catcom.2007.06.002

    Article  Google Scholar 

  11. Shah, P., Ramaswamy, A.V., Lazar, K., Ramaswamy, V.: Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction. Appl. Catal. A Gen. 273, 239–248 (2004). https://doi.org/10.1016/j.apcata.2004.06.039

    Article  Google Scholar 

  12. Yadav, G.D., Kadam, A.A.: Selective engineering using Mg–Al calcined hydrotalcite and microwave irradiation in mono-transesterification of diethyl malonate with cyclohexanol. Chem. Eng. J. 230, 547–557 (2013). https://doi.org/10.1016/j.cej.2013.06.075

    Article  Google Scholar 

  13. Vijayasankar, A.V., Nagaraju, N.: Preparation and characterisation of amorphous mesoporous aluminophosphate and metal aluminophosphate as an efficient heterogeneous catalyst for transesterification reaction. Comptes Rendus Chim. 14, 1109–1116 (2011). https://doi.org/10.1016/j.crci.2011.09.013

    Article  Google Scholar 

  14. Romero, E., Soto, R., Durán, P., Herguido, J., Peña, J.A.: Molybdenum addition to modified iron oxides for improving hydrogen separation in fixed bed by redox processes. Int. J. Hydrogen Energy. 37, 6978–6984 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.066

    Article  Google Scholar 

  15. González, J., Wang, J.A., Chen, L., Manríquez, M., Salmones, J., Limas, R., Arellano, U.: Quantitative determination of oxygen defects, surface Lewis acidity, and catalytic properties of mesoporous MoO3/SBA-15 catalysts. J. Solid State Chem. 263, 100–114 (2018). https://doi.org/10.1016/j.jssc.2018.04.005

    Article  Google Scholar 

  16. Al-yassir, N., Mao, R.L.Van: Physico-chemical properties of mixed molybdenum and cerium oxides supported on silica—alumina and their use as catalysts in the thermal-catalytic cracking (TCC) of n-hexane. Appl. Catal. A Gen. 305(305), 130–139 (2006). https://doi.org/10.1016/j.apcata.2006.02.054

    Article  Google Scholar 

  17. Sugunan, S., Sherly, K.B.: Basicity and electron donor properties of lanthanum oxide and its mixed oxides with alumina. Indian J. Chem. 32A, 689–692 (1993)

    Google Scholar 

  18. Katta, L., Sudarsanam, P., Mallesham, B., Reddy, B.M.: Preparation of silica supported ceria-lanthana solid solutions useful for synthesis of 4-methylpent-1-ene and dehydroacetic acid. Catal. Sci. Technol. 2, 995–1004 (2012). https://doi.org/10.1039/c2cy00551d

    Article  Google Scholar 

  19. Mekhemer, G.A.H.: Surface structure and acid–base properties of lanthanum oxide dispersed on silica and alumina catalysts. Phys. Chem. Chem. Phys. 4, 5400–5405 (2002). https://doi.org/10.1039/b204056p

    Article  Google Scholar 

  20. Statman, D.J., Gleaves, J.T., McNamara, D., Mills, P.L., Fornasari, G., Ross, J.R.H.: TAP reactor investigation of methane coupling over samarium oxide catalysts. Appl. Catal. 77, 45–53 (1991). https://doi.org/10.1016/0166-9834(91)80022-O

    Article  Google Scholar 

  21. Bindig, R., Liu, D., Enke, D., Wohlrab, S., Seeburg, D., Kreft, S., Hartmann, I., Schneider, D.: Rice husk derived porous silica as support for Pd and CeO2 for low temperature catalytic methane combustion. Catalysts. 9, 26 (2019). https://doi.org/10.3390/catal9010026

    Article  Google Scholar 

  22. Vilanculo, C.B., de Andrade Leles, L.C., da Silva, M.J.: H4SiW12O40-catalyzed levulinic acid esterification at room temperature for production of fuel bioadditives. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-00549-x

    Article  Google Scholar 

  23. Dintzer, T., Petit, C., Petit, P., Ersen, O., Luo, J., Chu, W.: Anchoring and promotion effects of metal oxides on silica supported catalytic gold nanoparticles. J. Colloid Interface Sci. 482, 135–141 (2016). https://doi.org/10.1016/j.jcis.2016.08.001

    Article  Google Scholar 

  24. Tomke, P.D., Zhao, X., Chiplunkar, P.P., Xu, B., Wang, H., Silva, C., Rathod, V.K., Cavaco-Paulo, A.: Lipase-ultrasound assisted synthesis of polyesters. Ultrason. Sonochem. 38, 496–502 (2017). https://doi.org/10.1016/j.ultsonch.2017.03.051

    Article  Google Scholar 

  25. Reed, R.H., Chilvers, K.F., James, A.L., Morris, K.A., Oliver, M., Perry, J.D., Gould, F.K.: Evaluation of novel fluorogenic substrates for the detection of glycosidases in Escherichia coli and enterococci. J. Appl. Microbiol. 101, 977–985 (2006). https://doi.org/10.1111/j.1365-2672.2006.03018.x

    Article  Google Scholar 

  26. Brandau, S., Landa, A., Franzén, J., Marigo, M., Jørgensen, K.A.: Organocatalytic conjugate addition of malonates to α, β-unsaturated aldehydes: asymmetric formal synthesis of (-)-paroxetine, chiral lactams, and lactones. Angew. Chem. Int. Ed. 45, 4305–4309 (2006). https://doi.org/10.1002/anie.200601025

    Article  Google Scholar 

  27. Hemalatha, P., Bhagiyalakshmi, M., Ganesh, M., Palanichamy, M., Murugesan, V., Jang, H.T.: Role of ceria in CO2 adsorption on NaZSM-5 synthesized using rice husk ash. J. Ind. Eng. Chem. 18, 260–265 (2012). https://doi.org/10.1016/j.jiec.2011.11.046

    Article  Google Scholar 

  28. Adam, F., Thankappan, R.: Oxidation of benzene over bimetallic Cu–Ce incorporated rice husk silica catalysts. Chem. Eng. J. 160, 249–258 (2010). https://doi.org/10.1016/j.cej.2010.02.055

    Article  Google Scholar 

  29. Renu, P., Radhika, T., Suganan, S.: Characterization and catalytic activity of Vanadia supported on rice husk silica promoted samaria. Catal. Commun. 9, 584–589 (2008). https://doi.org/10.1016/j.catcom.2007.02.024

    Article  Google Scholar 

  30. Reddy, B.M., Chowdhury, B., Smirniotis, P.G.: An XPS study of La2O3 and In2O3 influence on the physicochemical properties of MoO3/TiO2 catalysts. Appl. Catal. A Gen. 219, 53–60 (2001). https://doi.org/10.1016/S0926-860X(01)00658-5

    Article  Google Scholar 

  31. Elassal, Z., Groula, L., Nohair, K., Sahibed-dine, A., Brahmi, R., Loghmarti, M., Mzerd, A., Bensitel, M.: Synthesis and FT-IR study of the acido-basic properties of the V2O5 catalysts supported on zirconia. Arab. J. Chem. 4, 313–319 (2011). https://doi.org/10.1016/j.arabjc.2010.06.052

    Article  Google Scholar 

  32. Shamshuddin, S.Z.M., Nagaraju, N.: Vapour phase synthesis of salol over solid acids via transesterification. J. Chem. Sci. 122, 193–201 (2010). https://doi.org/10.1007/s12039-010-0022-y

    Article  Google Scholar 

  33. Thimmaraju, N., Pratap, S.R., Senthilkumar, M., Shamshuddin, S.Z.M.: Honeycomb monolith coated with Mo(VI)/ZrO2 as a versatile catalyst system for liquid phase transesterificaiton. J. Korean Chem. Soc. 56, 563–570 (2012). https://doi.org/10.5012/jkcs.2012.56.5.563

    Article  Google Scholar 

  34. Saravanamurugan, S., Sujandi, S., Han, D.S., Koo, J.B., Park, S.E.: Transesterification reactions over morphology controlled amino-functionalized SBA-15 catalysts. Catal. Commun. 9, 158–163 (2008). https://doi.org/10.1016/j.catcom.2007.06.002

    Article  Google Scholar 

  35. Ajaikumar, S., Backiaraj, M., Mikkola, J.P., Pandurangan, A.: Transesterification of diethyl malonate with n-butanol over HPWA/MCM-41 molecular sieves. J. Porous Mater. 20, 951–959 (2013). https://doi.org/10.1007/s10934-013-9672-8

    Article  Google Scholar 

  36. Minchitha, K.U., Hareesh, H.N., Venkatesh, K., Shanty, M., Nagaraju, N., Kathyayini, N.: Design of sulphate modified solid acid catalysts for transesterification of diethyl malonate with benzyl alcohol. J. Nanosci. Nanotechnol. 18, 202–214 (2018). https://doi.org/10.1166/jnn.2018.14567

    Article  Google Scholar 

  37. Biradar, A.V., Umbarkar, S.B., Dongare, M.K.: Transesterification of diethyl oxalate with phenol using MoO3/SiO2 catalyst. Appl. Catal. A Gen. 285, 190–195 (2005). https://doi.org/10.1016/j.apcata.2005.02.028

    Article  Google Scholar 

  38. Ma, X., Gong, J., Yang, X., Wang, S.: A comparative study of supported MoO3 catalysts prepared by the new “slurry” impregnation method and by the conventional method: their activity in transesterification of dimethyl oxalate and phenol. Appl. Catal. A Gen. 280, 215–223 (2005). https://doi.org/10.1016/j.apcata.2004.11.001

    Article  Google Scholar 

  39. Kotbagi, T., Nguyen, D.L., Lancelot, C., Lamonier, C., Thavornprasert, K.A., Wenli, Z., Capron, M., Jalowiecki-Duhamel, L., Umbarkar, S., Dongare, M., Dumeignil, F.: Transesterification of diethyl oxalate with phenol over sol-gel MoO3/TiO2 catalysts. Chemsuschem 5, 1467–1473 (2012). https://doi.org/10.1002/cssc.201100802

    Article  Google Scholar 

  40. Cui, L.P., Li, Y.J., Li, Z., Zhao, J.F.: MoO3/SO42–TiO2 catalyst for transesterification of dimethyl cabonate with phenol. J. Cent. South Univ. 21, 1719–1724 (2014). https://doi.org/10.1007/s11771-014-2115-0

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to CHRIST (Deemed to be University), Bangalore for all the facilities and support. We are thankful to Bangalore Institute of Technology and Indian Institute of Science (IISc) Bangalore for various characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Sunaja Devi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, A.S., Devi, K.R.S., Karthik, K. et al. Modified Rice Husk Silica from Biowaste: An Efficient Catalyst for Transesterification of Diethyl Malonate and Benzyl Alcohol. Waste Biomass Valor 11, 4809–4819 (2020). https://doi.org/10.1007/s12649-019-00808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00808-5

Keywords

Navigation