Skip to main content

Advertisement

Log in

Green Synthesis, Characterization and Test of MnO2 Nanoparticles as Catalyst in Biofuel Production from Grape Residue and Seeds Oil

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The MnO2 nanoparticles, when used as catalyst, determine an enhanced reaction rate of the transesterifications process thus being very attractive for biodiesel production. One of the current limitations of the biofuel production by using MnO2 nanoparticles as catalyst is given by the reaction conditions. This work intends to improve the transesterification reaction efficiency through the use of a microwave field. It can generate large quantities of energy that lead to a good molecular motion thus favoring the transesterification process without altering the molecular structure. The aim of the present research is to explore the possibility of carrying out the microwave-assisted transesterification of grapes residues and seeds oil through the use of MnO2 nanoparticles as catalysts, as well as yeast (Saccharomyces cerevisiae), to efficiently obtain biofuel end product.

Methods

Both chemically and biochemically (using plant extracts) synthesized MnO2 nanoparticles were produced and characterized by different techniques like TEM, XRD, BET, XPS, VSM. The analysis of obtained biofuel was performed by GC–MS.

Results

The comparison of results revealed that the samples prepared using plant extracts have morphologic properties higher than chemically prepared sample. MnO2 nanoparticles obtained by the use of oregano extracts were further tested for microwave assisted transesterification studies.

Conclusions

The surface area of the MnO2 nanoparticles biochemically synthesized was four times higher than the nanoparticles synthesized by chemical method. The MnO2-oregano nanoparticles presented the best catalytic activity for biodiesel production as compared to the yeast catalyst. The use of microwave field for transesterification further enhances the efficiency of the process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hussain, S.T., Ali, S.A., Bano, A., Mahmood, T.: Use of nanotechnology for the production of biofuels from butchery waste. Int. J. Phys. Sci. 6, 7271–7279 (2011)

    Google Scholar 

  2. Rengasamy, M., Anbalagan, K., Mohanraj, S., Pugalenthi, V.: Biodiesel production from Pongamia pinnata oil using synthesized iron nanocatalyst. Int. J. ChemTech Res. 6, 4511–4516 (2014)

    Google Scholar 

  3. Chiong, M.C., Chong, C.T., Ng, J.-H., Lam, S.S., Tran, M.-V., Chong, W.W.F., Jaafar, M.N.M., Valera-Medina, A.: Liquid biofuels production and emissions performance in gas turbines: A review. Energy Convers. and Manag. 173, 640–658 (2018)

    Google Scholar 

  4. Almazrouel, M., Janajreh, I.: Thermogravimetric study of the combustion characteristics of biodiesel and petroleum diesel. J. Thermal Anal. Calorim. 136(2), 925–935 (2019)

    Google Scholar 

  5. Günay, M.E., Türker, L., Tapan, N.A.: Significant parameters and technological advancements in biodiesel. Fuel 250, 27–41 (2019)

    Google Scholar 

  6. Barati, M.: From biomass to fuels: nano-catalytic processes. In: Rai, M., Silva, S.S. (eds.) Nanotechnology for Bioenergy and Biofuel Production, Green Chemistry and Sustainable Technology, pp. 195–206. Springer, Cham (2017)

    Google Scholar 

  7. Jayandran, M., Muhamed Haneefa, M., Balasubramanian, V.: Green synthesis and characterization of manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity. JAPS 5, 105–110 (2015)

    Google Scholar 

  8. Lin, T., Yu, L., Sun, M., Cheng, G., Lan, B., Fu, Z.: Mesoporous: α-MnO2 microspheres with high specific surface area: controlled synthesis and catalytic activities. Chem. Eng. J. 286, 114–121 (2016)

    Google Scholar 

  9. Liu, M., Wang, Y., Cheng, Z., Zhang, M., Hu, M., Li, J.: Electrospun Mn2O3 nanowrinkles and Mn3O4 nanorods: morphology and catalytic application. Appl. Surf. Sci. 313, 360–367 (2014)

    Google Scholar 

  10. Zhang, B., Cheng, G., Ye, W., Zheng, X., Liu, H., Sun, M., Yu, L., Zheng, Y., Cheng, X.: Rational design of MnO2@MnO2 hierarchical nanomaterials and their catalytic activities. Dalton Trans. 45, 18851–18858 (2016)

    Google Scholar 

  11. Robinson, D.M., Go, Y.B., Mui, M., Gardner, G., Zhang, Z., Mastrogiovanni, D., Garfunkel, E., Li, J., Greenblatt, M., Dismukes, G.C.: Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem. Soc. 135(9), 3494–3501 (2013)

    Google Scholar 

  12. Duana, L., Suna, B., Weia, M., Luoa, S., Pana, F., Xua, A., Li, X.: Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation. J. Hazard. Mater. 285, 356–365 (2015)

    Google Scholar 

  13. Sharma, J.K., Srivastava, P., Ameen, S., Akhtar, M.S., Singh, G., Yadava, S.: Azadirachta indica plant-assisted green synthesis of Mn3O4 nanoparticles: Excellent thermal catalytic performance and chemical sensing behavior. J. Colloid Interface Sci. 472, 220–228 (2016)

    Google Scholar 

  14. Huang, J., Dai, Y., Singewald, K., Liu, C.-C., Saxena, S.: Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenolA degradation under acidic conditions. Chem. Eng. J. 370, 906–915 (2019)

    Google Scholar 

  15. Chen, J., Lin, J.C., Purohit, V., Cutlip, M.B., Suib, S.L.: Photoassisted catalytic oxidation of alcohols and halogenated hydrocarbons with amorphous manganese oxides. Catal. Today 33, 205–214 (1997)

    Google Scholar 

  16. Radhakrishnan, R., Oyama, S.T.: Ozone decomposition over manganese oxide supported on ZrO2 and TiO2: a kinetic study using in situ laser Raman spectroscopy. J. Catal. 199, 282–290 (2001)

    Google Scholar 

  17. Miao, L., Wang, J., Zhang, P.: Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Appl. Surf. Sci. 466, 441–453 (2019)

    Google Scholar 

  18. Wan, J., Zhou, L., Deng, H., Zhan, F., Zhang, R.: Oxidative degradation of sulfamethoxazole by different MnO2 nanocrystals in aqueous solution. J. Mol. Catal. A Chem. 407, 67–74 (2015)

    Google Scholar 

  19. Kumar, H., Sangwan, M., Sangwan, P.: Synthesis and characterization of MnO2 nanoparticles using co-precipitation technique. IJCCE 3, 155–160 (2013)

    Google Scholar 

  20. Pang, S.C., Chin, S.F., Ling, C.Y.: Controlled synthesis of manganese dioxide nanostructures via a facile hydrothermal route. J. Nanomater. (2012). https://doi.org/10.1155/2012/607870

    Article  Google Scholar 

  21. Su, P., Chu, D., Wang, L.: Studies on catalytic activity of nanostructure Mn2O3, prepared by solvent-thermal method on degrading crystal violet. Modern Appl. Sci. 4(5), 125–129 (2010)

    Google Scholar 

  22. Khan, A.M., Fatima, N.: Biodisel synthesis via metal oxides and metal chlorides catalysis from marine alga Melanothamnus afaqhusainii. Chin. J. Chem. Eng. 24(3), 388–393 (2016)

    Google Scholar 

  23. Singh, A.K., Fernando, S.D.: Reaction kinetics of soybean oil transesterification using heterogeneous metal oxide catalysts. Chem. Eng. Technol. 30(12), 1716–1720 (2007)

    Google Scholar 

  24. Raj, B.G.S., Asiri, A.M., Qusti, A.H., Wuc, J.J., Anandan, S.: Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors. Ultrason. Sonochem. 21, 1933–1938 (2014)

    Google Scholar 

  25. Krishnaraj C., Ji B.-J., Harper S.L., Yun S.-I: Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens. Bioprocess Biosyst. Eng. 39, 759–772 (2016).

    Google Scholar 

  26. El Sherbiny, S.A., Refaat, A.A., El Sheltawy, S.T.: Production of biodiesel using the microwave technique. J. Adv. Res. 1, 309–314 (2010)

    Google Scholar 

  27. Cancela, A., Maceiras, R., Sánchez, A., Alfonsin, V., Urrejola, S.: Transesterification of marine macroalgae using microwave technology. Energy Sources Part A 38(11), 1598–1603 (2016)

    Google Scholar 

  28. Surducan E., Surducan V.: Procedure and device for dynamic processing of materials. Romanian Patent, Romania RO-00112063B1 (2008).

  29. Moon, S.A., Salunke, B.K., Alkotaini, B., Sathiyamoorthi, E., Kim, B.S.: Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract. IET Nanobiotechnol. 9(4), 220–225 (2015)

    Google Scholar 

  30. Salunke, B.K., Sawant, S.S.: Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 99(13), 5419–5427 (2015)

    Google Scholar 

  31. Sun, Y., Huang, N., Sun, X., Wang, D., Zhang, J., Qiao, S., Gao, Z.: An improvement on capacitive properties of clew-like MnO2 by thermal treatment under nitrogen. Int. J. Hydrog. Energy 42, 20016–20025 (2017)

    Google Scholar 

  32. Wang H.-Q., Yang G.-f., Li Q.-Y., Zhong X.-X., Wang F.-P., Li Z.-S., Lic Y.-H.: Porous nano-MnO2: large scale synthesis via a facile quick-redox procedure and application in a supercapacitor. New J. Chem. 35, 469–475 (2011).

    Google Scholar 

  33. Chang, J.-K., Tsai, W.-T.: Material characterisation and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors. J. Electrochem. Soc. 150(10), A1333–A1338 (2003)

    Google Scholar 

  34. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems. Pure Appl. Chem. 57, 603–619 (1985)

    Google Scholar 

  35. Liu, X.-W., Sun, X.-F., Huang, Y.-X., Sheng, G.-P., Zhou, K., Zeng, R.J., Dong, F., Wang, S.-G., Xu, A.-W., Tong, Z.-H., Yu, H.-Q.: Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater. Water Res. 44, 5298–5305 (2010)

    Google Scholar 

  36. Galakhov, V.R., Demeter, M., Bartkowski, S., Neumann, M., Ovechkina, N.A., Kurmaev, E.Z., Lobachevskaya, N.I., Mukovskii, Y.M., Mitchell, J., Ederer, D.L.: Mn 3s exchange splitting in mixed-valence manganites. Phys. Rev. B 65, 113102-1–113102-4 (2002)

    Google Scholar 

  37. Ardelean, I., Muresan, N., Pascuta, P.: EPR and magnetic susceptibility studies of manganese ions in 70TeO2·25B2O3·5SrO glass matrix. Mater. Chem. Phys. 101(1), 177–181 (2007)

    Google Scholar 

  38. Selvakumar, K., Murugesan, S., Kumar, S., Thangamuthu, R., Ganesan, K., Murugan, P., Rajput, P., Nath, Jha S., Bhattacharyya, D.: Physiochemical investigation of shape-designed MnO2 nanostructures and their influence on oxygen reduction reaction activity in alkaline solution. J. Phys. Chem. C. 119, 6604–6618 (2015)

    Google Scholar 

  39. Kakazey, M., Ivanova, N., Sokolsky, G., Gonzalez-Rodriguez, J.G.: Electron paramagnetic resonance of MnO2 powders. Electrochem. Solid-State Lett. 4(5), J1–J4 (2001)

    Google Scholar 

  40. Haynes W.M.: CRC Handbook of Chemistry and Physics, 93rd Edition, CRC Press, Boca Raton pp 4–134 (2012).

    Google Scholar 

  41. Gude, V.G., Patil, P., Martinez-Guerra, E., Deng, S., Nirmalakhandan, N.: Microwave energy potential for biodiesel production. Sustainable Chemical Processes 1(5), 1–31 (2013)

    Google Scholar 

  42. Nomanbhay S., Ong M.Y.: A review of microwave-assisted reactions for biodiesel production. Bioengineering 4(2), 57, 1–21, (2017).

    Google Scholar 

  43. Fernandes, P.S.R., Borges, L.E.P., de Carvalho, C.E.G., de Souza, R.O.M.A.: Microwave assisted biodiesel production from trap grease. J. Braz. Chem. Soc. 25(9), 1730–1736 (2014)

    Google Scholar 

  44. Dudley, G.B., Richert, R., Stiegman, A.E.: On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem. Sci. 6(4), 2144–2152 (2015)

    Google Scholar 

  45. Lin, H.-C., Tan, C.-S.: Continuous transesterification of coconut oil with pressurized methanol in the presence of a heterogenous catalyst. J. Taiwan Inst. Chem. Eng. 45, 495–503 (2014)

    Google Scholar 

  46. Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., Natarajan, M.: Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 16, 143–169 (2012)

    Google Scholar 

  47. Giakoumis, E.G.: A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renew. Energy 50, 858–878 (2013)

    Google Scholar 

  48. Fakhry, E.M., ElMaghraby, D.M.: Fatty acids composition and biodiesel characterization of Dunaliella salina. J. Water Res. Prot. 5, 894–899 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Romanian Ministry of Education and Research within the Nucleu Programme (Project PN16-30–02-05) and co-funded by the European Commission through European Regional Development Fund Structural Operational Program “Increasing of Economic Competitiveness” Priority axis 2, operation 2.1.2. Contract Number 621/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Loredana Soran.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stegarescu, A., Lung, I., Leoștean, C. et al. Green Synthesis, Characterization and Test of MnO2 Nanoparticles as Catalyst in Biofuel Production from Grape Residue and Seeds Oil. Waste Biomass Valor 11, 5003–5013 (2020). https://doi.org/10.1007/s12649-019-00805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00805-8

Keywords

Navigation