The Dynamics Analysis of Fungal Community Diversity During the Fermentation Process of Chinese Traditional Soybean Paste

  • Jingping Ge
  • Jiawang Wang
  • Li Chen
  • Gang Song
  • Wenxiang PingEmail author
Original Paper



The aim of this work was to monitor the microflora and the changing principle of the fungi family at the natural fermented soybean paste different fermentation stage.


It obtained the V4 and V5 regions of the 18S rDNA by extracting the fungal genomic DNA from the natural fermented soybean paste. DGGE fingerprint of fungal 18S rDNA V4 (partial), V5 sections during the different soybean paste fermentation periods of 17 samples were line analyzed. The abundance, the absorbance and the degree of dominance and diversity indexes of fungal community were determined by the denaturing gradient gel electrophoresis (DGGE).


The V4, V5 regions of 18S rDNA of the complex microbial community in the fermentation of traditional soybean paste were around 762 bp and 422 bp, and there were 9 kinds of microorganisms discovered, which were Penicillium expansum, Aspergillus oryzae, Mucor, P. commune, Absidia corymbifera, M. racemosus, Actinomucor elegans, Aspergillus, and an unculturable fungi. The DGGE ecological analysis showed that the unculturable fungi and A. oryzae were dominant microorganisms all the time, and the highest diversion index of 2.87 was reached at 56 days of fermentation.


This study laid a foundation for researching suitable soybean paste artificial inoculation and also provided a good help for the fermentation process of soybean paste.

Graphic Abstract


Denaturing gradient gel electrophoresis 18S rDNA Community diversity Soybean paste fermentation 



This work was supported by The National Natural Science Foundation of China (Grant No. 31570492, 31770544) and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region.


  1. 1.
    Shin, D., Jeong, D.: Korean traditional fermented soybean products: Jang. J Ethnic Foods 2(1), 2–7 (2015)CrossRefGoogle Scholar
  2. 2.
    Jeong, Y.H., Jin, K.H., Jung, K.M., Suna, K., Sol, K.D., Daily, J.W., Youn, J.D., Young, K.D., Sunmin, P.: Standardized chungkookjang, short-term fermented soybeans with Bacillus lichemiformis, improves glucose homeostasis as much as traditionally made chungkookjang in diabetic rats. J. Clin. Biochem. Nutr. 52(1), 49–57 (2013)CrossRefGoogle Scholar
  3. 3.
    Kwon, D.Y., Sang, M.H., Ahn, I.S., Min, J.K., Yang, H.J., Park, S.: Isoflavonoids and peptides from, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition 27(2), 244–252 (2011)CrossRefGoogle Scholar
  4. 4.
    Yang, H.J., Kwon, D.Y., Min, J.K., Kang, S., Park, S.: Meju, unsalted soybeans fermented with Bacillus subtilis and Aspergilus oryzae, potentiates insulinotropic actions and improves hepatic insulin sensitivity in diabetic rats. Nutr. Metab. 9(1), 37–37 (2012)CrossRefGoogle Scholar
  5. 5.
    Zhang, W., Luo, Q., Zhu, Y., Ma, J., Cao, L., Yang, M., Wen, P., Zhang, Z., He, X.: Microbial diversity in two traditional bacterial douchi from Gansu province in northwest China using Illumina sequencing. PLoS ONE 13(3), e0194876 (2018)CrossRefGoogle Scholar
  6. 6.
    Xie, M., Wu, J., An, F., Yue, X., Tao, D., Wu, R., Lee, Y.: An integrated metagenomic/metaproteomic investigation of microbiota in dajiang-meju, a traditional fermented soybean product in Northeast China. Food Res. Int. 115, 414–424 (2019)CrossRefGoogle Scholar
  7. 7.
    Sun, X., Lu, G., Luan, Y., Zhao, Z., Yang, H., Dan, S.: Analyses of microbial community of naturally homemade soybean pastes in Liaoning Province of China by Illumina Miseq Sequencing. Food Res. Int. 111, 50–57 (2018)CrossRefGoogle Scholar
  8. 8.
    Zhang, P., Zhang, P., Xie, M., An, F., Qiu, B., Wu, R.: Metaproteomics of microbiota in naturally fermented soybean paste, da-jiang. J. Food Sci. 83(5), 1342–1349 (2018)CrossRefGoogle Scholar
  9. 9.
    Gao, X.Z., Xin-Xin, Y.I., Liu, H., Wang, X.D., Cui, Z.J.: Microbial diversity of traditional soybean paste during fermentation in northeastern China. Biotechnol. Bull. 32(4), 251–255 (2016)Google Scholar
  10. 10.
    Zhao, H., Weizhen, X.U., Yang, G., Liu, Y., Yue, P., Zhang, L.: Bacterial community analysis of Pixian soybean paste during post-fermentation by high-throughput sequencing. Food Sci. 38(10), 117–122 (2017)Google Scholar
  11. 11.
    Muyzer, G., De Waal, E.C., Uitterlinden, A.G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microb. 59(3), 695–700 (1993)Google Scholar
  12. 12.
    Hirsch, P.R., Mauchline, T.H., Clark, I.M.: Culture-independent molecular techniques for soil microbial ecology. Soil Biol. Biochem. 42(6), 878–887 (2010)CrossRefGoogle Scholar
  13. 13.
    Ei Sheikha, A.F.: Molecular detection of mycotoxigenic fungi in foods: the case for using pcr-dgge. Food Biotechnol. 33(1), 54–108 (2019)CrossRefGoogle Scholar
  14. 14.
    Zhang, W.J., Mo, Y.Y., Yang, J., Zhou, J., Lin, Y.S., Alain, I., Zhang, J., Gao, X., Yu, Z.: Genetic diversity pattern of microeukaryotic communities and its relationship with the environment based on pcr-dgge and t-rflp techniques in dongshan bay, southeast China. Cont. Shelf Res. 164, 1–9 (2018)CrossRefGoogle Scholar
  15. 15.
    Han, R., Yuan, Y.Z., Cao, Q.W., Li, Q.H., Chen, L.S., Zhu, D.R., Liu, D.L.: Pcr-dgge analysis on microbial community structure of rural household biogas digesters in qinghai plateau. Curr. Microbiol. 75(5), 1–9 (2017)Google Scholar
  16. 16.
    Orlewska K., Piotrowska-Seget Z., Bratosiewicz-Wąsik J., Cycoń M.: Characterization of bacterial diversity in soil contaminated with the macrolide antibiotic erythromycin and/or inoculated with a multidrug-resistant Raoultella sp. strain using the pcr-dgge approach. Appl Soil Ecol. 126, 57–64 (2018)Google Scholar
  17. 17.
    Garofalo, C., Bancalari, E., Milanović, V., Cardinali, F., Osimani, A., Sardaro, M.L.S., Bottari, B., Bernini, V., Aquilanti, L., Clementi, F.: Study of the bacterial diversity of foods: PCR-DGGE versus LH-PCR. Int J Food Microbiol. 242, 24–36 (2017)CrossRefGoogle Scholar
  18. 18.
    Singh, T.A., Devi, K.R.: Ahmed, Giasuddin, Jeyaram, Kumaraswamy: Microbial and endogenous origin of fibrinolytic activity in traditional fermented foods of northeast India. Food Res Int. 55(2), 356–362 (2014)CrossRefGoogle Scholar
  19. 19.
    Milanović, V., Osimani, A., Garofalo, C., De, F.F., Ercolini, D., Cardinali, F., Taccari, M., Aquilanti, L., Clementi, F.: Profiling white wine seed vinegar bacterial diversity through viable counting, metagenomic sequencing and PCR-DGGE. Int. J. Food Microbiol. 286, 66–74 (2018)CrossRefGoogle Scholar
  20. 20.
    Chahorm K., Prakitchaiwattana C.: Application of reverse transcriptase PCR-DGGE as a rapid method for routine determination of Vibrio spp. in foods. Int. J. Food Microbiol. 264, 46–52 (2018)Google Scholar
  21. 21.
    Ahmadsah, L.S., Min, S.G., Han, S.K., Hong, Y., Kim, H.Y.: Effect of low salt concentrations on microbial changes during kimchi fermentation monitored by PCR-DGGE and their sensory acceptance. J. Microbiol. Biotechnol. 25(12), 2049–2057 (2015)CrossRefGoogle Scholar
  22. 22.
    Ramezani, M., Hosseini, S.M., Fazeli, S.A.S., Amoozegar, M.A., Fakhari, J.: PCR-DGGE analysis of fungal community in manufacturing process of a traditional Iranian cheese. Iran J. Biotechnol. 10(3), 180–186 (2018)Google Scholar
  23. 23.
    Li, X., Cai, G., Wu, D., Zhang, M., Lin, C., Lu, J.: Microbial community dynamics of Dan'er barley grain during the industrial malting process. Food Microbiol. 76, 110–116 (2018)CrossRefGoogle Scholar
  24. 24.
    Jeong, M., Kim, J., Choi, E., Kim, J.S., Wang, J.K.: PCR-DGGE analysis of population dynamics of lactic acid bacteria in kimchi by addition of bacteriocins. Food Sci. Biotechnol. 25(4), 1123–1128 (2016)CrossRefGoogle Scholar
  25. 25.
    Yang, Y., Deng, Y., Jin, Y., Liu, Y., Xia, B., Sun, Q.: Dynamics of microbial community during the extremely long-term fermentation process of a traditional soy sauce. J. Sci. Food Agric. 97(10), 3220–3227 (2017)CrossRefGoogle Scholar
  26. 26.
    Xu, W., Huang, Z., Zhang, X., Li, Q., Lu, Z., Shi, J., Xu, Z., Ma, Y.: Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar. Food Microbiol. 28(6), 1175–1181 (2011)CrossRefGoogle Scholar
  27. 27.
    Rui, W.J., Chao, Z.J., Pu, S., Rina, W., Qing, Y.X., Ping, Z.H.: Bacterial community involved in traditional fermented soybean paste dajiang made in northeast China. Ann. Microbiol. 63(4), 1417–1421 (2013)CrossRefGoogle Scholar
  28. 28.
    Borneman, J., Hartin, R.J.: PCR primers that amplify fungal rRNA genes from environmental samples. Appl. Environ. Microb. 66(10), 4356–4360 (2000)CrossRefGoogle Scholar
  29. 29.
    Wang, X.D., Liu, M., Gao, P., Ding, W., Gao, Q., Sun, Q.: Succession of fungal community and growth and decline of aflatoxin B1 during natural fermentation of watercress. Food Sci. 33(11), 142–146 (2012)Google Scholar
  30. 30.
    Qi, W., Hou, L.H., Guo, H.L., Wang, C.L., Fan, Z.C., Liu, J.F., Cao, X.H.: Effect of salt-tolerant yeast of Candida versatilis and Zygosaccharomyces rouxii on the production of biogenic amines during soy sauce fermentation. J. Sci. Food Agric. 94(8), 1537–1542 (2014)CrossRefGoogle Scholar
  31. 31.
    Shuji, Y., Daisuke, Y., Koji, N., Koji, Y., Hideyuki, K., Tomoki, O., Yuji, K.: Microbiota during fermentation of chum salmon (Oncorhynchus keta) sauce mash inoculated with halotolerant microbial starters: analyses using the plate count method and PCR-denaturing gradient gel electrophoresis (DGGE). Food Microbiol. 27(4), 509–514 (2010)CrossRefGoogle Scholar
  32. 32.
    Sun, S.Y., Jiang, W.G., Zhao, Y.P.: Profile of volatile compounds in 12 Chinese soy sauces produced by a high-salt-diluted state fermentation. J. Inst. Brew. 116(3), 316–328 (2012)CrossRefGoogle Scholar
  33. 33.
    Hong, S.B., Kim, D.H., Samson, R.A.: Aspergillus associated with meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea. Mycobiology. 43(3), 218–224 (2015)CrossRefGoogle Scholar
  34. 34.
    Liang, Y., Pan, L., Lin, Y.: Analysis of extracellular proteins of Aspergillus oryzae grown on soy sauce koji. Biosci. Biotechnol. Biochem. 73(1), 192–195 (2009)CrossRefGoogle Scholar
  35. 35.
    Lee, S., Lee, S., Singh, D., Ji, Y.O., Jeon, E.J., Ryu, H.S., Dong, W.L., Kim, B.S., Lee, C.H.: Comparative evaluation of microbial diversity and metabolite profiles in doenjang, a fermented soybean paste, during the two different industrial manufacturing processes. Food Chem. 221, 1578–1586 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jingping Ge
    • 1
    • 2
  • Jiawang Wang
    • 1
    • 2
  • Li Chen
    • 1
    • 2
  • Gang Song
    • 1
    • 2
  • Wenxiang Ping
    • 1
    • 2
    Email author
  1. 1.Engineering Research Center of Agricultural Microbiology Technology, Ministry of EducationHeilongjiang UniversityHarbinChina
  2. 2.Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life SciencesHeilongjiang UniversityHarbinChina

Personalised recommendations