Coagulation–Flocculation as an Alternative Way to Reduce the Toxicity of the Black Liquor from the Paper Industry: Thermal Valorization of the Solid Biomass Recovered


Pulp and paper mills generate a huge amount of wastewater and some of them, especially non-wood paper mills, do not possess recovery systems. In this research work, the effectiveness of coagulation–flocculation using poly (ethylene oxide), poly aluminium chloride and poly (dimethyl diallyl ammonium chloride) for the treatment of a black liquor obtained from a pulp mill (with wheat straw as the raw material) is reported. Furthermore, the calorific potential of the solid fraction generated after these treatments was investigated with the aim of enhancing this residue. Chemical oxygen demand (COD), turbidity and total solids (TS) were determined in the supernatants obtained from the different coagulation–flocculation processes. The treatment with poly (ethylene oxide) at pH 2.0 achieved the maximum reduction of TS (66%), COD (75%) and Turbidity (95%) in the black liquor and the precipitated solid fraction with the highest calorific value (19.9 MJ/kg).

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Liguori, R., Faraco, V.: Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresour. Technol. 215, 13–20 (2016)

    Google Scholar 

  2. 2.

    Liguori, R., Amore, A., Faraco, V.: Waste valorization by biotechnological conversion into added value products. Appl. Microbiol. Biotechnol. 97, 129–6147 (2013)

    Google Scholar 

  3. 3.

    Salehian, P., Karimi, K., Zilouei, H., Jeihanipour, A.: Improvement of biogas production from pine wood by alkali pretreatment. Fuel 106, 484–489 (2013)

    Google Scholar 

  4. 4.

    RISI, Inc.: Annual review of global pulp & paper statistics (2014)

  5. 5.

    RISI, Inc.: World dissolving pulp monitor (2014)

  6. 6.

    López, F., García, M.M., Yánez, R., Tapias, R., Fernández, M., Díaz, M.J.: Leucaena species valoration for biomass and paper production in 1 and 2 year harvest. Bioresour. Technol. 99, 4846–4853 (2008)

    Google Scholar 

  7. 7.

    Jiménez, L., Serrano, L., Rodríguez, A., Sánchez, R.: Soda-anthraquinone pulping of palm oil empty fruit bunches and beating of the resulting pulp. Bioresour. Technol. 100, 1262–1267 (2009)

    Google Scholar 

  8. 8.

    Requejo, A., Rodríguez, A., Colodette, J.L., Gomide, J.L., Jiménez, L.: TCF bleaching sequence in kraft pulping of olive tree pruning residues. Bioresour. Technol. 117, 117–123 (2012)

    Google Scholar 

  9. 9.

    Vargas, F., González, Z., Sánchez, R., Jiménez, L., Rodríguez, A.: Cellulosic pulps of cereal straws as raw material for the manufacture of ecological packaging. BioResources 7, 4161–4170 (2012)

    Google Scholar 

  10. 10.

    Huang, G., Shi, J.X., Langrish, T.A.G.: A new pulping process for wheat straw to reduce problems with the discharge of black liquor. Bioresour. Technol. 98, 2829–2835 (2007)

    Google Scholar 

  11. 11.

    Monte, M.C., Fuente, E., Blanco, A., Negro, C.: Waste management from pulp and paper production in the European Union. Waste Manag. 29, 293–308 (2009)

    Google Scholar 

  12. 12.

    Miège, C., Choubert, J.M., Ribeiro, L., Eusèbe, M., Coquery, M.: Removal efficiency of pharmaceuticals and personal care products with varying wastewater treatment processes and operating conditions-conception of a database and first results. Water Sci. Technol. 57, 49–56 (2008)

    Google Scholar 

  13. 13.

    Felissia, F.E., Barboza, O.M., Bengoechea, D.I., Area, M.C.: Reduction of the recalcitrant COD of semi-chemical pulp effluents by chemical precipitation. Rev. Cienc. Tecnol. 13, 36–42 (2010)

    Google Scholar 

  14. 14.

    Koyuncu, I., Yalcin, F., Ozturk, I.: Color removal of high strength paper and fermentation industry effluents with membrane technology. Water Sci. Technol. 40, 241–248 (1999)

    Google Scholar 

  15. 15.

    Shawwa, A.R., Smith, D.W., Sego, D.C.: Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke. Water Res. 35, 745–749 (2001)

    Google Scholar 

  16. 16.

    Thompson, G., Swain, J., Kay, M., Forster, C.F.: The treatment of pulp and paper mill effluent: a review. Bioresour. Technol. 77, 275–286 (2001)

    Google Scholar 

  17. 17.

    Sreekanth, D., Sivaramakrishna, D., Himabindu, V., Anjaneyulu, Y.: Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor. Bioresour. Technol. 100, 2534–2539 (2009)

    Google Scholar 

  18. 18.

    Ji, J., Qiu, J., Wai, N., Wong, F.S., Li, Y.: Influence of organic and inorganic flocculants on physical–chemical properties of biomass and membrane-fouling rate. Water Res. 44, 1627–1635 (2010)

    Google Scholar 

  19. 19.

    Khosravi, M., Badalians, G., Soltanzadeh, A., Riahi, R., Reza, H.: Membrane process design for the reduction of wastewater color of the Mazandaran pulp-paper Industry. Iran. Water Resour. Manag. 25, 2289–3004 (2011)

    Google Scholar 

  20. 20.

    Liu, T., He, Z., Hu, H., Ni, Y.: Treatment of APMP pulping effluent based on aerobic fermentation with Aspergillus niger and post-coagulation/flocculation. Bioresour. Technol. 102, 4712–4717 (2011)

    Google Scholar 

  21. 21.

    Xu, G., Yan, G., Yan, J.: An integrated green process for beneficial utilization of pulping black liquor. Waste Biomass Valor. 4, 497–502 (2013)

    Google Scholar 

  22. 22.

    Negro, C., Fuente, E., Blanco, A., Tijero, J.: Flocculation mechanism induced by phenolic resin/PEO and floc properties. AIChE. J. 51, 1022–1031 (2005)

    Google Scholar 

  23. 23.

    Shi, H., Fatehi, P., Xiao, H., Ni, Y.: A combined acidification/PEO flocculation process to improve the lignin removal from the pre-hydrolysis liquor of kraft-based dissolving pulp production process. Bioresour. Technol. 102(8), 5177–5182 (2011).

    Article  Google Scholar 

  24. 24.

    Garg, A., Mishra, I.M., Chand, S.: Effectiveness of coagulation and acid precipitation processes for the pre-treatment of diluted black liquor. J. Hazard. Mater. 180(1–3), 158–164 (2010).

    Article  Google Scholar 

  25. 25.

    Wong, S.S., Teng, T.T., Ahmad, A.L., Zuhairi, A., Najafpour, G.: Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. J. Hazard. Mater. 135, 378–388 (2006)

    Google Scholar 

  26. 26.

    Irfan, M., Butt, T., Imtiaz, N., Abbas, N., Khan, R.A., Shafique, A.: The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate. Arab. J. C. 10, 2307–2318 (2013).

    Article  Google Scholar 

  27. 27.

    Leschinsky, M., Zuckerstätter, G., Weber, H.K., Patt, R., Sixta, H.: Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 1: comparison of different lignin fractions formed during water prehydrolysis. Holzforschung 62, 645–652 (2008)

    Google Scholar 

  28. 28.

    Coimbra, R.N., Paniagua, S., Escapa, C., Calvo, L.F., Otero, M.: Thermal valorization of pulp mill sludge by co-processing with coal. Waste Biomass Valor. 7, 995–1006 (2016)

    Google Scholar 

  29. 29.

    Stewart, D.: Lignin as a base material for materials applications: chemistry, application and economics. Ind. Crops Prod. 27, 202–207 (2008)

    Google Scholar 

  30. 30.

    Domínguez-Robles, J., Tarrés, Q., Delgado-Aguilar, M., Rodríguez, A., Espinach, F.X., Mutjé, P.: Approaching a new generation of fiberboards taking advantage of selflignin as green adhesive. Int. J. Biol. Macromol. 108, 927–935 (2017)

    Google Scholar 

  31. 31.

    Van Heiningen, A.: Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap. Can. 107, 38–43 (2006)

    Google Scholar 

  32. 32.

    Domínguez-Robles, J., Sánchez, R., Díaz-Carrasco, P., Espinosa, E., García-Domínguez, M.T., Rodríguez, A.: Isolation and characterization of lignins from wheat straw: application as binder in lithium batteries. Int. J. Biol. Macromol. 104, 909–918 (2017)

    Google Scholar 

  33. 33.

    Amidon, T.E., Wood, C.D., Shupe, A.M., Wang, Y., Graves, M., Liu, S.: Biorefinery: conversion of woody biomass to chemicals, energy and materials. J. Biobased Mater. Bioenergy 2, 100–120 (2008)

    Google Scholar 

  34. 34.

    Saeed, A., Jahan, M.S., Li, H., Liu, Z., Ni, Y., Van Heiningen, A.: Mass balances of components dissolved in the pre-hydrolysis liquor of kraft-based dissolving pulp production process from Canadian hardwoods. Biomass Bioenergy 39, 14–19 (2010).

    Article  Google Scholar 

  35. 35.

    Yu, Y., Zeng, Y., Zuo, J., Ma, F., Yang, X., Zhang, X., Wang, Y.: Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment. Bioresour. Technol. 134, 198–203 (2013)

    Google Scholar 

  36. 36.

    Domínguez-Robles, J., Espinosa, E., Savy, D., Rosal, A., Rodríguez, A.: Biorefinery process combining specel® process and selective lignin precipitation using mineral acids. BioResources 11, 7061–7077 (2016)

    Google Scholar 

  37. 37.

    Shi, H., Fatehi, P., Xiao, H., Ni, Y.: Optimizing the poly ethylene oxide flocculation process for isolating lignin of prehydrolysis liquor of a Kraft-based dissolving pulp production process. Ind. Eng. Chem. Res. 51(14), 5330–5335 (2012).

    Article  Google Scholar 

  38. 38.

    Razali, M.A.A., Ahmad, Z., Ahmad, M.S.B., Ariffin, A.: Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation. Chem. Eng. J. 166(2), 529–535 (2011).

    Article  Google Scholar 

  39. 39.

    Sun, Y., Liu, Z., Fatehi, P.: Flocculation of thermomechanical pulping spent liquor with polydiallyldimethylammonium chloride. J. Environ. Manag. 200, 275–282 (2017).

    Article  Google Scholar 

  40. 40.

    Srivastava, V.C., Mall, I.D., Mishra, I.M.: Treatments of pulp and paper mill wastewaters with poly aluminium chloride and bagasse fly ash. Colloids Surf. A. 260, 17–28 (2005)

    Google Scholar 

  41. 41.

    Dashtban, M., Gilbert, A., Fatehi, P.: A combined adsorption and flocculation process for producing lignocellulosic complexes from spent liquors of neutral sulfite semichemical pulping process. Bioresour. Technol. 159, 373–379 (2014).

    Article  Google Scholar 

  42. 42.

    Xiao, H.N., Pelton, R., Hamielec, A.: The association of aqueous phenolic resin with polyethylene oxide and poly (acrylamide-co-ethylene glycol). J. Polym. Sci. A 33, 2605–2612 (1995)

    Google Scholar 

  43. 43.

    Takase, H., Van de Ven, T.G.M.: Effect of a cofactor on polymer bridging of latex particles to glass by polyethylene oxide. Colloids Surf. A. 118, 115–120 (1996)

    Google Scholar 

  44. 44.

    Kumar, P., Teng, T., Chand, S., Wasewar, L.: Treatment of paper and pulp mill effluent by coagulation. Int. J. Civil Environ. Eng. 3, 222–227 (2011)

    Google Scholar 

  45. 45.

    Fatehi, P., Shen, J., Hamdan, F., Ni, Y.: Improving the adsorption of lignocelluloses of prehydrolysis liquor on precipitated calcium carbonate. Carbohydr. Polym. 92, 2103–2110 (2013)

    Google Scholar 

  46. 46.

    Gregory, J., Duan, J.: Hidrolyzing metal salts as coagulants. Pure Appl. Chem. 73(12), 2017–2026 (2001)

    Google Scholar 

  47. 47.

    Ahmad, A.L., Wong, S.S., Teng, T.T., Zuhairi, A.: Improvement of alum and PACl coagulation for the treatment of pulp and paper mill wastewater. Chem. Eng. J. 137(3), 510–517 (2008).

    Article  Google Scholar 

  48. 48.

    Stumn, W., Morgan, J.J.: Chemical aspects of coagulation. J. Am. Water Works Assoc. 54, 971–994 (1962)

    Google Scholar 

  49. 49.

    Licsko, I.: Dissolved organics removal by solid-liquid phase separation (adsorption and coagulation). Water Sci. Technol. 27, 245–248 (1993)

    Google Scholar 

  50. 50.

    Randtke, S.J.: Organic contaminant removal by coagulation and related process combinations. J. Am. Water Works Assoc. 80, 40–56 (1988)

    Google Scholar 

  51. 51.

    Ching, H.W., Tanaka, T.S., Elimelech, M.: Dynamics of coagulation of kaolin particles with ferric chloride. Water Res. 28, 559–569 (1994)

    Google Scholar 

  52. 52.

    Wang, Q., Jahan, M.S., Liu, S., Miao, Q., Ni, Y.: Lignin removal enhancement from prehydrolysis liquor of kraft-based dissolving pulp production by laccase-induced polymerization. Bioresour. Technol. 164, 380–385 (2014)

    Google Scholar 

  53. 53.

    Demirba, S.A.: Calculation of higher values of biomass fuels. Fuel 76, 431–434 (1997)

    Google Scholar 

  54. 54.

    Brebu, M., Ucar, S., Vasile, C., Yanik, J.: Co-pyrolysis of pine cone with synthetic polymers. Fuel 89, 1911–1918 (2010)

    Google Scholar 

  55. 55.

    Satyanarayan, N., Vaibhav, V.G., Prasant, K.R., Kathlene, J., Ajay, K.D.: Characterization of Canadian biomass for alternative renewable biofuel. Renew. Energy. 35, 1624–1631 (2010)

    Google Scholar 

  56. 56.

    Telmo, C., Lousada, J., Moreira, N.: Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour. Technol. 101, 3808–3815 (2010)

    Google Scholar 

Download references


The authors wish to acknowledge BASF Corporation for providing us with different coagulant samples to use in this study. The authors would also like to thank Ministry of Economy & Competitiveness of Spain (Project CTQ2013-46804-C2-2R), University of Córdoba (RNM 2323) and University Pablo de Olavide (PPI 1401) and, finally, we would like to thank MatchBetter Translations, namely, Carmen Torrella, for reviewing and translating our papers.

Author information



Corresponding authors

Correspondence to Juan Domínguez-Robles or Antonio Rosal.

Ethics declarations

Conflict of interest

All the co-authors, and the responsible authorities as well, have agreed on and authorized the publication of this manuscript upon the final revised version. There is no conflict of interest. This work has not been published previously, and it is not under consideration for publication elsewhere. Furthermore, if accepted, it will not be published elsewhere either, in English or in any other language, including electronically, without the written consent of the copyright-holder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Robles, J., Palenzuela, M.V., Sánchez, R. et al. Coagulation–Flocculation as an Alternative Way to Reduce the Toxicity of the Black Liquor from the Paper Industry: Thermal Valorization of the Solid Biomass Recovered. Waste Biomass Valor 11, 4731–4742 (2020).

Download citation


  • Pulp mill sludge
  • Acidification
  • Calorific potential
  • Biorefinery
  • Wastewater treatment