Sustainable Management and Valorization of Spent Coffee Grounds Through the Optimization of Thin Layer Hot Air-Drying Process

  • J. Osorio-Arias
  • S. Delgado-Arias
  • L. Cano
  • S. Zapata
  • M. Quintero
  • H. Nuñez
  • C. Ramírez
  • R. Simpson
  • O. Vega-CastroEmail author
Original Paper


The spent coffee ground is a by-product of the coffee industry with high potential because of its beneficial properties for health, however, due to high water content, it is necessary to stabilize it without affecting bioactive capacities. The main objective of this work was to evaluate the effect of different convective drying conditions, on some technological and functional properties of the spent coffee ground and to determine the thermal degradation kinetics of chlorogenic acids. The methodology included the optimization of the drying process conditions of spent coffee ground: temperature (40–60 °C), air flow (1.0–2.0 m/s) and cake thickness (0.01–0.02 m). Effective diffusion coefficient, moisture, water activity, water and oil holding capacity, antioxidant capacity, caffeine, and seven chlorogenic acids were determined. The results showed that the best drying conditions were 60 °C, 2.0 m/s, 1.28 cm which allows retaining 84.24% of total polyphenols and 66.00% of the antioxidant capacity. Chlorogenic acids showed thermal degradation kinetics of first order under the optimal process conditions. In general, it is concluded that the convective drying process is a valid technique for processing of coffee grounds, as it allows the preservation of antioxidant compounds with a potentially beneficial effect on health, providing a stabilized low moisture content that can be used in food applications.

Graphic Abstract


Spent coffee ground Effective diffusion coefficient Bioactive properties Technological properties Chlorogenic acids 



The authors give special thanks to COLCIENCIAS for supporting, by the agreement 727-2015 scholarship. In addition, a special thanks to Universidad de Antioquia for the donation of the raw material. The authors are grateful for the financial support provided by CONICYT through FONDECYT project 1160811 (Cristian Ramírez) and 1181270 (Ricardo Simpson).


This work was supported by the Administrative Department of Science, Technology, and Innovation—Colciencias, Colombia [Convocatoria 727 de 2015].

Compliance with Ethical Standards

Conflict of interest

The authors declare that have no conflict of interest.


  1. 1.
    Limousy, L., Jeguirim, M., Dutournié, P., Kraiem, N., Lajili, M., Said, R.: Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel 107, 323–329 (2013)CrossRefGoogle Scholar
  2. 2.
    Mussatto, S.I., Machado, E.M.S., Martins, S., Teixeira, J.A.: Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 4(5), 661–672 (2011)CrossRefGoogle Scholar
  3. 3.
    Martinez-Saez, N., et al.: Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 216, 114–122 (2017)CrossRefGoogle Scholar
  4. 4.
    Esquivel, P., Jiménez, V.M.: Functional properties of coffee and coffee by-products. Food Res. Int. 46(2), 488–495 (2012)CrossRefGoogle Scholar
  5. 5.
    Murthy, P.S., Madhava Naidu, M.: Sustainable management of coffee industry by-products and value addition—a review. Resour. Conserv. Recycl. 66, 45–58 (2012)CrossRefGoogle Scholar
  6. 6.
    López-Barrera, D.M., Vázquez-Sánchez, K., Loarca-Piña, M.G.F., Campos-Vega, R.: Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chem. 212, 282–290 (2016)CrossRefGoogle Scholar
  7. 7.
    Gómez-De La Cruz, F.J., Cruz-Peragón, F., Casanova-Peláez, P.J., Palomar-Carnicero, J.M.: A vital stage in the large-scale production of biofuels from spent coffee grounds: the drying kinetics. Fuel Process. Technol. 130, 188–196 (2015)CrossRefGoogle Scholar
  8. 8.
    Kovalcik, A., Obruca, S., Marova, I.: Valorization of spent coffee grounds: a review. Food Bioprod. Process. 110, 104–119 (2018)CrossRefGoogle Scholar
  9. 9.
    Murthy, P.S., Naidu, M.M.: Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food Bioprocess Technol. 5(3), 897–903 (2012)CrossRefGoogle Scholar
  10. 10.
    Givens, D.I., Barber, W.P.: In vivo evaluation of spent coffee grounds as a ruminant feed. Agric. Wastes 18(1), 69–72 (1986)CrossRefGoogle Scholar
  11. 11.
    Zuorro, A., Lavecchia, R.: Spent coffee grounds as a valuable source of phenolic compounds and bioenergy. J. Clean. Prod. 34, 49–56 (2012)CrossRefGoogle Scholar
  12. 12.
    Peshev, D., Mitev, D., Peeva, L., Peev, G.: Valorization of spent coffee grounds—a new approach. Sep. Purif. Technol. 192, 271–277 (2018)CrossRefGoogle Scholar
  13. 13.
    Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H.A., Dave Oomah, B.: Spent coffee grounds: a review on current research and future prospects. Trends Food Sci. Technol. 45(1), 24–36 (2015)CrossRefGoogle Scholar
  14. 14.
    Sarkis, J.R., Mercali, G.D., Tessaro, I.C., Marczak, L.D.F.: Evaluation of key parameters during construction and operation of an ohmic heating apparatus. Innov. Food Sci. Emerg. Technol. 18, 145–154 (2013)CrossRefGoogle Scholar
  15. 15.
    Franca, A.S., Oliveira, L.S., Ferreira, M.E.: Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249(1), 267–272 (2009)CrossRefGoogle Scholar
  16. 16.
    Mussatto, S.I., Carneiro, L.M., Silva, J.P.A., Roberto, I.C., Teixeira, J.A.: A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr. Polym. 83(2), 368–374 (2011)CrossRefGoogle Scholar
  17. 17.
    Xu, H., Wang, W., Liu, X., Yuan, F., Gao, Y.: Antioxidative phenolics obtained from spent coffee grounds (Coffea arabica L.) by subcritical water extraction. Ind. Crops Prod. 76, 946–954 (2015)CrossRefGoogle Scholar
  18. 18.
    Ramalakshmi, K., Rao, L.J.M., Takano-Ishikawa, Y., Goto, M.: Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chem. 115(1), 79–85 (2009)CrossRefGoogle Scholar
  19. 19.
    Monente, C., Ludwig, I.A., Irigoyen, A., De Peña, M.P., Cid, C.: Assessment of total (Free and Bound) phenolic compounds in spent coffee extracts. J. Agric. Food Chem. 63(17), 4327–4334 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Misra, S. K. Mohapatra, and K. & N. V., Methods, systems, and apparatus for obtaining biofuel from coffee and fuels produced therefrom. Patent 8591605 B2, 2013.Google Scholar
  21. 21.
    Baechler, R.: Process for extracting terpens from spent coffee grounds. Patent 0819385, B1 (2002)Google Scholar
  22. 22.
    Kumar, N., Sarkar, B.C., Sharma, H.K.: Mathematical modelling of thin layer hot air drying of carrot pomace. J. Food Sci. Technol. 49(1), 33–41 (2012)CrossRefGoogle Scholar
  23. 23.
    Sabarez, H.: Drying of Food Materials. Elsevier, Amsterdam (2016)CrossRefGoogle Scholar
  24. 24.
    Onwude, D.I., Hashim, N., Janius, R.B., Nawi, N.M., Abdan, K.: Modeling the thin-layer drying of fruits and vegetables: a review. Compr. Rev. Food Sci. Food Saf. 15(3), 599–618 (2016)CrossRefGoogle Scholar
  25. 25.
    Saavedra, J., et al.: Industrial avocado waste: Functional compounds preservation by convective drying process. J. Food Eng. 198, 81–90 (2017)CrossRefGoogle Scholar
  26. 26.
    Kuljarachanan, T., Devahastin, S., Chiewchan, N.: Evolution of antioxidant compounds in lime residues during drying. Food Chem. 113(4), 944–949 (2009)CrossRefGoogle Scholar
  27. 27.
    Dorta, E., Lobo, M.G., González, M.: Using drying treatments to stabilise mango peel and seed: effect on antioxidant activity. LWT Food Sci. Technol. 45(2), 261–268 (2012)CrossRefGoogle Scholar
  28. 28.
    Duarte, Y. et al.: Effects of blanching and hot air drying conditions on the physicochemical and technological properties of yellow passion fruit (Passiflora edulis Var. Flavicarpa) by-products. J. Food Process. Eng. 40(3), 0–9, 2017.Google Scholar
  29. 29.
    AOAC: Official Methods of Analysis of AOAC International, 20th ed. Rockville: Association of Official Analytical Chemists, 2016.Google Scholar
  30. 30.
    Teba, C.S., da Silva, E.M.M., Chávez, D.W.H., de Carvalho, C.W.P., Ascheri, J.L.R.: Effects of whey protein concentrate, feed moisture and temperature on the physicochemical characteristics of a rice-based extruded flour. Food Chem. 228, 287–296 (2017)CrossRefGoogle Scholar
  31. 31.
    Heldman, D.R., Lund, D.B., Sabliov, C.: Handbook of Food Engineering. Second Edition, Boca Raton (2006)CrossRefGoogle Scholar
  32. 32.
    Crank, J.: The Mathematics of Diffusion, 2d ed. Oxford University Press, Oxford (1975)Google Scholar
  33. 33.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Contreras-Calderón, J., Guerra-Hernández, E., García-Villanova, B.: Utility of some indicators related to the Maillard browning reaction during processing of infant formulas. Food Chem. 114(4), 1265–1270 (2009)CrossRefGoogle Scholar
  35. 35.
    Contreras-Calderón, J., et al.: Evaluation of antioxidant capacity in coffees marketed in Colombia: relationship with the extent of non-enzymatic browning. Food Chem. 209, 162–170 (2016)CrossRefGoogle Scholar
  36. 36.
    Re, I.R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved abts radical. Free Radic. Biol. Med. 26(98), 1231–1237 (1999)CrossRefGoogle Scholar
  37. 37.
    Ludwig, I.A., Sanchez, L., Caemmerer, B., Kroh, L.W., De Peña, M.P., Cid, C.: Extraction of coffee antioxidants: impact of brewing time and method. Food Res. Int. 48(1), 57–64 (2012)CrossRefGoogle Scholar
  38. 38.
    Gloess, A.N., et al.: Comparison of nine common coffee extraction methods: instrumental and sensory analysis. Eur. Food Res. Technol. 236(4), 607–627 (2013)CrossRefGoogle Scholar
  39. 39.
    D. I. für Normung, DIN 10767:Analysis of coffee and coffee products; determination of chlorogenic acids content; HPLC method. 1992.Google Scholar
  40. 40.
    Vignoli, J.A., Bassoli, D.G., Benassi, M.T.: Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: the influence of processing conditions and raw material. Food Chem. 124(3), 863–868 (2011)CrossRefGoogle Scholar
  41. 41.
    Osorio, K., Monjes, J., Pinto, M., Ramírez, C., Simpson, R., Vega, O.: Effects of spray drying conditions and the addition of surfactants on the foaming properties of a whey protein concentrate. LWT Food Sci. Technol. 58(1), 109–115 (2014)CrossRefGoogle Scholar
  42. 42.
    Cruz, R., et al.: Espresso coffee residues: a valuable source of unextracted compounds. J. Agric. Food Chem. 60(32), 7777–7784 (2012)CrossRefGoogle Scholar
  43. 43.
    Bravo, J., et al.: Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds. J. Agric. Food Chem. 60(51), 12565–12573 (2012)CrossRefGoogle Scholar
  44. 44.
    Ramírez, C., Astorga, V., Nuñez, H., Jaques, A., Simpson, R.: Anomalous diffusion based on fractional calculus approach applied to drying analysis of apple slices: the effects of relative humidity and temperature. Food Process Eng. e12549, 1–10 (2017)Google Scholar
  45. 45.
    Zogzas, N., Maroulis, Z.B.: Moisture diffusivity data compilation in foodstuff. Dry. Technol. 2013, 37–41 (2007)Google Scholar
  46. 46.
    Guiné, R.P.F., Pinho, S., Barroca, M.J.: Study of the convective drying of pumpkin (Cucurbita maxima). Food Bioprod. Process. 89(4), 422–428 (2011)CrossRefGoogle Scholar
  47. 47.
    Gan, P.L., Poh, P.E.: Investigation on the effect of shapes on the drying kinetics and sensory evaluation study of dried jackfruit. Int. J. Sci. Eng. 7, 193–198 (2014)CrossRefGoogle Scholar
  48. 48.
    Akoy, E.O.M.: Experimental characterization and modeling of thin-layer drying of mango slices. Int. Food Res. J. 21(5), 1911–1917 (2014)Google Scholar
  49. 49.
    Shen, L., Chen, Z.: Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62(14), 3748–3755 (2007)CrossRefGoogle Scholar
  50. 50.
    Tjaden, B., Brett, D.J.L., Shearing, P.R.: Tortuosity in electrochemical devices: a review of calculation approaches. Int. Mater. Rev. 63(2), 47–67 (2018)CrossRefGoogle Scholar
  51. 51.
    J. Salvador, Aplicación de microperforaciones utilizando laser-CO2 en el proceso de liofilización de alimentos: efecto en el tiempo de secado primario. Universidad Tecnica Federico Santa María, 2018.Google Scholar
  52. 52.
    Rojas, M.L., Augusto, P.E.D.: Microstructure elements affect the mass transfer in foods: the case of convective drying and rehydration of pumpkin. Lwt 93, 102–108 (2018)CrossRefGoogle Scholar
  53. 53.
    de Moraes Crizel, T., Jablonski, A., de OliveiraRios, A., Rech, R., Flôres, S. H.: Dietary fiber from orange byproducts as a potential fat replacer. LWT Food Sci. Technol. 53(1), 9–14 (2013)Google Scholar
  54. 54.
    Panusa, A., Zuorro, A., Lavecchia, R., Marrosu, G., Petrucci, R.: Recovery of natural antioxidants from spent coffee grounds. J. Agric. Food Chem. 61, 4162–4168 (2013)CrossRefGoogle Scholar
  55. 55.
    Méndez-Lagunas, L., Rodríguez-Ramírez, J., Cruz-Gracida, M., Sandoval-Torres, S., Barriada-Bernal, G.: Convective drying kinetics of strawberry (Fragaria ananassa): effects on antioxidant activity, anthocyanins and total phenolic content. Food Chem. 230, 174–181 (2017)CrossRefGoogle Scholar
  56. 56.
    Horuz, E., Bozkurt, H., Karataş, H., Maskan, M.: Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin C, color and rehydration capacity of sour cherries. Food Chem. 230, 295–305 (2017)CrossRefGoogle Scholar
  57. 57.
    Wojdyło, A., Figiel, A., Lech, K., Nowicka, P., Oszmiański, J.: Effect of convective and vacuum-microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food Bioprocess Technol. 7(3), 829–841 (2014)CrossRefGoogle Scholar
  58. 58.
    Naczk, N., Shahidi, F.: Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 41(5), 1523–1542 (2006)CrossRefGoogle Scholar
  59. 59.
    Puerta, G.: La humedad controlada del grano preserva la calidad del café. Cenicafé 352, 1–8 (2006)Google Scholar
  60. 60.
    D. L. Aurelio, R. G. Edgardo, S. Navarro-Galindo, Thermal kinetic degradation of anthocyanins in a roselle (Hibiscus sabdariffa L. cv. ’Criollo’) infusion. Int. J. Food Sci. Technol., 43(2), 322–325, 2008.Google Scholar
  61. 61.
    Farah, A.: Coffee constituents. In: Chu, Y.-F. (ed.) Coffee: Emerging Health Effects and Disease Prevention, 1st edn, pp. 21–58. Blackwell, Ames (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.BIOALI Research Group, Food Department, Faculty of Pharmaceutical and Food SciencesUniversity of AntioquiaMedellínColombia
  2. 2.Colcafé Research Group, Industria Colombiana de Café Investigation and Innovation DepartmentMedellínColombia
  3. 3.Chemical and Environmental Engineering DepartmentUniversidad Técnica Federico Santa MariaValparaisoChile
  4. 4.Conicyt Regional Gore Valparaíso, Centro Regional de Estudios en Alimentos y Salud (CREAS)ValparaisoChile
  5. 5.Corporación Universitaria AmericanaMedellínColombia

Personalised recommendations